Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
J Neurophysiol ; 120(5): 2282-2295, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30110234

ABSTRACT

Infantile strabismus is a common disorder characterized by a chronic misalignment of the eyes, impairment of binocular vision, and oculomotor abnormalities. Nonhuman primates with strabismus, induced in infancy, show a pattern of abnormalities similar to those of strabismic children. This allows strabismic nonhuman primates to serve as an ideal animal model to examine neural mechanisms associated with aberrant oculomotor behavior. Here, we test the hypothesis that impairment of disparity vergence and horizontal saccade disconjugacy in exotropia and esotropia are associated with disrupted tuning of near- and far-response neurons in the supraoculomotor area (SOA). In normal animals, these neurons carry signals related to vergence position and/or velocity. We hypothesized that, in strabismus, these neurons modulate inappropriately in association with saccades between equidistant targets. We recorded from 62 SOA neurons from 4 strabismic animals (2 esotropes and 2 exotropes) during visually guided saccades to a target that stepped to different locations on a tangent screen. Under these same conditions, SOA neurons in normal animals show no detectable modulation. In our strabismic subjects, we found that a subset of SOA neurons carry weak vergence velocity signals during saccades. In addition, a subset of SOA neurons showed clear modulation associated with slow fluctuations of horizontal strabismus angle in the absence of a saccade. We suggest that abnormal SOA activity contributes to fixation instability but plays only a minor role in the horizontal disconjugacy of saccades that do not switch fixation from one eye to the other. NEW & NOTEWORTHY The present study is the first to investigate the activity of neurons in the supraoculomotor area (SOA) during horizontally disconjugate saccades in a nonhuman primate model of infantile strabismus. We report that fluctuations of horizontal strabismus angle, during fixation of static targets on a tangent screen, are associated with contextually inappropriate modulation of SOA activity. However, firing rate modulation during saccades is too weak to make a major contribution to horizontal disconjugacy.


Subject(s)
Neurons/physiology , Oculomotor Nuclear Complex/physiopathology , Saccades , Strabismus/physiopathology , Animals , Macaca mulatta , Oculomotor Nuclear Complex/cytology
2.
Invest Ophthalmol Vis Sci ; 59(3): 1486-1502, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29625471

ABSTRACT

Purpose: These experiments were designed to reveal the location of the premotor neurons that have previously been designated physiologically as the midbrain near response cells controlling vergence, lens accommodation, and pupillary constriction in response to target distance. Methods: To identify this population, the fixed N2c strain of rabies virus was injected into the ciliary body of seven Macaca fascicularis monkeys. The virus was trans-synaptically transported to the brain. Following a 58- to 76-hour survival, animals were perfused with formalin fixative. After frozen sectioning, tissue was reacted to reveal the location of the infected populations by use of a monoclonal anti-rabies antibody. Another series of sections was processed to determine which of the rabies-positive cells were cholinergic motoneurons by use of an antibody to choline acetyl transferase. Results: At earlier time points, only cholinergic cells in the preganglionic Edinger-Westphal nucleus ipsilateral to the injection were labeled. At later time points, an additional population of noncholinergic, premotor cells was present. These were most numerous at the caudal end of the supraoculomotor area, where they formed a bilateral band, oriented mediolaterally immediately above the oculomotor nucleus. Rostral to this, a smaller bilateral population was located near the midline within the supraoculomotor area. Conclusions: Most lens preganglionic motoneurons are multipolar cells making up a continuous column within the Edinger-Westphal nucleus. A population of premotor cells that likely represents the midbrain near response cells is located in the supraoculomotor area. These cells are bilaterally distributed relative to the eye they control, and are most numerous caudally.


Subject(s)
Mesencephalon/anatomy & histology , Motor Cortex/anatomy & histology , Motor Neurons/cytology , Oculomotor Nuclear Complex/cytology , Animals , Macaca fascicularis , Neural Pathways/cytology
3.
Brain Struct Funct ; 221(4): 2209-29, 2016 05.
Article in English | MEDLINE | ID: mdl-25859632

ABSTRACT

The central mesencephalic reticular formation is physiologically implicated in oculomotor function and anatomically interwoven with many parts of the oculomotor system's premotor circuitry. This study in Macaca fascicularis monkeys investigates the pattern of central mesencephalic reticular formation projections to the area in and around the extraocular motor nuclei, with special emphasis on the supraoculomotor area. It also examines the location of the cells responsible for this projection. Injections of biotinylated dextran amine were stereotaxically placed within the central mesencephalic reticular formation to anterogradely label axons and terminals. These revealed bilateral terminal fields in the supraoculomotor area. In addition, dense terminations were found in both the preganglionic Edinger-Westphal nuclei. The dense terminations just dorsal to the oculomotor nucleus overlap with the location of the C-group medial rectus motoneurons projecting to multiply innervated muscle fibers suggesting they may be targeted. Minor terminal fields were observed bilaterally within the borders of the oculomotor and abducens nuclei. Injections including the supraoculomotor area and oculomotor nucleus retrogradely labeled a tight band of neurons crossing the central third of the central mesencephalic reticular formation at all rostrocaudal levels, indicating a subregion of the nucleus provides this projection. Thus, these experiments reveal that a subregion of the central mesencephalic reticular formation may directly project to motoneurons in the oculomotor and abducens nuclei, as well as to preganglionic neurons controlling the tone of intraocular muscles. This pattern of projections suggests an as yet undetermined role in regulating the near triad.


Subject(s)
Midbrain Reticular Formation/cytology , Neurons/cytology , Oculomotor Nuclear Complex/cytology , Animals , Edinger-Westphal Nucleus/cytology , Macaca fascicularis , Male , Motor Neurons/cytology , Neural Pathways/cytology , Neuroanatomical Tract-Tracing Techniques , Periaqueductal Gray/cytology
4.
J Comp Neurol ; 523(12): 1809-23, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25684641

ABSTRACT

Mammalian extraocular muscles contain singly innervated twitch muscle fibers (SIF) and multiply innervated nontwitch muscle fibers (MIF). In monkey, MIF motoneurons lie around the periphery of oculomotor nuclei and have premotor inputs different from those of the motoneurons inside the nuclei. The most prominent MIF motoneuron group is the C group, which innervates the medial rectus (MR) and inferior rectus (IR) muscle. To explore the organization of both cell groups within the C group, we performed small injections of choleratoxin subunit B into the myotendinous junction of MR or IR in monkeys. In three animals the IR and MR myotendinous junction of one eye was injected simultaneously with different tracers (choleratoxin subunit B and wheat germ agglutinin). This revealed that both muscles were supplied by two different, nonoverlapping populations in the C group. The IR neurons lie adjacent to the dorsomedial border of the oculomotor nucleus, whereas MR neurons are located farther medially. A striking feature was the differing pattern of dendrite distribution of both cell groups. Whereas the dendrites of IR neurons spread into the supraoculomotor area bilaterally, those of the MR neurons were restricted to the ipsilateral side and sent a focused bundle dorsally to the preganglionic neurons of the Edinger-Westphal nucleus, which are involved in the "near response." In conclusion, MR and IR are innervated by independent neuron populations from the C group. Their dendritic branching pattern within the supraoculomotor area indicates a participation in the near response providing vergence but also reflects their differing functional roles.


Subject(s)
Macaca mulatta/anatomy & histology , Motor Neurons/cytology , Oculomotor Muscles/innervation , Oculomotor Nuclear Complex/cytology , Animals , Cholera Toxin , Dendrites , Immunohistochemistry , Neuroanatomical Tract-Tracing Techniques , Neuronal Tract-Tracers , Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate
5.
Ann Anat ; 196(6): 394-401, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25220351

ABSTRACT

BACKGROUND: Precise anatomical data on the development of human oculomotor somatic nuclei (OSN) remain rare. DESIGN/SUBJECTS: This study describes the histology of human OSN in 11 preterm and full-term infants aged 20-43 postmenstrual weeks who died of various causes. Celloidin-embedded serial sections were stained with the Klüver-Barrera and other conventional methods including silver impregnation. To evaluate the growth of OSN quantitatively, the author estimated the nuclear volume and the average neuronal area on morphometry. RESULTS: Four subnuclei were identified at 20-21 weeks: the fascicular, principal, dorsal median, and ventral median nucleus. Early tigroid Nissl bodies appeared in presumed motoneurons by 27-28 weeks, then resembled adult Nissl bodies at birth. On silver impregnation, the oculomotor nerve roots, crossed or uncrossed fibers at the midline, and a plexus of efferent or afferent axons in the neuropil were observed at 20-21 weeks. Then, the plexus was elaborated to form a perineuronal net of thin axon terminals by 28-29 weeks. The nuclear volume of OSN exponentially increased with age over 20-43 weeks, while the average of neuronal profile areas linearly increased in each subnucleus; the coefficient of regression was largest in the principal nucleus, and the regression lines nearly overlapped among the other subnuclei. Statistical analysis confirmed that the average neuronal area was largest in the principal nucleus in older cases. CONCLUSION: This study suggests that four subnuclei can be distinguished in human OSN by mid gestation, and that the principal nucleus may be different in neuronal cytoarchitecture from the others.


Subject(s)
Aging/pathology , Motor Neurons/cytology , Nerve Fibers/ultrastructure , Oculomotor Nerve/cytology , Oculomotor Nerve/embryology , Oculomotor Nuclear Complex/cytology , Oculomotor Nuclear Complex/embryology , Female , Humans , Infant, Newborn , Male
6.
J Physiol ; 592(22): 5047-64, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25194049

ABSTRACT

The neuronal input-output function depends on recruitment threshold and gain of the firing frequency-current (f-I) relationship. These two parameters are positively correlated in ocular motoneurons (MNs) recorded in alert preparation and inhibitory inputs could contribute to this correlation. Phasic inhibition mediated by γ-amino butyric acid (GABA) occurs when a high concentration of GABA at the synaptic cleft activates postsynaptic GABAA receptors, allowing neuronal information transfer. In some neuronal populations, low concentrations of GABA activate non-synaptic GABAA receptors and generate a tonic inhibition, which modulates cell excitability. This study determined how ambient GABA concentrations modulate the input-output relationship of rat oculomotor nucleus MNs. Superfusion of brain slices with GABA (100 µm) produced a GABAA receptor-mediated current that reduced the input resistance, increased the recruitment threshold and shifted the f-I relationship rightward without any change in gain. These modifications did not depend on MN size. In absence of exogenous GABA, gabazine (20 µm; antagonist of GABAA receptors) abolished spontaneous inhibitory postsynaptic currents and revealed a tonic current in MNs. Gabazine increased input resistance and decreased recruitment threshold mainly in larger MNs. The f-I relationship shifted to the left, without any change in gain. Gabazine effects were chiefly due to MN tonic inhibition because tonic current amplitude was five-fold greater than phasic. This study demonstrates a tonic inhibition in ocular MNs that modulates cell excitability depending on cell size. We suggest that GABAA tonic inhibition acting concurrently with glutamate receptors activation could reproduce the positive covariation between threshold and gain reported in alert preparation.


Subject(s)
GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Motor Neurons/physiology , Oculomotor Nuclear Complex/physiology , Action Potentials , Animals , Female , Male , Motor Neurons/drug effects , Motor Neurons/metabolism , Oculomotor Nuclear Complex/cytology , Oculomotor Nuclear Complex/metabolism , Pyridazines/pharmacology , Rats , Rats, Wistar , gamma-Aminobutyric Acid/pharmacology
7.
Zh Evol Biokhim Fiziol ; 50(5): 381-91, 2014.
Article in Russian | MEDLINE | ID: mdl-25786321

ABSTRACT

The distribution of the immunoreactivity for gamma-aminobutyric acid (GABA), choline acetyltransferase (ChAT), calcium-binding proteins (CaBPr) and histochemistry of cytochrome oxidase activity (CO) was studied in turtles (Testudo horsfieldi, Emys orbicularis) isthmal complex of visual nuclei. Magnocellular nucleus (IMc) was shown to reveal mainly the strongly stained GABA-, parvalbumin (PV)-ir neurons and CO-positive cells, as well as variable both in number and degree of intensity of ChAT-, cal- bindin (CB)-, and calretinin (CR)-ir cells. After the local tracer injection into the optic tectum GABA-ir neurons containing also retrograde label were found in IMc. The most caracteristic of the parvocellular nucleus (IPc) was the content of strongly stained ChAT-ir neurons, dense GABA-ir and CO-active terminal fields, as well as the neurons variable by the amount and the degree of immunoreactivity for CaBPr and GABA. Principal similarity in these features in the turtle IMc and IPc and of those in the avian isthmal nuclei of the same name allows suggesting their homology and consequently the same participation in selective processing of the visual information flow. The comparison with lower vertebrates confirms the evolutionary conservatism of visual isthmal complex among vertebrates and the existence of its progressive differentiation in the process of evolution.


Subject(s)
Calcium-Binding Proteins/metabolism , Choline O-Acetyltransferase/metabolism , Electron Transport Complex IV/metabolism , Oculomotor Nuclear Complex/metabolism , Visual Pathways/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Neurons/metabolism , Oculomotor Nuclear Complex/cytology , Organ Specificity , Species Specificity , Turtles , Visual Pathways/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...