Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Photochem Photobiol B ; 213: 112052, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33074141

ABSTRACT

Produced water (PW) is a by-product generated throughout oil exploration. Geological formation and geographical location of the reservoir influence its physical, chemical and biological characteristics. Xanthan gum (XG), an exopolysaccharide (EPS) produced by Xanthomonas campestris, has been widely used in enhanced oil recovery (EOR) technology because of its high viscosity, pseudoplastic behavior, stability in function of salinity, temperature and alkaline conditions. The production of XG may be affected by the composition of the PW, where the acetyl and pyruvyl radicals may be present in the mannoses. The aim of this study was to evaluate the composition of XG produced by X. campestris, particularly the amount of Xanthan, acetyl and pyruvyl groups, in culture mediums containing distilled (DW) or produced (PW) water in different concentrations, by means of dispersive Raman spectroscopy (1064 nm). The spectra of XG showed peaks referred to the main constituents of the Xanthan (glucose, mannose and glucuronic acid). Spectral features assigned to pyruvyl were seen in all samples mainly at ~1010 cm-1, with higher intensity when using DW and 25% PW. PCA loadings showed that the peaks assigned to pyruvyl are consistent to presence of sodium pyruvate (~1040/~1050 and ~ 1432 cm-1) and were higher in the samples obtained in 25% PW. ANOVA GLM applied to Raman peaks of interest (~1010 and ~ 1090 cm-1) and to PCA scores (Score 1 to Score 3) showed that both were influenced by the type of water used in the culture medium, where the XG were strongly reduced in the groups PW compared to DW while the pyruvyl content increased proportionally with the concentration of PW. The results suggest that the composition of the water used in the bacteria's culture medium influenced the composition of XG, including the amount of Xanthan and particularly the pyruvyl content, and therefore needs to be considered when using this approach of injecting XG in oil fields as pyruvyl content affects viscosity.


Subject(s)
Oil and Gas Fields/microbiology , Polysaccharides, Bacterial/chemistry , Xanthomonas campestris/metabolism , Glucose/chemistry , Glucuronic Acid/chemistry , Mannose/chemistry , Oil and Gas Fields/chemistry , Oils , Principal Component Analysis , Pyruvic Acid/chemistry , Spectrum Analysis, Raman , Viscosity , Water/metabolism
2.
Environ Sci Technol ; 49(22): 13130-8, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26460682

ABSTRACT

Comprehensive chemical information is needed to understand the environmental fate and impact of hydrocarbons released during oil spills. However, chemical information remains incomplete because of the limitations of current analytical techniques and the inherent chemical complexity of crude oils. In this work, gas chromatography (GC)-amenable C9-C33 hydrocarbons were comprehensively characterized from the National Institute of Standards and Technology Standard Reference Material (NIST SRM) 2779 Gulf of Mexico crude oil by GC coupled to vacuum ultraviolet photoionization mass spectrometry (GC/VUV-MS), with a mass balance of 68 ± 22%. This technique overcomes one important limitation faced by traditional GC and even comprehensive 2D gas chromatography (GC×GC): the necessity for individual compounds to be chromatographically resolved from one another in order to be characterized. VUV photoionization minimizes fragmentation of the molecular ions, facilitating the characterization of the observed hydrocarbons as a function of molecular weight (carbon number, NC), structure (number of double bond equivalents, NDBE), and mass fraction (mg kg(-1)), which represent important metrics for understanding their fate and environmental impacts. Linear alkanes (8 ± 1%), branched alkanes (11 ± 2%), and cycloalkanes (37 ± 12%) dominated the mass with the largest contribution from cycloalkanes containing one or two rings and one or more alkyl side chains (27 ± 9%). Linearity and good agreement with previous work for a subset of >100 components and for the sum of compound classes provided confidence in our measurements and represents the first independent assessment of our analytical approach and calibration methodology. Another crude oil collected from the Marlin platform (35 km northeast of the Macondo well) was shown to be chemically identical within experimental errors to NIST SRM 2779, demonstrating that Marlin crude is an appropriate surrogate oil for researchers conducting laboratory research into impacts of the DeepWater Horizon disaster.


Subject(s)
Hydrocarbons/chemistry , Petroleum/analysis , Chromatography, Gas , Gulf of Mexico , Isomerism , Mass Spectrometry , Molecular Weight , Oil and Gas Fields/chemistry , Petroleum Pollution/analysis , Reference Standards , Temperature
3.
Environ Toxicol Chem ; 34(7): 1572-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25689779

ABSTRACT

Discharge of drill cuttings into the ocean during drilling of offshore oil wells can impact benthic communities through an increase in the concentrations of suspended particles in the water column and sedimentation of particles on the seafloor around the drilling installation. The present study assessed effects of water-based drill cuttings, barite, bentonite, and natural sediments on shallow- and deep-water calcareous algae in short-term (30 d) and long-term (90 d) experiments, using 2 species from Peregrino's oil field at Campos Basin, Brazil: Mesophyllum engelhartii and Lithothamnion sp. The results were compared with the shallow-water species Lithothamnion crispatum. Smothering and burial exposures were simulated. Oxygen production and fluorescence readings were recorded. Although less productive, M. engelhartii was as sensitive to stress as Lithothamnion sp. Mesophyllum engelhartii was sensitive to smothering by drill cuttings, barite, and bentonite after 60 d of exposure and was similarly affected by natural sediments after 90 d. These results indicate that smothering by sediments caused physical effects that might be attributable to partial light attenuation and partial restriction on gas exchange but did not kill the calcareous algae in the long term. However, 1-mo burial by either natural sediments or drill cuttings was sufficient after 60 d for both species to reduce oxygen production, and the algae were completely dead under both sources of sediments.


Subject(s)
Geologic Sediments/chemistry , Oil and Gas Fields/chemistry , Rhodophyta/growth & development , Environmental Exposure , Rhodophyta/drug effects , Time Factors , Toxicity Tests , Water Pollutants, Chemical/toxicity
4.
J Radiol Prot ; 33(4): 839-53, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24080901

ABSTRACT

Radiation sources have being widely used in industrial applications, but their inappropriate use presents a large potential for hazards to human health and the environment. These hazards can be minimised by development of specific radiation protection rules and adequate procedures for the handling, use and storage of radiation sources, which should be established in a national normative framework. Recently, due to discovery of new oil and gas reservoirs on the Brazilian continental shelf, especially in deep water and the pre-salt layer, there has been a large and rapid increase in the use of radiation sources for well logging. Generic radiation protection regulations have been used for licensing the use of radiation sources for well logging, but these are not comprehensive or technically suitable for this purpose. Therefore it is necessary to establish specific Brazilian safety regulations for this purpose. In this work, an assessment is presented of the relevant radiation protection aspects of nuclear well logging not covered by generic regulations, with the aim of contributing to the future development of specific safety regulations for the licensing of radioactive facilities for oil and gas well logging in Brazil. The conclusions of this work relate to four areas, which include the specific requirements to control (1) radiation sources, (2) radiation survey meters and (3) access to radiation workplaces and (4) to control and identify the workers who are occupationally exposed.


Subject(s)
Natural Gas/analysis , Oil and Gas Fields/chemistry , Petroleum/analysis , Radiation Injuries/prevention & control , Radiation Monitoring/methods , Radiation Protection/methods , Radioisotopes/analysis , Brazil , Humans , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Safety Management/methods
SELECTION OF CITATIONS
SEARCH DETAIL