Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.989
Filter
1.
Toxins (Basel) ; 16(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38922171

ABSTRACT

Viticulture has been an important economic sector for centuries. In recent decades, global wine production has fluctuated between 250 and almost 300 million hectoliters, and in 2022, the value of wine exports reached EUR 37.6 billion. Climate change and the associated higher temperatures could favor the occurrence of ochratoxin A (OTA) in wine. OTA is a mycotoxin produced by some species of the genera Aspergillus and Penicillium and has nephrotoxic, immunotoxic, teratogenic, hepatotoxic, and carcinogenic effects on animals and humans. The presence of this toxin in wine is related to the type of wine-red wines are more frequently contaminated with OTA-and the geographical location of the vineyard. In Europe, the lower the latitude, the greater the risk of OTA contamination in wine. However, climate change could increase the risk of OTA contamination in wine in other regions. Due to their toxic effects, the development of effective and environmentally friendly methods to prevent, decontaminate, and degrade OTA is essential. This review summarises the available research on biological aspects of OTA prevention, removal, and degradation.


Subject(s)
Food Contamination , Ochratoxins , Wine , Ochratoxins/analysis , Wine/analysis , Food Contamination/analysis , Food Contamination/prevention & control , Animals , Humans
2.
ACS Sens ; 9(6): 3253-3261, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38785085

ABSTRACT

In conventional ratiometric photoelectrochemical (PEC) sensors, the detection and reference signals are output sequentially from two independent photosensitive materials. In such a "two-to-two" ratiometric mode, unavoidable difference during dual-interface modification exists, resulting in questionable ratiometric signals and detection results. To address this issue, we propose a novel "one-to-two" ratiometric PEC sensor on a single electrode interface through pH-modulated band alignment engineering. The double ratiometric signals are generated by the synergistic action of a pH-responsive CuTCPP/WS2 photoelectric substrate material and the i-motif sensing tool. Specifically, a ternary heterostructure to generate a photoanodic detection signal is formed under alkaline conditions between CuTCPP/WS2 and signal label CdS QDs binding to the i-motif. While under acidic conditions, a photocurrent polarity conversion and signaling labels detachment, induced by the band realignment of CuTCPP/WS2 and the i-motif conformational switching, produce a reliable internal reference photocathodic signal. The feasibility of this two-wing signal generation strategy is validated by detecting mycotoxin ochratoxin A, which achieves accurate and reliable ratio detection results. Overall, this work provides guidance for the design of a PEC ratiometric determination system and exhibits great potential to be applied in practical analysis research.


Subject(s)
Electrochemical Techniques , Quantum Dots , Hydrogen-Ion Concentration , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Quantum Dots/chemistry , Ochratoxins/analysis , Metal-Organic Frameworks/chemistry , Cadmium Compounds/chemistry , Sulfides/chemistry , Limit of Detection , Electrodes
3.
Article in English | MEDLINE | ID: mdl-38771562

ABSTRACT

Mycotoxins in animal feed pose health risks and economic losses, but using various adsorbent types could potentially protect animals from mycotoxicosis. The study aimed to assess the effect of OTA on the health of broiler chickens and to envisage the ameliorative potential of clay adsorbents. The objectives of this in vivo study were to investigate the effects of OTA on productivity, biochemical parameters, fecal residues, and the preventive effects of indigenous and commercial clay of Balochistan as adsorbents to alleviate the adverse effects of exposure. Male broiler chickens (n = 160) were treated with 400 µg/kg OTA and 0.5 g/kg clay adsorbent for 42 days, with feed and water available in an ad libitum manner. The amount of OTA in diet and fecal residues was assessed through HPLC. The administration of OTA in the diet, resulted in a significant (p < 0.05) decrease in the average daily gain (ADG) and average daily feed intake (ADFI) while increasing the feed conversion ratio (FCR) as compared to the control group. Furthermore, no significant (p > 0.05) differences were found between the weight gain of broiler chickens fed without OTA (positive control) and that of chickens fed adsorbent. The group given a diet containing OTA without adsorbents as compared to the control and adsorbent-supplemented group has shown a significant (p < 0.05) increase in the relative weight of the liver, kidney, gizzard, and proventriculus while decreasing the relative weight of the spleen and bursa of Fabricius. Alterations in the levels of serum total protein (TP), cholesterol (CHL), serum urea (SU), enzymatic activity (aspartate aminotransferase (AST) and alanine transaminase (ALT)), and creatinine were observed in the OTA-intoxicated and adsorbent-supplemented groups as compared to the control group. Adsorbent supplementation resulted in a significantly (p < 0.05) higher OTA content in the faeces. It can be concluded from the results of this study, that OTA intoxication negatively affects the health of broiler chickens, and the clay of Balochistan has shown effective adsorption potential against OTA.


Subject(s)
Animal Feed , Chickens , Clay , Ochratoxins , Animals , Male , Adsorption , Clay/chemistry , Pakistan , Animal Feed/analysis , Food Contamination/analysis , Aluminum Silicates/chemistry
4.
J Hazard Mater ; 473: 134716, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38797074

ABSTRACT

Ochratoxin A (OTA) is a toxic secondary metabolite that widely contaminates agro-products and poses a significant dietary risk to human health. Previously, a carboxypeptidase CP4 was characterized for OTA degradation in Lysobacter sp. CW239, but the degradation activity was much lower than its host strain CW239. In this study, an amidohydrolase ADH2 was screened for OTA hydrolysis in this strain. The result showed that 50 µg/L OTA was completely degraded by 1.0 µg/mL rADH2 within 5 min, indicating ultra-efficient activity. Meanwhile, the two hydrolases (i.e., CP4 and ADH2) in the strain CW239 showed the same degradation manner, which transformed the OTA to ochratoxin α (OTα) and l-ß-phenylalanine. Gene mutants (Δcp4, Δadh2 and Δcp4-adh2) testing result showed that OTA was co-degraded by carboxypeptidase CP4 and amidohydrolase ADH2, and the two hydrolases are sole agents in strain CW239 for OTA degradation. Hereinto, the ADH2 was the overwhelming efficient hydrolase, and the two types of hydrolases co-degraded OTA in CW239 by synergistic effect. The results of this study are highly significant to ochratoxin A contamination control during agro-products production and postharvest.


Subject(s)
Lysobacter , Ochratoxins , Ochratoxins/metabolism , Ochratoxins/toxicity , Lysobacter/metabolism , Lysobacter/genetics , Amidohydrolases/metabolism , Amidohydrolases/genetics , Carboxypeptidases/metabolism , Carboxypeptidases/genetics , Hydrolases/metabolism , Hydrolases/genetics
5.
Cell Mol Life Sci ; 81(1): 241, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806811

ABSTRACT

Aspergillus ochraceus is the traditional ochratoxin A (OTA)-producing fungus with density-dependent behaviors, which is known as quorum sensing (QS) that is mediated by signaling molecules. Individual cells trend to adapt environmental changes in a "whole" flora through communications, allowing fungus to occupy an important ecological niche. Signals perception, transmission, and feedback are all rely on a signal network that constituted by membrane receptors and intracellular effectors. However, the interference of density information in signal transduction, which regulates most life activities of Aspergillus, have yet to be elucidated. Here we show that the G protein-coupled receptor (GPCR) to cAMP pathway is responsible for transmitting density information, and regulates the key point in life cycle of A. ochraceus. Firstly, the quorum sensing phenomenon of A. ochraceus is confirmed, and identified the density threshold is 103 spores/mL, which represents the low density that produces the most OTA in a series quorum density. Moreover, the GprC that classified as sugar sensor, and intracellular adenylate cyclase (AcyA)-cAMP-PKA pathway that in response to ligands glucose and HODEs are verified. Furthermore, GprC and AcyA regulate the primary metabolism as well as secondary metabolism, and further affects the growth of A. ochraceus during the entire life cycle. These studies highlight a crucial G protein signaling pathway for cell communication that is mediated by carbohydrate and oxylipins, and clarified a comprehensive effect of fungal development, which include the direct gene regulation and indirect substrate or energy supply. Our work revealed more signal molecules that mediated density information and connected effects on important adaptive behaviors of Aspergillus ochraceus, hoping to achieve comprehensive prevention and control of mycotoxin pollution from interrupting cell communication.


Subject(s)
Aspergillus ochraceus , Cyclic AMP , Glucose , Quorum Sensing , Signal Transduction , Aspergillus ochraceus/metabolism , Aspergillus ochraceus/genetics , Glucose/metabolism , Cyclic AMP/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ochratoxins/metabolism
6.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1818-1825, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812194

ABSTRACT

A label-free fluorescence method based on malachite green/aptamer was developed for the detection of ochratoxin A(OTA) in traditional Chinese medicines. Malachite green itself exhibits weak fluorescence. Upon interaction with the aptamer specific to OTA, the G-quadruplex structure of the aptamer provides a protective microenvironment for malachite green, which significantly enhances its fluorescence signal. After OTA is added, preferential binding occurs between the aptamer and OTA, and malachite green will be released from the aptamer, which weakens the fluorescence signal. According to this principle, this paper established a fluorescence method with the aptamer of OTA as the recognition element and malachite green as the fluorescent probe for the detection of OTA in traditional Chinese medicines. The key experimental factors such as the concentrations of metal ions, aptamer, and malachite green were optimized to improve the performance of the method. OTA was detected under the optimal experimental conditions, and the results showed that with the increase in OTA concentration, the fluorescence signal gradually weakened. Within the range of 20-1 000 nmol·L~(-1), the OTA concentration was linearly correlated with the fluorescence signal ratio ΔF/F(ΔF=F_0-F, where F_0 is the fluorescence signal of aptamer/malachite green, and F is the fluorescence signal of OTA/aptamer/malachite green), with R~2 of 0.995. The limit of detection of the established method was 7.1 nmol·L~(-1). Furthermore, three substances structurally similar to OTA and two mycotoxins that may coexist with OTA were selected for experiments, which aimed to examine the cross-reactivity and specificity of the established method. The cross-reactivity experiments demonstrated that the interferers did not significantly affect the fluorescence signal of the detection system. The specificity experiments revealed that when mycotoxins were mixed with OTA, the fluorescence signal generated by the mixture closely resembled that of OTA itself. The results indicated that even in the presence of interferents, the established method remained unaffected and demonstrated excellent specificity. Additionally, this method exhibited remarkable reproducibility and stability. In the case of simple centrifugation and dilution of traditional Chinese medicine samples(Puerariae Lobatae Radix, Sophorae Flavescentis Radix, and Periplocae Cortex), the OTA detection method was applicable, with recovery rates ranging from 91.5% to 121.3%. Notably, this approach does not need complex pretreatment of traditional Chinese medicines while offering simple operation, low detection costs, and short detection time. Furthermore, by incorporating aptamers into the quality evaluation of traditional Chinese medicines, this method expands the application scope of aptamers.


Subject(s)
Aptamers, Nucleotide , Drugs, Chinese Herbal , Ochratoxins , Rosaniline Dyes , Rosaniline Dyes/chemistry , Rosaniline Dyes/analysis , Ochratoxins/analysis , Ochratoxins/chemistry , Aptamers, Nucleotide/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Spectrometry, Fluorescence/methods , Drug Contamination/prevention & control , Fluorescence , Medicine, Chinese Traditional
7.
J Mater Chem B ; 12(24): 5861-5868, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38775046

ABSTRACT

The development of a simple, rapid, and sensitive technology for the simultaneous detection of mycotoxins is of great significance in ensuring the safety of foods and drugs. Herein, a fluorescence aptasensor with high sensitivity and reproducibility for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) was developed. In this sensing system, AFB1 and OTA aptamers were co-immobilized on the surface of magnetic beads (MBs) to form a Y-shaped structure through the principle of complementary base pairing, and were used as recognition probes to specifically capture the target. Activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) was used as a signal amplification strategy to improve the sensitivity. The initiator modified at the end of an antibody initiates the ARGET ATRP reaction. Different fluorescence signals were designed to achieve the simultaneous detection of OTA and AFB1 with limits of 426.18 and 79.55 fg mL-1 for AFB1 and OTA, respectively. In addition, experiments were conducted on three types of samples, and the recoveries of the two mycotoxins ranged from 87.30% to 109.50%, with relative standard deviations ranging from 0.50% to 4.92% under reproducible conditions. The results suggest that the developed aptasensor is sufficient to meet the different regulatory requirements of the two mycotoxins in food and drug safety and shows great potential.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Aflatoxin B1/analysis , Ochratoxins/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA/chemistry , Polymerization , Limit of Detection , Electron Transport
8.
Food Chem Toxicol ; 189: 114740, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759715

ABSTRACT

Mycotoxins are low molecular weight compounds present in food and feed. Although their effects on human health have been widely described, their mechanisms of action are still undefined. Gliotoxin (GTX) and ochratoxin A (OTA) are among the most dangerous mycotoxins produced by Aspergillus spp. Therefore, their toxicity was studied in the Daphnia magna model, which has high capacity to predict cytotoxicity and assess ecotoxicity, comparable to mammalian models. The study consisted of a series of tests to evaluate the effects of mycotoxins GTX, OTA and their combinations at different dilutions on Daphnia magna that were conducted according to standardized OECD 202 and 211 guidelines. The following assays were carried out: acute toxicity test, heartbeat, delayed toxicity test, reproduction, growth rate test. Reproducibility was determined by observing the offspring after 21 days of GTX exposure. In acute and delayed toxicity transcript levels of genes involved in xenobiotic metabolism (mox, gst, abcb1, and abcc5), and oxidative stress (vtg-SOD) were analyzed by qPCR. GTX showed acute toxicity and decreased heart rate in D. magna compared to OTA. On the other hand, OTA showed a delayed effect as evidenced by the immobility test. Both mycotoxins showed to increase genes involved in xenobiotic metabolism, while only the mycotoxin mixture increased oxidative stress. These results suggest that the mycotoxins tested could have negative impact on the environment and human health.


Subject(s)
Daphnia , Gliotoxin , Ochratoxins , Daphnia/drug effects , Ochratoxins/toxicity , Animals , Gliotoxin/toxicity , Food Contamination/analysis , Reproduction/drug effects , Daphnia magna
9.
Food Chem ; 451: 139496, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703729

ABSTRACT

Ochratoxin A (OTA) is a mycotoxin that globally contaminates fruits and their products. Since OTA have a huge negative impact on health hazards and economic losses, it is imperative to establish an effective and safe strategy for detoxification. Here, pancreatin was immobilized on the surface of polydopamine functionalized magnetic porous chitosan (MPCTS@ PDA) for the degradation of OTA. Compared with free pancreatin, MPCTS@ PDA@ pancreatin displayed excellent thermal stability, acid resistance, storage stability and OTA detoxification in wine (>58%). Moreover, the MPCTS@ PDA@ pancreatin retained 43% initial activity after 8 reuse cycles. There was no significant change in the quality of wine after MPCTS@ PDA@ pancreatin treatment. Moreover, it did not exhibit cytotoxicity which facilitated its application in wine. These results demonstrated that MPCTS@ PDA@ pancreatin can be used as a highly effective biocatalysate for OTA detoxification in wine.


Subject(s)
Chitosan , Food Contamination , Indoles , Ochratoxins , Pancreatin , Polymers , Wine , Ochratoxins/chemistry , Ochratoxins/analysis , Wine/analysis , Indoles/chemistry , Polymers/chemistry , Chitosan/chemistry , Porosity , Pancreatin/chemistry , Pancreatin/metabolism , Food Contamination/analysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
10.
Biosens Bioelectron ; 259: 116401, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38761743

ABSTRACT

Rapid, portable, and accurate detection tools for monitoring ochratoxin A (OTA) in food are essential for the guarantee of food safety and human health. Herein, as a proof-of-concept, this study proposed a ratiometric bioluminescence immunosensor (RBL-immunosensor) for homogeneous detection of OTA in pepper. The construct of the RBL-immunosensor consists of three components, including the large fragment of the split nanoluciferase (NanoLuc)-tagged nanobody (NLg), the small fragment of the split NanoLuc-tagged mimotope peptide heptamer (MPSm), and the calibrator luciferase (GeNL). The specific nanobody-mimotope peptide interaction between NLg and MPSm induces the reconstitution of the NanoLuc, which catalyzes the Nano-Glo substrate and produces a blue emission peak at 458 nm. Meanwhile, GeNL can produce a green emission peak at 518 nm upon substrate conversion via bioluminescent resonance energy transfer (BRET). Therefore, the concentration of OTA can be linked to the variation of the bioluminescence signal (λ458/λ518) measured by microplate reader and the variation of the blue/green ratio measured by smartphone via the competitive immunoreaction where OTA competes with MPSm to bind NLg. The immunosensor is ready-to-use and works by simply mixing the components in a one-step incubation of 10 min for readout. It has a limit of detection (LOD) of 0.98 ng/mL by a microplate reader and an LOD of 1.89 ng/mL by a smartphone. Good selectivity and accuracy were confirmed for the immunosensor by cross-reaction analysis and recovery experiments. The contents of OTA in 10 commercial pepper powder samples were tested by the RBL-immunosensor and validated by high-performance liquid chromatography. Hence, the ready-to-use RBL-immunosensor was demonstrated as a highly reliable tool for detection of OTA in food.


Subject(s)
Biosensing Techniques , Capsicum , Food Contamination , Limit of Detection , Luminescent Measurements , Ochratoxins , Ochratoxins/analysis , Biosensing Techniques/methods , Food Contamination/analysis , Luminescent Measurements/methods , Immunoassay/methods , Capsicum/chemistry , Humans
11.
Food Chem ; 453: 139651, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761736

ABSTRACT

The food contamination with Ochratoxin A (OTA) has highlighted the need to create precise, sensitive, and convenient techniques. Herein, we proposed a label-free and immobilization-free ratiometric homogeneous electrochemical aptasensor based on dual catalytic hairpin self-assembly (CHA) for OTA detection. Methylene blue (MB) and ferrocene (Fc) in solution were utilized as label-free signaling molecules, generating a response signal (IMB) and a reference signal (IFc), respectively. The ratio of IMB/IFc was utilized as a measure to quantify OTA. Dual CHA was exploited to increase the ratiometric signal and enhance the amplification efficiency. This aptasensor achieved trace-level detection for OTA over a linear range of lower concentrations (1.0 × 10-3 ng/mL-1.0 × 103 ng/mL) with LOD of 92 fg/mL. The aptasensor was successfully applied to detect OTA in cereal and wine, with comparable results of HPLC-MS/MS. This strategy provided a viable platform for rapid, sensitive, and accurate detection of OTA in food.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Food Contamination , Limit of Detection , Ochratoxins , Wine , Ochratoxins/analysis , Food Contamination/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Wine/analysis , Edible Grain/chemistry , Catalysis
12.
Food Chem ; 453: 139623, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761730

ABSTRACT

Ochratoxin A (OTA) in food poses a serious challenge to public health. Herein, using the nanobody-driven controllable aggregation of gold nanoparticles (AuNPs) in a glucose oxidase-tyramine-horseradish peroxidase (GOx-TYR-HRP) system, we propose a direct competitive plasmonic enzyme immunoassay (dc-PEIA) for OTA detection. The OTA-GOx conjugate catalyzes glucose to produce hydrogen peroxide (H2O2), and then HRP catalyzes H2O2 to generate hydroxyl radical which induces the crosslink of TYR. Crosslinked TYR leads to aggregation of AuNPs through strong electrostatic interactions, which is tunable based on the competition of OTA-GOx and free OTA for binding the immobilized nanobody. The optimized dc-PEIA achieves an instrumental limit of detection (LOD) of 0.275 ng/mL and a visual LOD of 1.56 ng/mL. It exhibits good selectivity for OTA and accuracy in the analysis of pepper samples, with the confirmation of high-performance liquid chromatography. Overall, the dc-PEIA is demonstrated as a useful tool for detecting OTA in food.


Subject(s)
Capsicum , Food Contamination , Gold , Metal Nanoparticles , Ochratoxins , Ochratoxins/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Capsicum/chemistry , Capsicum/immunology , Food Contamination/analysis , Immunoenzyme Techniques/methods , Limit of Detection , Glucose Oxidase/chemistry , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Horseradish Peroxidase/chemistry , Biosensing Techniques
13.
Int J Biol Macromol ; 269(Pt 2): 132279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734344

ABSTRACT

Aptasensors for detection of ochratoxin A (OTA) have been extensively studied, but the majority of them require costly and large-scale equipment as signal readers. Herein, a photothermal aptasensor capable of portable detection of OTA through a thermometer was developed on basis of aptamer structural switching and rolling circle amplification (RCA)-enriched DNAzyme. Oligonucleotides and alkaline phosphatase (ALP) modified magnetic beads were prepared. The binding of aptamers to OTA led to the release of ALP labeled complementary DNA. After magnetic separation, ALP catalyzed the padlock dephosphorylation, inhibiting the subsequent RCA reaction. This process converted the OTA concentration into the amount of the photothermal reagent oxTMB produced from the catalytic reaction induced by RCA-enriched DNAzyme. Under the optimal conditions, the detection limit (LOD) of this aptasensor was 2.28 nM in a clean buffer, while the LOD reached 2.43 nM in 2 % grape juice. The good performance of the photothermal aptasensor makes it possible to measure OTA pollution in low resource environments.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , Fruit and Vegetable Juices , Limit of Detection , Nucleic Acid Amplification Techniques , Ochratoxins , Vitis , Ochratoxins/analysis , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Aptamers, Nucleotide/chemistry , Nucleic Acid Amplification Techniques/methods , Fruit and Vegetable Juices/analysis , Biosensing Techniques/methods , Vitis/chemistry , Food Contamination/analysis
14.
Food Res Int ; 183: 114214, 2024 May.
Article in English | MEDLINE | ID: mdl-38760141

ABSTRACT

Ochratoxin A (OTA) is a toxin produced by several Aspergillus species, mainly those belonging to section Circumdati and section Nigri. The presence of OTA in cheese has been reported recently in cave cheese in Italy. As artisanal cheese production in Brazil has increased, the aim of this study was to investigate the presence of ochratoxin A and related fungi in artisanal cheese consumed in Brazil. A total of 130 samples of artisanal cheeses with natural moldy rind at different periods of maturation were collected. Of this total, 79 samples were collected from 6 producers from Canastra region in the state of Minas Gerais, since this is the largest artisanal cheese producer region; 13 samples from one producer in the Amparo region in the state of São Paulo and 36 samples from markets located in these 2 states. Aspergillus section Circumdati occurred in samples of three producers and some samples from the markets. A. section Circumdati colony counts varied from 102 to 106 CFU/g. Molecular analysis revealed Aspergillus westerdijkiae (67 %) as the most frequent species, followed by Aspergillus ostianus (22 %), and Aspergillus steynii (11 %). All of these isolates of A. section Circumdati were able to produce OTA in Yeast Extract Sucrose Agar (YESA) at 25 °C/7 days. OTA was found in 22 % of the artisanal cheese samples, ranging from 1.0 to above 1000 µg/kg, but only five samples had OTA higher than 1000 µg/kg. These findings emphasize the significance of ongoing monitoring and quality control in the artisanal cheese production process to minimize potential health risks linked to OTA contamination.


Subject(s)
Aspergillus , Cheese , Food Contamination , Food Microbiology , Ochratoxins , Ochratoxins/biosynthesis , Ochratoxins/analysis , Cheese/microbiology , Cheese/analysis , Brazil , Aspergillus/metabolism , Food Contamination/analysis , Colony Count, Microbial
15.
Food Res Int ; 187: 114389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763651

ABSTRACT

Ochratoxin A (OTA), zearalenone (ZEN), and deoxynivalenol (DON) are mycotoxins whose exposure is associated with various adverse health effects, including cancer and renal disorders, estrogenic effects, and immunosuppressive and gastrointestinal disorders, respectively. Infants (<2 years) are the most vulnerable group to mycotoxins, representing a unique combination of restricted food consumption types, low body weight, lower ability to eliminate toxins, and more future years to accumulate toxins. This study aimed to estimate the infant́s exposure to OTA, DON, and ZEN due to the consumption of milk formula and baby cereals in Chile. Milk formula samples (n = 41) and baby cereals (n = 30) were collected and analyzed using commercial ELISA kits for OTA, DON, and ZEA determination. Exposure was assessed by the Estimated Daily Intake (EDI) approach (mean and worst-case scenario, WCS) with the levels found in a modified Lower Bound (mLB) and Upper Bound (UB); ideal consumption (<6m, 7-12 m, and 13-24 m); adjusted by the weight of each group. The risk was estimated by comparing the EDI with a reference tolerable daily intake or by the margin of exposure (MOE) in the case of OTA. DON and OTA occurrence in infant formula were 34 % and 41 %, respectively. The co-occurrence between these mycotoxins was 22 %. Mycotoxin contents were below LOQ values except for OTA determined in one sample (0.29 ng/ml). No milk formulae were contaminated with ZEN. In the case of baby cereals, the occurrences were 17 % for OTA, 30 % for DON, and 7 % for ZEN, all below LOQ. Co-occurrence was seen in two samples between ZEN and OTA. According to exposure calculations, the MOE for OTA was less than 10,000 in all models for milk formula between 0 to 12 months of age and in the UB and WCS for cereal consumption. Health concerns were observed for DON in the WCS and UB for milk consumption in all ages and only in the UB WCS for cereal consumption. Considering the high consumption of milk formula in these age groups, regulation of OTA and other co-occurring mycotoxins in infant milk and food is strongly suggested.


Subject(s)
Dietary Exposure , Edible Grain , Food Contamination , Infant Formula , Ochratoxins , Trichothecenes , Zearalenone , Humans , Zearalenone/analysis , Infant Formula/chemistry , Chile , Edible Grain/chemistry , Infant , Trichothecenes/analysis , Food Contamination/analysis , Ochratoxins/analysis , Dietary Exposure/analysis , Dietary Exposure/adverse effects , Risk Assessment , Infant, Newborn , Infant Food/analysis
16.
Food Res Int ; 187: 114409, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763660

ABSTRACT

Ochratoxin A (OTA) is a notorious mycotoxin commonly contaminating food products worldwide. In this study, an OTA-degrading strain Brevundimonas diminuta HAU429 was isolated by using hippuryl-L-phenylalanine as the sole carbon source. The biodegradation of OTA by strain HAU429 was a synergistic effect of intracellular and extracellular enzymes, which transformed OTA into ochratoxin α (OTα) through peptide bond cleavage. Cytotoxicity tests and cell metabolomics confirmed that the transformation of OTA into OTα resulted in the detoxification of its hepatotoxicity since OTA but not OTα disturbed redox homeostasis and induced oxidative damage to hepatocytes. Genome mining identified nine OTA hydrolase candidates in strain HAU429. They were heterologously expressed in Escherichia coli, and three novel amidohydrolase BT6, BT7 and BT9 were found to display OTA-hydrolyzing activity. BT6, BT7 and BT9 showed less than 45 % sequence identity with previously identified OTA-degrading amidohydrolases. BT6 and BT7 shared 60.9 % amino acid sequence identity, and exhibited much higher activity towards OTA than BT9. BT6 and BT7 could completely degrade 1 µg mL-1 of OTA within 1 h and 50 min, while BT9 hydrolyzed 100 % of OTA in the reaction mixture by 12 h. BT6 was the most thermostable retaining 38 % of activity after incubation at 70 °C for 10 min, while BT7 displayed the highest tolerance to ethanal remaining 76 % of activity in the presence of 6 % ethanol. This study could provide new insights towards microbial OTA degradation and promote the development of enzyme-catalyzed OTA detoxification during food processing.


Subject(s)
Caulobacteraceae , Ochratoxins , Ochratoxins/metabolism , Ochratoxins/toxicity , Caulobacteraceae/metabolism , Caulobacteraceae/genetics , Biodegradation, Environmental , Amidohydrolases/metabolism , Amidohydrolases/genetics , Food Contamination
17.
Toxins (Basel) ; 16(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38787059

ABSTRACT

The aims of this study were (i) to determine the effect of an algoclay-based decontaminant on the oral availability of three mycotoxins (deoxynivalenol; DON, ochratoxin A; OTA, and aflatoxin B1; AFB1) using an oral bolus model and (ii) to determine the effect of this decontaminant on the performance, intestinal morphology, liver oxidative stress, and metabolism, in broiler chickens fed a diet naturally contaminated with DON. In experiment 1, sixteen 27-day-old male chickens (approximately 1.6 kg body weight; BW) were fasted for 12 h and then given a bolus containing either the mycotoxins (0.5 mg DON/kg BW, 0.25 mg OTA/kg BW, and 2.0 mg AFB1/kg BW) alone (n = 8) or combined with the decontaminant (2.5 g decontaminant/kg feed; circa 240 mg/kg BW) (n = 8). Blood samples were taken between 0 h (before bolus administration) and 24 h post-administration for DON-3-sulphate, OTA, and AFB1 quantification in plasma. The algoclay decontaminant decreased the relative oral bioavailability of DON (39.9%), OTA (44.3%), and AFB1 (64.1%). In experiment 2, one-day-old male Ross broilers (n = 600) were divided into three treatments with ten replicates. Each replicate was a pen with 20 birds. The broiler chickens were fed a control diet with negligible levels of DON (0.19-0.25 mg/kg) or diets naturally contaminated with moderate levels of DON (2.60-2.91 mg/kg), either supplemented or not with an algoclay-based decontaminant (2 g/kg diet). Jejunum villus damage was observed on day 28, followed by villus shortening on d37 in broiler chickens fed the DON-contaminated diet. This negative effect was not observed when the DON-contaminated diet was supplemented with the algoclay-based decontaminant. On d37, the mRNA expression of glutathione synthetase was significantly increased in the liver of broiler chickens fed the DON-contaminated diet. However, its expression was similar to the control when the birds were fed the DON-contaminated diet supplemented with the algoclay-based decontaminant. In conclusion, the algoclay-based decontaminant reduced the systemic exposure of broiler chickens to DON, OTA, and AFB1 in a single oral bolus model. This can be attributed to the binding of the mycotoxins in the gastrointestinal tract. Moreover, dietary contamination with DON at levels between 2.69 and 2.91 mg/kg did not impair production performance but had a negative impact on broiler chicken intestinal morphology and the liver redox system. When the algoclay-based decontaminant was added to the diet, the harm caused by DON was no longer observed. This correlates with the results obtained in the toxicokinetic assay and can be attributed to a decreased absorption of DON.


Subject(s)
Aflatoxin B1 , Animal Feed , Chickens , Food Contamination , Liver , Ochratoxins , Oxidative Stress , Trichothecenes , Animals , Trichothecenes/toxicity , Oxidative Stress/drug effects , Male , Ochratoxins/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Aflatoxin B1/toxicity , Animal Feed/analysis , Intestines/drug effects , Intestines/pathology , Toxicokinetics , Diet/veterinary , Aluminum Silicates
18.
Toxins (Basel) ; 16(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38787065

ABSTRACT

Ochratoxin A (OTA) is a mycotoxin commonly found in various food products, which poses potential health risks to humans and animals. Recently, more attention has been directed towards its potential neurodegenerative effects. However, there are currently no fully validated HPLC analytical methods established for its quantification in mice, the primary animal model in this field, that include pivotal tissues in this area of research, such as the intestine and brain. To address this gap, we developed and validated a highly sensitive, rapid, and simple method using HPLC-FLD for OTA determination in mice tissues (kidney, liver, brain, and intestine) as well as plasma samples. The method was rigorously validated for selectivity, linearity, accuracy, precision, recovery, dilution integrity, carry-over effect, stability, and robustness, meeting the validation criteria outlined by FDA and EMA guidelines. Furthermore, the described method enables the quantification of OTA in each individual sample using minimal tissue mass while maintaining excellent recovery values. The applicability of the method was demonstrated in a repeated low-dose OTA study in Balb/c mice, which, together with the inclusion of relevant and less common tissues in the validation process, underscore its suitability for neurodegeneration-related research.


Subject(s)
Mice, Inbred BALB C , Ochratoxins , Ochratoxins/analysis , Ochratoxins/blood , Animals , Chromatography, High Pressure Liquid/methods , Neurodegenerative Diseases , Mice , Reproducibility of Results , Male , Female , Tissue Distribution , Spectrometry, Fluorescence , Kidney/metabolism
19.
Food Chem ; 451: 139427, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692237

ABSTRACT

Here, we report a monomer planarity modulation strategy for room-temperature constructing molecularly imprinted-covalent organic frameworks (MI-COFs) for selective extraction of ochratoxin A (OTA). 2,4,6-triformylphloroglucinol (Tp) was used as basic building block, while three amino monomers with different planarity were employed as modulators to explore the effect of planarity on the selectivity of MI-COFs. The MI-TpTapa constructed from Tp and the lowest planarity of monomer Tapa gave the highest selectivity for OTA, and was further used as the adsorbent for dispersed-solid phase extraction (DSPE) of OTA in alcohol samples. Coupling MI-TpTapa based DSPE with high-performance liquid chromatography allowed the matrix-effect free determination of OTA in alcohol samples with the limit of detection of 0.023 µg kg-1 and the recoveries of 91.4-97.6%. The relative standard deviation (RSD, n = 6) of intra and inter day was <3.2%. This work provides a new way to construct MI-COFs for selective extraction of hazardous targets.


Subject(s)
Food Contamination , Molecular Imprinting , Ochratoxins , Solid Phase Extraction , Ochratoxins/analysis , Ochratoxins/isolation & purification , Ochratoxins/chemistry , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Chromatography, High Pressure Liquid , Food Contamination/analysis , Adsorption , Alcohols/chemistry , Alcohols/isolation & purification , Metal-Organic Frameworks/chemistry
20.
Anal Methods ; 16(18): 2897-2904, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38647424

ABSTRACT

Ochratoxin A (OTA) is a mycotoxin that can contaminate a variety of agricultural commodities, including fruit juices and wines. The capability of a magnetic solid-phase extraction (MSPE) method with a magnetic metal-organic framework (MOF) material having a three-layer core-shell structure to improve the detection of OTA in food matrices using high performance liquid chromatography is described. Analysis of the material through X-ray diffraction (XRD) indicated the successful synthesis of the magnetic nanomaterial Fe3O4@SiO2@UiO66-NH2. Scanning electron microscopy (SEM) and Zetasizer lab indicated its nano-sized morphological features. The conditions affecting the magnetic solid-phase extraction procedure, such as material dosage, pH, composition and amount of eluent, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under optimized conditions, the recoveries of spiked analytes at three different concentrations ranged from 95.83 to 101.5%, and the relative standard deviations were below 5%. Coupling with HPLC allowed the limit of detection to be 0.3 µg kg-1. This method is simple and specific, and can effectively avoid the influence of coexisting elements and improve the sensitivity of determination through fast MSPE of OTA. It has broad development prospects in OTA detection pre-treatment.


Subject(s)
Arachis , Food Contamination , Metal-Organic Frameworks , Ochratoxins , Solid Phase Extraction , Ochratoxins/analysis , Ochratoxins/isolation & purification , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Arachis/chemistry , Food Contamination/analysis , Metal-Organic Frameworks/chemistry , Limit of Detection , Silicon Dioxide/chemistry , Magnetite Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...