Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 4(2): 352-361, 2019 02.
Article in English | MEDLINE | ID: mdl-30510171

ABSTRACT

The deep terrestrial biosphere harbours a substantial fraction of Earth's biomass and remains understudied compared with other ecosystems. Deep biosphere life primarily consists of bacteria and archaea, yet knowledge of their co-occurring viruses is poor. Here, we temporally catalogued viral diversity from five deep terrestrial subsurface locations (hydraulically fractured wells), examined virus-host interaction dynamics and experimentally assessed metabolites from cell lysis to better understand viral roles in this ecosystem. We uncovered high viral diversity, rivalling that of peatland soil ecosystems, despite low host diversity. Many viral operational taxonomic units were predicted to infect Halanaerobium, the dominant microorganism in these ecosystems. Examination of clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) spacers elucidated lineage-specific virus-host dynamics suggesting active in situ viral predation of Halanaerobium. These dynamics indicate repeated viral encounters and changing viral host range across temporally and geographically distinct shale formations. Laboratory experiments showed that prophage-induced Halanaerobium lysis releases intracellular metabolites that can sustain key fermentative metabolisms, supporting the persistence of microorganisms in this ecosystem. Together, these findings suggest that diverse and active viral populations play critical roles in driving strain-level microbial community development and resource turnover within this deep terrestrial subsurface ecosystem.


Subject(s)
Bacteriophages/physiology , Firmicutes/growth & development , Firmicutes/virology , Microbial Consortia , Oil and Gas Fields/microbiology , Oil and Gas Fields/virology , Bacteriophages/classification , Bacteriophages/genetics , Biodiversity , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Firmicutes/classification , Firmicutes/genetics , Hydraulic Fracking , Metagenome , Microbial Consortia/genetics , Virus Activation
2.
N Biotechnol ; 49: 1-9, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30502541

ABSTRACT

Microorganisms are present in oil reservoirs around the world where they degrade oil and lead to changes in oil quality. Unfortunately, our knowledge about processes in deep oil reservoirs is limited due to the lack of undisturbed samples. In this review, we discuss the distribution of microorganisms at the oil-water transition zone as well as in water saturated parts of the oil leg and their possible physiological adaptations to abiotic and biotic ecological factors such as temperature, salinity and viruses. We show the importance of studying the water phase within the oil, because small water inclusions and pockets within the oil leg provide an exceptional habitat for microorganisms within a natural oil reservoir and concurrently enlarge the zone of oil biodegradation. Environmental factors such as temperature and salinity control oil biodegradation. Temperature determines the type of microorganisms which are able to inhabit the reservoir. Proteobacteria and Euryarchaeota, are ubiquitous in oil reservoirs over all temperature ranges, whereas some others are tied to specific temperatures. It is proposed that biofilm formation is the dominant way of life within oil reservoirs, enhancing nutrient uptake, syntrophic interactions and protection against environmental stress. Literature shows that viruses are abundant in oil reservoirs and the possible impact on microbial community composition due to control of microbial activity and function is discussed.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Ecosystem , Oil and Gas Fields/microbiology , Hydrogen-Ion Concentration , Oil and Gas Fields/virology , Phylogeny , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...