Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.670
Filter
2.
BMC Womens Health ; 24(1): 326, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840118

ABSTRACT

BACKGROUND: The oil-soluble contrast medium used in hysterosalpingography has been shown to have a fertility-enhancing effect, but the underlying mechanism is unclear, especially regarding the role of window of implantation (WOI). This study aimed to assess the endometrial immunological impact of the WOI before and after bathing with the oil-soluble contrast medium in women with recurrent implantation failure (RIF). METHODS: This descriptive study involved two medical centers between December 18, 2019, and December 30, 2020. We included infertile women who underwent three or more transfer cycles, cumulative transplantation of at least four high-quality cleavage-stage embryos or three high-quality blastocysts without clinical pregnancy, and high-quality frozen embryos that were still available for implantation. Patients received 5 ml of ethiodized poppyseed oil bathing, endometrial biopsy around bathing, and frozen-thawed embryo transfer (FET) within four menstrual cycles after bathing. Patients were excluded if failure to complete anyone. Data on the baseline characteristics and clinical data of the FET cycles were collected, and endometrial biopsy specimens were collected in the luteal phase before and after bathing and subjected to immunohistochemistry. The number of CD56 and CD138 positive cells and H-score of expression of ανß-3 and HOXA10 in endometrium were collected. RESULTS: Thirty-four patients were initially enrolled in the study; ultimately, twelve patients with a median age of 32.5 years (range 27-40 years) completed the research. The median number of embryo transfer cycles was three (range 3-8). A total of 4 of 12 women (33.33%) were diagnosed with chronic endometritis before oil-soluble contrast bathing. After bathing, the median numbers of CD138-positive cells in endometrium decreased from 0.75 (range 0-13.5) to 0.65 (range 0-6), P = 0.035; additionally, the H-score of expression of ανß-3 in endometrium increased from 148.50 ± 31.63 to 175.58 ± 31.83, P < 0.001. The thickness of the endometrium also significantly increased (8.90 ± 1.45 mm vs.10.11 ± 1.98 mm, P = 0.005). However, no consistent changes were found in the expression of CD56 and HOXA10 in the endometrium. Five patients experienced biochemical pregnancies (41.67%), four had clinical pregnancies (33.33%), and three achieved live births following oil-soluble contrast bathing (25%). CONCLUSIONS: These results suggest that oil-soluble contrast medium bathing decreased CD138-positive cells and upregulated expression of ανß-3 during WOI in patients with RIF. This histological impact of endometrium may result in enhanced fertility during FET cycles. Investigating the ability of intrauterine bathing with lower-dosage oil-soluble contrast to improve pregnancy in the RIF population is warranted.


Subject(s)
Contrast Media , Embryo Implantation , Embryo Transfer , Endometrium , Infertility, Female , Humans , Female , Adult , Infertility, Female/therapy , Embryo Transfer/methods , Pregnancy , Endometritis/prevention & control , Hysterosalpingography/methods , Oils , Baths/methods
3.
J Obes ; 2024: 7204607, 2024.
Article in English | MEDLINE | ID: mdl-38831961

ABSTRACT

Obesity is a complex chronic disease characterized by excess body fat (adipose) that is harmful to health and has been a major global health problem. It may be associated with several diseases, such as nonalcoholic fatty liver disease (NAFLD). Polyunsaturated fatty acids (PUFA) are lipid mediators that have anti-inflammatory characteristics and can be found in animals and plants, with capybara oil (CO) being a promising source. So, we intend to evaluate the hepatic pathophysiological alterations in C57Bl/6 mice with NAFLD, caused by obesity, and the possible beneficial effects of OC in the treatment of this disease. Eighteen 3-month-old male C57Bl/6 mice received a control or high-fat diet for 18 weeks. From the 15th to the 18th week, the animals received treatment-through orogastric gavage-with placebo or free capybara oil (5 g/kg). Parameters inherent to body mass, glucose tolerance, evaluation of liver enzymes, percentage of hepatic steatosis, oxidative stress, the process of cell death with the apoptotic biomarkers (Bax, Bcl2, and Cytochrome C), and the ultrastructure of hepatocytes were analyzed. Even though the treatment with CO was not able to disassemble the effects on the physiological parameters, it proved to be beneficial in reversing the morphological and ultrastructural damage present in the hepatocytes. Thus, demonstrating that CO has beneficial effects in reducing steatosis and the apoptotic pathway, it is a promising treatment for NAFLD.


Subject(s)
Apoptosis , Liver , Non-alcoholic Fatty Liver Disease , Oils , Rodentia , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/therapy , Male , Animals , Mice , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/ultrastructure , Oils/pharmacology , Oils/therapeutic use , Obesity/complications , Apoptosis/drug effects , Liver/drug effects , Liver/pathology , Liver/ultrastructure , Oxidoreductases/metabolism , Enzyme Activation/drug effects , Oxidative Stress/drug effects
4.
Se Pu ; 42(6): 581-589, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845519

ABSTRACT

Oils and fats are commonly used in the pharmaceutical industry as solvents, emulsifiers, wetting agents, and dispersants, and are an important category of pharmaceutical excipients. Fatty acids with unique compositions are important components of oil pharmaceutical excipients. The Chinese Pharmacopoeia provides clear descriptions of the fatty acid types and limits suitable for individual oil pharmaceutical excipient. An unqualified fatty acid composition or content may indicate adulteration or deterioration. The fatty acid composition, as a key indicator for the identification and adulteration evaluation of oil pharmaceutical excipients, can directly affect the quality and safety of oil pharmaceutical excipients and preparations. Gas chromatography is the most widely used technique for fatty acid analysis, but it generally requires derivatization, which affects quantitative accuracy. Supercritical fluid chromatography (SFC), an environmentally friendly technique with excellent separation capability, offers an efficient method for detecting fatty acids without derivatization. Unlike other chromatographic methods, SFC does not use nonvolatile solvents (e. g., water) as the mobile phase, rendering it compatible with an evaporative light-scattering detector (ELSD) for enhanced detection sensitivity. However, the fatty acids in oil pharmaceutical excipients exist in the free and bound forms, and the low content of free fatty acids in these oil pharmaceutical excipients not only poses challenges for their detection but also complicates the determination of characteristic fatty acid compositions and contents. Moreover, the compositions and ratios of fatty acids are influenced by environmental factors, leading to interconversion between their two forms. In this context, saponification provides a simpler and faster alternative to derivatization. Saponification degrades oils and fats by utilizing the reaction between esters and an alkaline solution, ultimately releasing the corresponding fatty acids. Because this method is more cost effective than derivatization, it is a suitable pretreatment method for the detection of fatty acids in oil pharmaceutical excipients using the SFC-ELSD approach. In this study, we employed SFC-ELSD to simultaneously determine six fatty acids, namely, myristic acid, palmitic acid, stearic acid, arachidic acid, docosanoic acid, and lignoceric acid, in oil pharmaceutical excipients. Saponification of the oil pharmaceutical excipients using sodium hydroxide methanol solution effectively avoided the bias in the determination of fatty acid species and contents caused by the interconversion of fatty acids and esters. The separation of the six fatty acids was achieved within 12 min, with good linearity within their respective mass concentration ranges. The limits of detection and quantification were 5-10 mg/L and 10-25 mg/L, respectively, and the spiked recoveries were 80.93%-111.66%. The method proved to be sensitive, reproducible, and stable, adequately meeting requirements for the analysis of fatty acids in oil pharmaceutical excipients. Finally, the analytical method was successfully applied to the determination of six fatty acids in five types of oil pharmaceutical excipients, namely, corn oil, soybean oil, coconut oil, olive oil, and peanut oil. It can be combined with principal component analysis to accurately differentiate different types of oil pharmaceutical excipients, providing technical support for the rapid identification and quality control of oil pharmaceutical excipients. Thus, the proposed method may potentially be applied to the analysis of complex systems adulterated with oil pharmaceutical excipients.


Subject(s)
Chromatography, Supercritical Fluid , Excipients , Fatty Acids , Fatty Acids/analysis , Fatty Acids/chemistry , Chromatography, Supercritical Fluid/methods , Excipients/analysis , Excipients/chemistry , Scattering, Radiation , Light , Oils/chemistry , Oils/analysis
5.
Food Res Int ; 186: 114374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729731

ABSTRACT

As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.


Subject(s)
Chlorogenic Acid , Emulsifying Agents , Emulsions , Ergosterol , Particle Size , Water , Ergosterol/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry , Water/chemistry , Chlorogenic Acid/chemistry , Viscosity , Antioxidants/chemistry , Oils/chemistry , Hydrogen-Ion Concentration
6.
Water Sci Technol ; 89(9): 2512-2522, 2024 May.
Article in English | MEDLINE | ID: mdl-38747964

ABSTRACT

This manuscript presents a novel approach for developing an environmentally friendly and effective oil-water separation membrane. Achieving a superhydrophobic (SH) coating on textile fabric (TF) involved a two-step process. Initially, the surface roughness was enhanced by applying bio-zinc oxide (ZnO) nanoparticles obtained from Thymbra spicata L. Subsequently, the roughened surface was modified with stearic acid, a material known for its low surface energy. The bio-ZnO nanoparticles exhibit a circular morphology with an average size of 21 nm. The coating demonstrated remarkable mechanical stability, maintaining SH properties even after an abrasion length of 300 mm. Chemical stability studies revealed that the prepared membrane retained SH properties within a pH range of 5-11, which ensures robust performance. Absorption capacity measurements showcased different capacities for n-hexane (Hex), corn oil (C.O), and silicone oil (S.O), with consistent performance over 10 absorption-desorption cycles. High oil-water separation efficiencies were achieved for hexane, C.O, and S.O, emphasizing the coating's versatility. Flux rate measurements demonstrated that oil passed through the membrane efficiently, with the highest flux observed for Hex. The prepared SH membrane has superior mechanical and chemical stability and high separation efficiencies, which positions it as a promising candidate for diverse industrial applications.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Zinc Oxide , Zinc Oxide/chemistry , Water/chemistry , Oils/chemistry
7.
Langmuir ; 40(21): 11239-11250, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751154

ABSTRACT

Water is the lifeblood of everything on earth, nourishing and nurturing all forms of life, while also contributing to the development of civilization. However, with the rapid development of economic construction, especially the accelerated process of modern industrialization, the pollution of oily sewage is becoming increasingly serious, affecting the ecological balance and human health. The efficient elimination of pollutants in sewage is, therefore, particularly urgent. In this paper, a core-shell microbial reactor (MPFA@CNF-SA-AM) was fabricated by using nanocellulose and sodium alginate (SA) particles embedded with microorganisms as the core and lipophilic and hydrophobic fly ash as the outer shell layer. Compared with that of free microorganisms and cellulose and SA aerogel pellets loading with microorganisms (CNF-SA-AM), which has a degradation efficiency of 60.69 and 82.89%, respectively, the MPFA@CNF-SA-AM possesses a highest degradation efficiency of 90.60% within 240 h. So that this self-floating microbial reactor has selective adsorption properties to achieve oil-water separation in oily wastewater and high effective degradation of organic pollutants with low cost. The adsorption curves of MPFA@CNF-SA-AM for diesel and n-hexadecane were studied. The results showed that the adsorption follows the Freundlich model and is a multimolecular layer of physical adsorption. In addition, the degradation mechanism of diesel oil was studied by gas chromatography-mass spectrometry. The results showed that diesel oil was selectively adsorbed to the interior of MPFA@CNF-SA-AM, and it was degraded by enzymes in microorganisms into n-hexadecanol, n-hexadecaldehyde, and n-hexadecanoic acid in turn, and finally converted to water and carbon dioxide. Compared with existing oily wastewater treatment methods, this green and pollution-free dual-functional core-shell microbial reactor has the characteristics of easy preparation, high efficiency, flexibility, and large-scale degradation. It provides a new, effective green choice for oily wastewater purification and on-site oil spill accidents.


Subject(s)
Wastewater , Adsorption , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Alginates/chemistry , Cellulose/chemistry , Oils/chemistry , Biodegradation, Environmental , Polymers/chemistry
8.
Food Chem ; 451: 139404, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38714112

ABSTRACT

Models predicting lipid oxidation in oil-in-water (O/W) emulsions are a requirement for developing effective antioxidant solutions. Existing models do, however, not include explicit equations that account for composition and structural features of O/W emulsions. To bridge this gap, a mechanistic kinetic model for lipid oxidation in emulsions is presented, describing the emulsion as a one-dimensional three phase (headspace, water, and oil) system. Variation in oil droplet sizes, overall surface area of oil/water interface, oxidation of emulsifiers, and the presence of catalytic transition metals were accounted for. For adequate predictions, the overall surface area of oil/water interface needs to be determined from the droplet size distribution obtained by dynamic and static light scattering (DLS, SLS). The kinetic model predicted well the formation of oxidation products in both mono- and polydisperse emulsions, with and without presence of catalytic transition metals.


Subject(s)
Emulsions , Lipids , Oxidation-Reduction , Polysorbates , Emulsions/chemistry , Kinetics , Polysorbates/chemistry , Lipids/chemistry , Water/chemistry , Particle Size , Models, Chemical , Oils/chemistry
9.
Int J Biol Macromol ; 269(Pt 2): 132138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718998

ABSTRACT

Addressing marine oil spills and industrial water pollution necessitates the development of eco-efficient oil-absorbing materials. With increasing concern for the environment, there is a consensus to decrease the use of petroleum-based polymers. Herein, lightweight poly(lactic acid) (PLA) blend foams with varying thermoplastic polyurethane (TPU) content were fabricated via a solvent-free, eco-friendly supercritical carbon dioxide (scCO2) extrusion foaming technology. The incorporation of TPU significantly enhanced the crystallization rate of PLA, with the semi-crystallization time of PT30 and PT50 blends at 105 °C exhibiting a reduction of 77.2 % and 47.9 %, respectively, compared to neat PLA. The resulting foams exhibited an open-cell structure with excellent selective oil adsorption capabilities. Notably, the PT30 foam achieved a remarkable maximum expansion ratio of 36.0, while the PT50 foam attained the highest open-cell content of 96.2 %. The PT50 foam demonstrated an outstanding adsorption capacity, spanning from 4.7 to 18.8 g/g for diverse oils and solvents, with rapid adsorption kinetics, reaching 94.9 % of the equilibrium adsorption capacity for CCl4 within just 1 min. Furthermore, the PT50 foam retained 95.2 % of its adsorption capacity for CCl4 over 10 adsorption-desorption cycles. This study presents a scalable and sustainable approach for large-scale production of high-performance, bio-based foams, facilitating efficient oil-water separation.


Subject(s)
Carbon Dioxide , Polyesters , Polyesters/chemistry , Adsorption , Carbon Dioxide/chemistry , Oils/chemistry , Polyurethanes/chemistry , Kinetics
10.
Int J Biol Macromol ; 269(Pt 2): 132175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729497

ABSTRACT

Superhydrophilic/underwater superoleophobic materials for the separation of oil-water emulsions by filtration have received much attention in order to solve the pollution problem of oil-water emulsion. In this paper, a fence-like structure on the surface of CNF/KGM (Konjac Glucomannan) materials by a simple method using CNF instead of metal nanowires was successfully developed based on the hydrogen bonding of KGM and CNF. The resulted organic CNF/KGM materials surface has outstanding superhydrophilic (WCA = 0°) in air and superoleophobicity (OCA≥151°) in water, which could separate oil-water mixtures with high separation efficiency above 99.14 % under the pressure of the emulsion itself. The material shows good mechanical properties because of the addition of CNF and has outstanding anti-fouling property and reusability. More importantly, the material can be completely biodegraded after buried in soil for 4 weeks since both of KGM and CNF are organic substances. Therefore, it may have a broad application prospect in the separation of oil-water emulsion because of its outstanding separation properties, simply preparation method and biodegradability.


Subject(s)
Cellulose , Emulsions , Hydrophobic and Hydrophilic Interactions , Nanofibers , Oils , Water , Emulsions/chemistry , Nanofibers/chemistry , Oils/chemistry , Water/chemistry , Cellulose/chemistry , Surface Properties , Biodegradation, Environmental , Mannans/chemistry
11.
Int J Biol Macromol ; 268(Pt 2): 131977, 2024 May.
Article in English | MEDLINE | ID: mdl-38692540

ABSTRACT

The emulsions prepared with most currently reported emulsifiers are stable only at room temperature and are susceptible to demulsification at higher temperatures. This thermal instability prevents their use in high-temperature and high-salt environments encountered oilfield extraction. To address this issue, in this study, two temperature-responsive emulsifiers, PSBMA and CS-PSBMA, were synthesized. Both emulsifiers exhibited the ability to form stable emulsions within the temperature range of 60-80 °C and undergo demulsification at 20-40 °C. A comprehensive investigation was conducted to assess the impact of emulsifier concentration, water-to-oil ratio, and salt ion concentration on the stability of emulsions formed by these two emulsifiers. The results demonstrated their remarkable emulsification capabilities across diverse oil phases. Notably, the novel emulsifier CS-PSBMA, synthesized through the grafting chitosan (CS) onto PSBMA, not only exhibits superior emulsion stability and UCST temperature responsiveness but also significantly enhanced the salt resistance of the emulsion. Remarkably, the emulsion maintained its stability even in the presence of monovalent salt ions at concentrations up to 2 mol/L (equivalent to a mineralization level of 1.33 × 105 mg/L in water) and divalent salt ions at concentrations up to 3 mol/L (equivalent to a mineralization level of 2.7 × 105 mg/L in water). The emulsions stabilized by both emulsifiers are resilient to harsh reservoir conditions and effectively emulsify heavy oils, enabling high-temperature emulsification and low-temperature demulsification. These attributes indicate their promising potential for industrial applications, particularly in the field of enhanced oil recovery.


Subject(s)
Emulsifying Agents , Emulsions , Temperature , Emulsifying Agents/chemistry , Emulsions/chemistry , Oils/chemistry , Water/chemistry , Salts/chemistry , Methacrylates/chemistry , Chitosan/chemistry
12.
ACS Appl Mater Interfaces ; 16(22): 29198-29209, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38785397

ABSTRACT

Patchouli oil has exhibited remarkable efficacy in the treatment of colitis. However, its volatility and potential irritancy are often drawbacks when extensively used in clinical applications. Oil gel is a semisolid and thermoreversible system that has received extensive interest for its solubility enhancement, inhibition of bioactive component recrystallization, and the facilitation of controlled bioactive release. Therefore, we present a strategy to develop an oil gel formulation that addresses this multifaceted problem. Notably, a patchouli oil gel formulation was designed to solidify and trap patchouli oil into a spatially stable crystal-particle structure and colonic released delivery, which has an advantage of the stable structure and viscosity. The patchouli oil gel treatment of zebrafish with colitis improved goblet cells and decreased macrophages. Additionally, patchouli oil gel showed superior advantages for restoring the tissue barrier. Furthermore, our investigative efforts unveiled patchouli oil's influence on TRP channels, providing evidence for its potential role in mechanisms of anti-inflammatory action. While the journey continues, these preliminary revelations provide a robust foundation for considering the adoption of patchouli oil gel as a pragmatic intervention for managing colitis.


Subject(s)
Colitis , Gels , Zebrafish , Animals , Gels/chemistry , Colitis/drug therapy , Colitis/pathology , Colitis/chemically induced , Drug Delivery Systems , Colon/drug effects , Colon/pathology , Colon/metabolism , Mice , Humans , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Oils/chemistry
13.
Int J Biol Macromol ; 270(Pt 1): 132035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705316

ABSTRACT

The frequently encountered wastewater contaminations, including soluble aromatic compound and dye pollutants, pathogenic bacteria, and insoluble oils, have resulted in significant environmental and human health issues. It poses a challenge to utilize identical materials for the treatment of complex wastewater. Herein, in this research, multifunctional Ag NPs/guar gum hybrid hydrogels were fabricated using a facile in situ reduction and self-crosslinking method for efficient remediation of complex wastewater. The Ag NPs/guar gum hybrid hydrogel showed remarkable remodeling, adhesive, and self-healing characteristics, which was favorable for its versatile applications. The combination of Ag NPs with the guar gum skeleton endowed the hybrid hydrogel with exceptional catalytic activity for reducing aromatic compounds and dye pollutants, as well as remarkable antibacterial efficacy against pathogenic bacteria. In addition, the Ag NPs/guar gum hybrid hydrogel could be employed to coat a variety of substrates, including cotton fabrics and stainless steel meshes. The hydrogel coated cotton fabrics and meshes presented superhydrophilicity/underwater superoleophobicity, excellent antifouling capacity, and outstanding recyclability, which could be successfully applied for efficient separation of oil-water mixtures. The findings of this work provide a feasible and cost-effective approach for the remediation of intricate wastewater.


Subject(s)
Anti-Bacterial Agents , Galactans , Hydrogels , Mannans , Metal Nanoparticles , Plant Gums , Silver , Galactans/chemistry , Plant Gums/chemistry , Silver/chemistry , Mannans/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Catalysis , Metal Nanoparticles/chemistry , Hydrogels/chemistry , Wastewater/chemistry , Water Purification/methods , Water/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Oils/chemistry
14.
Food Res Int ; 187: 114435, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763682

ABSTRACT

Interfaces play essential roles in the stability and functions of emulsion systems. The quick development of novel emulsion systems (e.g., water-water emulsions, water-oleogel emulsions, hydrogel-oleogel emulsions) has brought great progress in interfacial engineering. These new interfaces, which are different from the traditional water-oil interfaces, and are also different from each other, have widened the applications of food emulsions, and also brought in challenges to stabilize the emulsions. We presented a comprehensive summary of various structured interfaces (stabilized by mixed-layers, multilayers, particles, nanodroplets, microgels etc.), and their characteristics, and designing strategies. We also discussed the applicability of these interfaces in stabilizing liquid-liquid (water-oil, water-water, oil-oil, alcohol-oil, etc.), liquid-gel, and gel-gel emulsion systems. Challenges and future research aspects were also proposed regarding interfacial engineering for different emulsions. Emulsions are interface-dominated materials, and the interfaces have dynamic natures, as the compositions and structures are not constant. Biopolymers, particles, nanodroplets, and microgels differed in their capacity to get absorbed onto the interface, to adjust their structures at the interface, to lower interfacial tension, and to stabilize different emulsions. The interactions between the interface and the bulk phases not only affected the properties of the interface, but also the two phases, leading to different functions of the emulsions. These structured interfaces have been used individually or cooperatively to achieve effective stabilization or better applications of different emulsion systems. However, dynamic changes of the interface during digestion are only poorly understood, and it is still challenging to fully characterize the interfaces.


Subject(s)
Emulsions , Gels , Emulsions/chemistry , Gels/chemistry , Water/chemistry , Oils/chemistry
15.
Nanotechnology ; 35(35)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38806006

ABSTRACT

Artificially synthesized DNA is involved in the construction of a library of oil tracers due to their unlimited number and no-biological toxicity. The strategy of the construction is proposed by oleophilic Silica-encapsulated DNA nanoparticles, which offers fresh thinking in developing novel tracers, sensors, and molecular machines in engineering & applied sciences based on artificially synthesized DNA blocks.


Subject(s)
DNA , Nanoparticles , Silicon Dioxide , Silicon Dioxide/chemistry , DNA/chemistry , Nanoparticles/chemistry , Oils/chemistry
16.
Chemosphere ; 358: 142164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685326

ABSTRACT

As the adverse effects of using plastics and perfluorinated alkyl substances become more apparent, there is a growing need for sustainable hydrophobic products. Cellulose and its derivatives are the most abundant and widely used polymers, and cellulose-based products have great potential in industries where plastics and other hydrophobic polymers are used, such as stain-resistant fabrics, food packaging, and oil-water separation applications. In this study, we extracted cellulose from water hyacinth (WH) biomass, known for its negative environmental impact, and converted it into hydrophobic cellulose. This addresses the issue of managing WH waste and creating an environmentally friendly hydrophobic material. Initially, aldehyde groups were introduced through oxidation with periodate, followed by direct octadecyl amine (ODA) grafting onto dialdehyde cellulose (DAC) via a Schiff base condensation. The resulting ODA modified cellulose (ODA-C) was dispersed in ethanol and used to coat various materials, including cotton fabric, cellulose filter paper, and packaging paper. The modified materials showed excellent hydrophobicity as measured by their water contact angles (WCAs), and the application of the coating was demonstrated for oil-water separation, stain-resistant hydrophobic fabric, and paper-based packaging materials. FTIR, XRD, and WCA analysis confirmed the successful modification of cellulose. A high separation efficiency of 99% was achieved for diesel/water separation using modified filter paper (MoFP), under gravity. On application of the coating, cotton fabric became hydrophobic and resisted staining from dye, and paper-based packaging materials became more robust by becoming water-resistant. Overall, the facile synthesis, low cost, high efficiency, and use of environmentally friendly sustainable materials make this a promising strategy for hydrophobically modifying surfaces for a wide range of applications while reducing the menace of water hyacinth.


Subject(s)
Biomass , Cellulose , Hydrophobic and Hydrophilic Interactions , Silanes , Cellulose/chemistry , Cellulose/analogs & derivatives , Silanes/chemistry , Eichhornia/chemistry , Water/chemistry , Fluorine/chemistry , Oils/chemistry
17.
Chemosphere ; 358: 142183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685332

ABSTRACT

The accumulation of fat, oil and grease (FOG) deposits in sanitary sewer systems is a significant cause of sewer overflows, mainly due to their tendency to adhere to pipe walls. The aim of this study is to (i) develop laboratory-prepared FOG deposits using a mixture of iron (Fe) and aluminium (Al) metal ions, fatty acids, saccharides and cooked oils, in addition to various sanitary waste materials such as paper towels, wipes and pads and (ii) examine the characteristics of these FOG deposits. The goals of this study were to (i) gain a deeper understanding of the impact of sanitary waste on the formation of FOG deposits and (ii) discuss the detailed physiochemical properties of these FOG deposits. The findings revealed that FOG deposits can vary in nature, appearing as either a smooth, paste-like substance or a coarse, semi-solid material, depending on the types of waste present in the sewer. Analysis of the fatty acid profile indicated that the FOG deposits with wipes have the highest viscosity (3.2 × 104 Pa s) and larger composition of smaller chain saturated fatty acids (caprylic acid 0.64%, undecanoic acid 5.61%, lauric acid 4.65%, myristic acid 3.21% and palmitic 8.38%). In contrast, FOG deposits with Fe and Al metal impurities have higher heat resistance and thermal stability (melting point of 125 °C) and have larger composition of long chain fatty acids. Furthermore, FTIR analysis confirmed that these FOG deposits are composed of metallic salts of fatty acids, aligning with samples from sewer lines. Our results suggest that FOG deposit formation involves the aggregation of excess calcium, which compresses free fatty acid micelles, and a saponification reaction between the calcium aggregates and free fatty acids. This research illuminates the complex processes behind FOG deposit formation and their varied characteristics, providing valuable insights into potential strategies for preventing FOG-related sewer blockages.


Subject(s)
Fats , Fatty Acids , Oils , Sewage , Sewage/chemistry , Fats/analysis , Fats/chemistry , Fatty Acids/analysis , Oils/chemistry , Iron/chemistry , Iron/analysis , Waste Disposal, Fluid/methods , Drainage, Sanitary
18.
Environ Sci Pollut Res Int ; 31(21): 30663-30675, 2024 May.
Article in English | MEDLINE | ID: mdl-38613752

ABSTRACT

In this study, dip coating method was investigated to prepare superhydrophilic MIL-101 (Cr)-coated copper mesh for highly efficient oil/water emulsion separation. To increase the surface area of synthesized MIL-101 (Cr), a purification procedure was developed to remove unreacted H2BDC crystals present in the channel of the initial MIL-101 (Cr) sample synthesized. After that, a dispersing solution of MIL-101 (Cr) was needed to coat on the copper mesh. Thermoplastic polyurethane (TPU) was used as a binder in this procedure. The prepared membranes of M1 (once coated mesh) to M6 (six times coated mesh) were performed to separate oil/water emulsion effectively. Contact angle tests showed the superhydrophilic/underwater superoleophobic wettability behavior of MIL-101 (Cr)-coated copper meshes. The wetting mechanism of the prepared membranes is mostly relevant to the surface functional groups of purified MIL-101 (Cr). Also, the roughness of the nanostructured coated membranes was improved because of the uniform coating of MIL-101 (Cr) which is integrated into hydrophilic TPU. Oil/water separation results showed that M2 (twice coated mesh) showed the maximum amount of water flux (83076 L m-2 h-1) in oil/water separation and M3 (three times coated mesh) had the best performance of oil/water emulsion with 99.99% separation efficiency.


Subject(s)
Copper , Emulsions , Hydrophobic and Hydrophilic Interactions , Metal-Organic Frameworks , Water , Copper/chemistry , Metal-Organic Frameworks/chemistry , Water/chemistry , Oils/chemistry , Wettability
19.
Chem Commun (Camb) ; 60(40): 5330-5333, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38666704

ABSTRACT

Single-cell nanoencapsulation (SCNE) has great potential in the enhancement of therapeutic effects of probiotic microbes. However, the material scope has been limited to water-soluble compounds to avoid non-biocompatible organic solvents that are harmful to living cells. In this work, the SCNE of probiotic Lactobacillus acidophilus with water-insoluble luteolin and Fe3+ ions is achieved by the vortex-assisted, biphasic water-oil system. The process creates L. acidophilus nanoencapsulated in the luteolin-Fe3+ shells that empower the cells with extrinsic properties, such as resistance to lysozyme attack, anti-ROS ability, and α-amylase-inhibition activity, as well as sustaining viability under acidic conditions. The proposed protocol, embracing water-insoluble flavonoids as shell components in SCNE, will be an advanced add-on to the chemical toolbox for the manipulation of living cells at the single-cell level.


Subject(s)
Lactobacillus acidophilus , Luteolin , Oils , Probiotics , Water , Lactobacillus acidophilus/metabolism , Probiotics/chemistry , Water/chemistry , Luteolin/chemistry , Oils/chemistry , alpha-Amylases/metabolism
20.
Crit Rev Toxicol ; 54(4): 235-251, 2024 04.
Article in English | MEDLINE | ID: mdl-38656260

ABSTRACT

Some studies suggested that gastrointestinal (GIT) decontamination with oil may improve the prognosis of patients who ingested aluminum phosphide (AlP). The aim of this study is to compare the efficacy and safety of gastric lavage with oil-based solutions to any method of gastric decontamination not using oils in patients presenting with acute AlP poisoning. The literature was searched for English-published randomized controlled trials (RCTs) from inception to 16 September 2023. The searched electronic databases included MEDLINE/PubMed, Cochrane Library, Web of Science, Egyptian Knowledge Bank, Scopus, and Google Scholar. Data were extracted and pooled by calculating the risk ratio (RR) for categorical outcomes and standardized mean difference (SMD) for numerical outcomes, with 95% confidence intervals (CI). Seven RCTs were included. Paraffin oil was significantly associated with a lower risk of mortality (RR = 0.59 [95% CI: 0.45, 0.76], p < .001), intubation (RR = 0.59 [95% CI: 0.46, 0.76], p < .001) and vasopressor need (RR = 0.71 [95% CI: 0.56, 0.91], p = .006). Survival time was significantly prolonged with paraffin oil (SMD = 0.72 [95% CI: 0.32, 1.13], p < .001). Coconut oil was significantly associated with prolonged survival time (SMD = 0.83 [95% CI: 0.06, 1.59], p = .03) as well as decreased risk of requiring intubation (RR = 0.78 [95% CI: 0.62, 0.99], p = .04). Oil-based GIT decontamination using paraffin oil showed benefits over conventional lavage regarding the incidence of in-hospital mortality and endotracheal intubation, and survival time. Coconut oil showed some benefits in terms of the intubation incidence and survival time. Decontamination using paraffin oil is recommended. Future clinical trials are warranted with larger sample sizes and focusing on cost-benefit and safety.


Subject(s)
Aluminum Compounds , Gastric Lavage , Phosphines , Humans , Aluminum Compounds/poisoning , Gastric Lavage/methods , Oils , Paraffin , Pesticides , Phosphines/poisoning , Poisoning , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...