Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 118(1): 280-299, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28404829

ABSTRACT

Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements.


Subject(s)
Oculomotor Nerve/physiopathology , Strabismus/physiopathology , Visual Pathways/physiopathology , Animals , Eye Movements , Humans , Infant , Oculomotor Nerve/abnormalities , Oculomotor Nerve/growth & development , Oculomotor Nuclear Complex/abnormalities , Oculomotor Nuclear Complex/growth & development , Oculomotor Nuclear Complex/physiopathology , Strabismus/etiology , Visual Cortex/abnormalities , Visual Cortex/growth & development , Visual Cortex/physiopathology , Visual Pathways/abnormalities , Visual Pathways/growth & development
2.
Neurosci Lett ; 646: 8-14, 2017 04 12.
Article in English | MEDLINE | ID: mdl-27884738

ABSTRACT

BACKGROUND: The cytoarchitecturally defined Edinger-Westphal nucleus (EW) is now referred to by many investigators as the centrally-projecting EW (EWcp) in humans. Although the mature structure is well-characterized, there have been few reports describing the precise morphology of this nucleus during the second half of gestation. SUBJECTS/DESIGN: Eleven brains were examined from preterm infants, aged 20-39 postmenstrual weeks, who died of various causes. After fixation, the brains were embedded in celloidin and serial sections of 30-µm thickness were cut in the horizontal plane. Sections were stained using the Klüver-Barrera method. In addition to microscopic observations, computerized 3D reconstruction and morphometry were performed. RESULTS: From 21 weeks, the EWcp had a distinctive, complex 3D structure comprising two or three parts. The dorsal part was arcuate, half encircling the oculomotor somatic nuclei (OSN). The rostral part was the most voluminous, ventral to the rostral OSN, extending anteriorly. The caudal part was the smallest, and was composed of several neuronal groups near the ventral tip of the OSN. In three cases, the caudal part was absent. It could also be joined to the rostral part, forming a ventral part. The total volume of the EWcp increased exponentially with age, and the ventral part grew more rapidly than the dorsal part. The mean neuronal profile area increased linearly with age, and the rate of increase was almost equal between the dorsal and ventral parts. CONCLUSIONS: This study suggests that a distinctive, complex, two- or three-part 3D structure of the EWcp is preserved after mid-gestation, and that the ventral part of the EWcp may expand in volume more rapidly than the dorsal part.


Subject(s)
Edinger-Westphal Nucleus/pathology , Neurons/metabolism , Oculomotor Nerve/pathology , Oculomotor Nuclear Complex/pathology , Edinger-Westphal Nucleus/growth & development , Humans , Oculomotor Nerve/metabolism , Oculomotor Nuclear Complex/growth & development , Urocortins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...