Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.310
Filter
1.
Mol Nutr Food Res ; 68(10): e2400034, 2024 May.
Article in English | MEDLINE | ID: mdl-38704751

ABSTRACT

SCOPE: Higher intake of cruciferous and allium vegetables is associated with lower cardiometabolic risk. Little research has investigated the cardiometabolic effects of S-methyl cysteine sulfoxide (SMCSO), found abundant in these vegetables. This study hypothesizes that SMCSO will blunt development of metabolic syndrome features in mice fed high-fat feed. METHODS AND RESULTS: Fifty C57BL/6 male mice are randomly assigned to standard-chow, high-fat, or high-fat supplemented with low-SMCSO (43 mg kg-1 body weight [BW] day-1), medium-SMCSO (153 mg kg-1 BW day-1), or high-SMCSO (256 mg kg-1 BW day-1) for 12-weeks. High-fat with SMCSO did not prevent diet-induced obesity, glucose intolerance, or hypercholesterolemia. Mice fed high-fat with SMCSO has higher hepatic lipids than mice fed standard-chow or high-fat alone. Urinary SMCSO increases at 6- and 12-weeks in the low-SMCSO group, before reducing 46% and 28% in the medium- and high-SMCSO groups, respectively, at 12-weeks, suggesting possible tissue saturation. Interestingly, two SMCSO-fed groups consume significantly more feed, without significant weight gain. Due to limitations in measuring consumed feed, caution should be taken interpreting these results. CONCLUSION: SMCSO (43-256 mg kg-1 BW day-1) does not ameliorate metabolic syndrome features in high-fat fed mice. Substantial knowledge gaps remain. Further studies should administer SMCSO separately (i.e., gavage), with metabolic studies exploring tissue levels to better understand its physiological action.


Subject(s)
Cysteine , Diet, High-Fat , Hyperlipidemias , Mice, Inbred C57BL , Weight Gain , Animals , Diet, High-Fat/adverse effects , Male , Weight Gain/drug effects , Hyperlipidemias/drug therapy , Cysteine/analogs & derivatives , Cysteine/pharmacology , Liver/drug effects , Liver/metabolism , Obesity/drug therapy , Mice , Metabolic Syndrome/drug therapy
2.
Transl Psychiatry ; 14(1): 228, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816357

ABSTRACT

Depression and obesity are prevalent disorders with significant public health implications. In this study, we used a high-fat diet (HFD)-induced obese mouse model to investigate the mechanism underlying HFD-induced depression-like behaviors. HFD-induced obese mice exhibited depression-like behaviors and a reduction in hippocampus volume, which were reversed by treatment with an indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyltryptophan (1-MT). Interestingly, no changes in IDO levels were observed post-1-MT treatment, suggesting that other mechanisms may be involved in the anti-depressive effect of 1-MT. We further conducted RNA sequencing analysis to clarify the potential underlying mechanism of the anti-depressive effect of 1-MT in HFD-induced depressive mice and found a significant enrichment of shared differential genes in the extracellular matrix (ECM) organization pathway between the 1-MT-treated and untreated HFD-induced depressive mice. Therefore, we hypothesized that changes in ECM play a crucial role in the anti-depressive effect of 1-MT. To this end, we investigated perineuronal nets (PNNs), which are ECM assemblies that preferentially ensheath parvalbumin (PV)-positive interneurons and are involved in many abnormalities. We found that HFD is associated with excessive accumulation of PV-positive neurons and upregulation of PNNs, affecting synaptic transmission in PV-positive neurons and leading to glutamate-gamma-aminobutyric acid imbalances in the hippocampus. The 1-MT effectively reversed these changes, highlighting a PNN-related mechanism by which 1-MT exerts its anti-depressive effect.


Subject(s)
Depression , Diet, High-Fat , Disease Models, Animal , Extracellular Matrix , Hippocampus , Mice, Inbred C57BL , Tryptophan , Animals , Mice , Tryptophan/analogs & derivatives , Tryptophan/pharmacology , Depression/drug therapy , Depression/etiology , Male , Hippocampus/drug effects , Hippocampus/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Obesity/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Nerve Net/drug effects
3.
Nature ; 629(8014): 1133-1141, 2024 May.
Article in English | MEDLINE | ID: mdl-38750368

ABSTRACT

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Subject(s)
Dizocilpine Maleate , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Obesity , Receptors, N-Methyl-D-Aspartate , Animals , Humans , Male , Mice , Rats , Brain Stem/metabolism , Brain Stem/drug effects , Disease Models, Animal , Dizocilpine Maleate/adverse effects , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Obesity/drug therapy , Obesity/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
4.
Am J Nurs ; 124(6): 14-15, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38780331

ABSTRACT

Recently approved drugs offer hope and spark concern.


Subject(s)
Anti-Obesity Agents , Humans , United States , Anti-Obesity Agents/therapeutic use , Social Stigma , Obesity/drug therapy
5.
Sci Rep ; 14(1): 10832, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734755

ABSTRACT

Sodium-glucose co-transporters type 2 inhibitors (SLGT2i) are highly effective in controlling type 2 diabetes, but reported beneficial cardiovascular effects suggest broader actions on insulin resistance. Weight loss may be initially explained by glycosuria-induced net caloric output and secondary volumetric reduction, but its maintenance could be due to loss of visceral fat mass. Structured ultrasound (US) imaging of abdominal adipose tissue ("eco-obesity") is a recently described methodology used to measure 5 consecutive layers of abdominal fat, not assessable by DEXA or CT scan: superficial subcutaneous (SS), deep subcutaneous (DS), preperitoneal (PP), omental (Om) and right perirenal (RK). PP, Om and RK are predictors of metabolic syndrome (MS) with defined cut-off points. To assess the effect of SLGT2i on every fat depot we enrolled 29 patients with type 2 Diabetes (HbA1c 6.5-9%) and Obesity (IMC > 30 kg/m2) in an open-label, randomized, phase IV trial (EudraCT: 2019-000979-16): the Omendapa trial. Diabetes was diagnosed < 12 months before randomization and all patients were treatment naïve. 14 patients were treated with metformin alone (cohort A) and 15 were treated with metformin + dapaglifozin (cohort B). Anthropometric measures and laboratory tests for glucose, lipid profile, insulin, HOMA, leptin, ultrasensitive-CRP and microalbuminuria (MAL) were done at baseline, 3rd and 6th months. At 6th month, weight loss was -5.5 ± 5.2 kg (5.7% from initial weight) in cohort A and -8.4 ± 4.4 kg (8.6%) in cohort B. Abdominal circumference showed a -2.7 ± 3.1 cm and -5.4 ± 2.5 cm reduction, respectively (p = 0.011). Both Metformin alone (-19.4 ± 20.1 mm; -21.7%) or combined with Dapaglifozin (-20.5 ± 19.4 mm; -21.8%) induced significant Om fat reduction. 13.3% of cohort A patients and 21.4% of cohort's B reached Om thickness below the cut-off for MS criteria. RK fat loss was significantly greater in cohort B group compared to cohort A, at both kidneys. Only in the Met + Dapa group, we observed correlations between Om fat with leptin/CRP/MAL and RK fat with HOMA-IR. US is a useful clinical tool to assess ectopic fat depots. Both Metformin and Dapaglifozin induce fat loss in layers involved with MS but combined treatment is particularly effective in perirenal fat layer reduction. Perirenal fat should be considered as a potential target for cardiovascular dapaglifozin beneficial effects.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Metformin , Obesity , Humans , Metformin/therapeutic use , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glucosides/therapeutic use , Glucosides/pharmacology , Female , Male , Obesity/drug therapy , Obesity/complications , Middle Aged , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Aged , Drug Therapy, Combination , Adult
6.
Ann Intern Med ; 177(5): JC56, 2024 May.
Article in English | MEDLINE | ID: mdl-38710083

ABSTRACT

SOURCE CITATION: Kosiborod MN, Verma S, Borlaug BA, et al; STEP-HFpEF Trial Committees and Investigators. Effects of semaglutide on symptoms, function, and quality of life in patients with heart failure with preserved ejection fraction and obesity: a prespecified analysis of the STEP-HFpEF trial. Circulation. 2024;149:204-216. 37952180.


Subject(s)
Glucagon-Like Peptides , Heart Failure , Obesity , Quality of Life , Weight Loss , Humans , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/adverse effects , Weight Loss/drug effects , Obesity/drug therapy , Obesity/complications , Heart Failure/drug therapy , Health Status , Stroke Volume/drug effects , Male , Aged , Female , Middle Aged
7.
J Nanobiotechnology ; 22(1): 226, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711066

ABSTRACT

Nanozyme, characterized by outstanding and inherent enzyme-mimicking properties, have emerged as highly promising alternatives to natural enzymes owning to their exceptional attributes such as regulation of oxidative stress, convenient storage, adjustable catalytic activities, remarkable stability, and effortless scalability for large-scale production. Given the potent regulatory function of nanozymes on oxidative stress and coupled with the fact that reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of metabolic diseases, nanozyme offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of metabolic diseases by directly scavenging excess ROS or regulating pathologically related molecules. The rational design strategies, nanozyme-enabled therapeutic mechanisms at the cellular level, and the therapies of nanozyme for several typical metabolic diseases and underlying mechanisms are discussed, mainly including obesity, diabetes, cardiovascular disease, diabetic wound healing, and others. Finally, the pharmacokinetics, safety analysis, challenges, and outlooks for the application of nanozyme are also presented. This review will provide some instructive perspectives on nanozyme and promote the development of enzyme-mimicking strategies in metabolic disease therapy.


Subject(s)
Metabolic Diseases , Oxidative Stress , Reactive Oxygen Species , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Animals , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Nanostructures/chemistry , Nanostructures/therapeutic use , Nanoparticles/chemistry , Enzymes/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Obesity/metabolism , Obesity/drug therapy
9.
Pak J Pharm Sci ; 37(1(Special)): 231-234, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747274

ABSTRACT

Increased levels of bad cholesterol in the body result in increasing blood pressure and weight gain. The rate of mortality in people, especially who are obese, is increasing due to absence of organic sources of fiber in their diets. Chia and fennel seeds are rich sources of fiber. The objective of this study was to evaluate the combined effect of Salvia hispanica (Chia seeds) and Foeniculum vulgare (Fennel seeds) against weight-loss and lipid profile in obese human subjects. The research was conducted on obese people aged 25 to 40 years at the Jinnah Hospital Lahore. The study design was randomized control trial (RCT). The sample size was calculated and was divided in-to two groups. With the duration of study being 3 months, pre-testing of all the participants was done. Group 1 was control group, given placebo treatment and Group 2 was an intervention group and given chia and fennel seeds. Post-testing was done and data were analyzed. Results showed that chia and fennel seeds have significant effect (p <0.05) on BMI and lipid profile hence, both are beneficial for lowering body weight and improving LDL, HDL, serum triglycerides and total cholesterol levels.


Subject(s)
Foeniculum , Obesity , Salvia , Seeds , Weight Loss , Humans , Foeniculum/chemistry , Adult , Obesity/blood , Obesity/drug therapy , Seeds/chemistry , Salvia/chemistry , Female , Male , Weight Loss/drug effects , Lipids/blood , Plant Extracts/pharmacology , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Body Mass Index , Phytotherapy
10.
Eur J Med Chem ; 271: 116462, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691888

ABSTRACT

The G protein-coupled bile acid receptor 1 (GPBAR1) or TGR5 is widely distributed across organs, including the small intestine, stomach, liver, spleen, and gallbladder. Many studies have established strong correlations between TGR5 and glucose homeostasis, energy metabolism, immune-inflammatory responses, and gastrointestinal functions. These results indicate that TGR5 has a significant impact on the progression of tumor development and metabolic disorders such as diabetes mellitus and obesity. Targeting TGR5 represents an encouraging therapeutic approach for treating associated human ailments. Notably, the GLP-1 receptor has shown exceptional efficacy in clinical settings for diabetes management and weight loss promotion. Currently, numerous TGR5 agonists have been identified through natural product-based approaches and virtual screening methods, with some successfully progressing to clinical trials. This review summarizes the intricate relationships between TGR5 and various diseases emphasizing recent advancements in research on TGR5 agonists, including their structural characteristics, design tactics, and biological activities. We anticipate that this meticulous review could facilitate the expedited discovery and optimization of novel TGR5 agonists.


Subject(s)
Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Molecular Structure , Drug Development , Obesity/drug therapy , Animals , Diabetes Mellitus/drug therapy , Neoplasms/drug therapy
11.
Front Endocrinol (Lausanne) ; 15: 1387964, 2024.
Article in English | MEDLINE | ID: mdl-38742193

ABSTRACT

The high prevalence of obesity has become a pressing global public health problem and there exists a strong association between increased BMI and mortality at a BMI of 25 kg/m2 or higher. The prevalence of obesity is higher among middle-aged adults than among younger groups and the combination of aging and obesity exacerbate systemic inflammation. Increased inflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha (TNFα) are hallmarks of obesity, and promote the secretion of hepatic C-reactive protein (CRP) which further induces systematic inflammation. The neuropeptide oxytocin has been shown to have anti-obesity and anti-inflammation effects, and also suppress sweet-tasting carbohydrate consumption in mammals. Previously, we have shown that the Japanese herbal medicine Kamikihito (KKT), which is used to treat neuropsychological stress disorders in Japan, functions as an oxytocin receptors agonist. In the present study, we further investigated the effect of KKT on body weight (BW), food intake, inflammation, and sweet preferences in middle-aged obese mice. KKT oral administration for 12 days decreased the expression of pro-inflammatory cytokines in the liver, and the plasma CRP and TNFα levels in obese mice. The effect of KKT administration was found to be different between male and female mice. In the absence of sucrose, KKT administration decreased food intake only in male mice. However, while having access to a 30% sucrose solution, both BW and food intake was decreased by KKT administration in male and female mice; but sucrose intake was decreased in female mice alone. In addition, KKT administration decreased sucrose intake in oxytocin deficient lean mice, but not in the WT lean mice. The present study demonstrates that KKT ameliorates chronic inflammation, which is strongly associated with aging and obesity, and decreases food intake in male mice as well as sucrose intake in female mice; in an oxytocin receptor dependent manner.


Subject(s)
Diet, High-Fat , Drugs, Chinese Herbal , Inflammation , Mice, Inbred C57BL , Obesity , Animals , Obesity/metabolism , Obesity/drug therapy , Male , Mice , Diet, High-Fat/adverse effects , Inflammation/metabolism , Female , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Sucrose/administration & dosage , Food Preferences/drug effects , Body Weight/drug effects , Oxytocin/pharmacology , Medicine, Kampo , East Asian People
12.
Wiad Lek ; 77(3): 472-483, 2024.
Article in English | MEDLINE | ID: mdl-38691789

ABSTRACT

OBJECTIVE: Aim: To assess efficacy of L-carnitine and cinnamon alone and in combination on body composition parameters in addition to compare between them. PATIENTS AND METHODS: Materials and Methods: Sample of 28 obese and overweight adults in Babylon city, sample collection includes patients in places, or by internet, where interview take place according to specialize questionnaire height, weight, and body mass index were measured. RESULTS: Results: A significant differences P<0.05 among gender distribution between male and female. A significant difference between (150-160 cm, 160-170 cm) as compared with (170-180 cm, 180-190 cm). A significant difference between 170-180 cm as compared with 180-190 cm but non-significant differences between 150-160 cm as compared with 160-170 cm. A significant difference between 26-35 as compared with 36-45, 46-55, but non-significant differences between 36-45 as compared with 46-55. A significant difference between body weight, body fat, water content, skeletal muscle, and body mass index after treatment, but non-significant differences between protein, and inorganic salt after treatment and at baseline. A significant difference between body weight, water content, skeletal muscle, and body mass index in group treated with cinnamon as compared with negative control group, but non-significant differences between body fat, protein, and inorganic salt as compared with negative control group. CONCLUSION: Conclusions: The prevalence of overweight and obesity within accepted range of that reported in Iraq, important relationship was reported between several life style risk factor, as soon as diagnose increase in weight and education health program for behavior of life style were high recommended.


Subject(s)
Body Composition , Carnitine , Cinnamomum zeylanicum , Dietary Supplements , Obesity , Weight Loss , Humans , Male , Female , Adult , Body Composition/drug effects , Carnitine/therapeutic use , Weight Loss/drug effects , Middle Aged , Obesity/drug therapy , Body Mass Index , Overweight/drug therapy
13.
ACS Nano ; 18(21): 13635-13651, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753978

ABSTRACT

As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.


Subject(s)
Adipose Tissue , Lipoproteins, HDL , Animals , Mice , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Adipose Tissue/metabolism , Recombinant Proteins , Resveratrol/pharmacology , Resveratrol/chemistry , Obesity/drug therapy , Obesity/metabolism , Hydrogels/chemistry , Mice, Inbred C57BL , Humans , Male , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Drug Delivery Systems , Scavenger Receptors, Class B/metabolism
17.
Respir Res ; 25(1): 213, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762465

ABSTRACT

BACKGROUND: Obesity is associated with airway hyperresponsiveness and lung fibrosis, which may reduce the effectiveness of standard asthma treatment in individuals suffering from both conditions. Statins and proprotein convertase subtilisin/kexin-9 inhibitors not only reduce serum cholesterol, free fatty acids but also diminish renin-angiotensin system activity and exhibit anti-inflammatory effects. These mechanisms may play a role in mitigating lung pathologies associated with obesity. METHODS: Male C57BL/6 mice were induced to develop obesity through high-fat diet for 16 weeks. Conditional TGF-ß1 transgenic mice were fed a normal diet. These mice were given either atorvastatin or proprotein convertase subtilisin/kexin-9 inhibitor (alirocumab), and the impact on airway hyperresponsiveness and lung pathologies was assessed. RESULTS: High-fat diet-induced obesity enhanced airway hyperresponsiveness, lung fibrosis, macrophages in bronchoalveolar lavage fluid, and pro-inflammatory mediators in the lung. These lipid-lowering agents attenuated airway hyperresponsiveness, macrophages in BALF, lung fibrosis, serum leptin, free fatty acids, TGF-ß1, IL-1ß, IL-6, and IL-17a in the lung. Furthermore, the increased RAS, NLRP3 inflammasome, and cholecystokinin in lung tissue of obese mice were reduced with statin or alirocumab. These agents also suppressed the pro-inflammatory immune responses and lung fibrosis in TGF-ß1 over-expressed transgenic mice with normal diet. CONCLUSIONS: Lipid-lowering treatment has the potential to alleviate obesity-induced airway hyperresponsiveness and lung fibrosis by inhibiting the NLRP3 inflammasome, RAS and cholecystokinin activity.


Subject(s)
Diet, High-Fat , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mice, Inbred C57BL , Mice, Transgenic , Obesity , Pulmonary Fibrosis , Animals , Male , Diet, High-Fat/adverse effects , Obesity/drug therapy , Obesity/metabolism , Mice , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Pulmonary Fibrosis/prevention & control , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , PCSK9 Inhibitors , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Mice, Obese , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Bronchial Hyperreactivity/prevention & control , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/physiopathology , Antibodies, Monoclonal, Humanized
18.
Life Sci ; 348: 122677, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38702026

ABSTRACT

AIMS: Epidemiological evidence indicates that there is a substantial association between body mass index (BMI) and at least ten forms of cancer, including melanoma, and BMI imbalance contributes to the poor survival rate of cancer patients before and after therapy. Nevertheless, few pharmacological studies on models of obesity and cancer have been reported. In this study, we administered epigallocatechin gallate (EGCG) to B16BL6 tumor-bearing mice that received a high-fat diet (HFD) to examine its impact. METHODS: B16BL6 tumor-bearing mice were fed a HFD. Body weight and food intake were documented every week. We conducted a Western blot analysis to examine the protein levels in the tumor, gastrocnemius (GAS), and tibialis anterior (TA) muscles, as well as the inguinal and epididymal white adipose tissues (iWAT and eWAT). KEY FINDINGS: EGCG has been shown to have anti-cancer effects equivalent to those of cisplatin, a chemotherapy drug. Furthermore, EGCG protected against the loss of epidydimal white adipose tissue by regulating protein levels of lipolysis factors of adipose triglyceride lipase and hormone-sensitive lipase as well as WAT browning factors of uncoupling protein 1, as opposed to cisplatin. EGCG was shown to reduce the protein levels of muscular atrophy factors of muscle RING-finger protein-1, whereas cisplatin did not contribute to rescuing the atrophy of TA and GAS muscles. CONCLUSION: Taken together, our findings indicate that EGCG has a preventive effect against cachexia symptoms and has anti-cancer effects similar to those of cisplatin in tumor-bearing mice fed a high-fat diet.


Subject(s)
Catechin , Diet, High-Fat , Melanoma, Experimental , Mice, Inbred C57BL , Muscular Atrophy , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/therapeutic use , Diet, High-Fat/adverse effects , Mice , Male , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Obesity/metabolism , Obesity/drug therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology
20.
Lancet Diabetes Endocrinol ; 12(6): 380-389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697184

ABSTRACT

BACKGROUND: Hypothalamic obesity resulting from hypothalamic damage might affect melanocortin signalling. We investigated the melanocortin-4 receptor agonist setmelanotide for treatment of hypothalamic obesity. METHODS: This phase 2, open-label, multicentre trial was done in five centres in the USA. Eligible patients were aged between 6 and 40 years with obesity and history of hypothalamic injury or diagnosis of a non-malignant tumour affecting the hypothalamus that was treated with surgery, chemotherapy, or radiation. Setmelanotide was titrated up to a dose of 3·0 mg and administered subcutaneously once a day for a total duration of 16 weeks. The primary endpoint was the proportion of patients with a reduction in BMI of at least 5% from baseline after 16 weeks, compared with a historic control rate of less than 5% in this population. The primary endpoint was analysed using the full analysis set, which includes all patients with baseline data who received at least one dose of setmelanotide. Safety was assessed in all patients who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov (NCT04725240) and is complete. FINDINGS: Between June 6, 2021, and Jan 13, 2022, 19 patients were screened for inclusion. One patient was excluded, and 18 were enrolled and received at least one dose of setmelanotide. Patients were primarily White (n=14 [78%]) and male (n=11 [61%]). Enrolled patients had a mean age of 15·0 years (SD 5·3) and a mean BMI of 38·0 kg/m2 (SD 6·5). Of 18 patients enrolled, 16 (89%) of 18 patients completed the study and met the primary endpoint of reduction in BMI of at least 5% from baseline after 16 weeks (p<0·0001). The mean reduction in BMI across all patients was 15% (SD 10). A composite proportion of patients had a clinically meaningful change (89%, 90% CI 69-98%; p<0·0001), comprising a reduction in BMI Z score of at least 0·2 points for patients younger than 18 years (92%, 68-100%; p<0·0001) and reduction in bodyweight of at least 5% for patients aged 18 years or older (80%, 34-99%; p<0·0001). Patients aged 12 years or older had a mean reduction in hunger score of 45%. Frequent adverse events included nausea (61%), vomiting (33%), skin hyperpigmentation (33%), and diarrhoea (22%). Of 14 patients who continued treatment in a long-term extension study (NCT03651765), 12 completed at least 12 months of treatment at the time of publication and had a mean change in BMI of -26% (SD 12) from index trial baseline. INTERPRETATION: These findings support setmelanotide as a novel effective treatment of hypothalamic obesity. FUNDING: Rhythm Pharmaceuticals.


Subject(s)
Hypothalamic Diseases , Obesity , alpha-MSH , Humans , Male , Female , Adult , Adolescent , Obesity/drug therapy , Young Adult , Hypothalamic Diseases/drug therapy , Child , alpha-MSH/analogs & derivatives , alpha-MSH/therapeutic use , alpha-MSH/administration & dosage , Receptor, Melanocortin, Type 4/agonists , Treatment Outcome , Body Mass Index
SELECTION OF CITATIONS
SEARCH DETAIL
...