Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 947
Filter
1.
Int J Nanomedicine ; 19: 4941-4956, 2024.
Article in English | MEDLINE | ID: mdl-38828194

ABSTRACT

Background: Due to its prevalence, recurrence, and the emergence of drug-resistance, Candida vaginitis significantly impacts the well-being of women. Although cinnamon essential oil (CEO) possesses antifungal activity, its hydrophobic properties limit its clinical application. Purpose: To overcome this challenge, a nanoemulsification technology was employed to prepare cinnamon essential oil-nanoemulsion (CEO@NE), and its therapeutic efficacy and action mechanism for Candida vaginitis was investigated in vivo and in vitro. Materials and Methods: CEO@NE, composed of 4% CEO, 78% distilled water, and 18% Tween 80, was prepared by ultrasonic nanoemulsification. The physical properties, anti-Candida activity, cytotoxicity, immunomodulatory potential and storage stability of CEO@NE were explored. Subsequently, the effect of intravaginal CEO@NE treatment on Candida vaginitis was investigated in mice. To comprehend the possible mechanism of CEO@NE, an analysis was conducted to ascertain the production of intracellular reactive oxygen species (ROS) in C. albicans. Results: CEO@NE, with the droplet size less than 100 nm and robust storage stability for up to 8 weeks, exhibited comparable anti-Candida activity with CEO. CEO@NE at the concentration lower than 400 µg/mL had no cytotoxic and immunomodulatory effects on murine splenocytes. Intravaginal treatment of CEO@NE (400 µg/mL, 20 µL/day/mouse for 5 consecutive days) curbed Candida colonization, ameliorated histopathological changes, and suppressed inflammatory cytokine production in mice intravaginally challenged with C. albicans. Notably, this treatment preserved the density of vaginal lactic acid bacteria (LAB) crucial for vaginal health. Co-culturing C. albicans with CEO@NE revealed concentration-dependent augmentation of intracellular ROS generation and ensuing cell death. In addition, co-culturing LPS-stimulated murine splenocytes with CEO@NE yielded a decrease in the generation of cytokines. Conclusion: This discovery provides insight into the conceivable antifungal and anti-inflammatory mechanisms of CEO@NE to tackle Candida vaginitis. CEO@NE offers a promising avenue to address the limitations of current treatments, providing novel strategy for treating Candida vaginitis.


Subject(s)
Antifungal Agents , Candida albicans , Candidiasis, Vulvovaginal , Cinnamomum zeylanicum , Emulsions , Oils, Volatile , Female , Animals , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Candidiasis, Vulvovaginal/drug therapy , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/administration & dosage , Mice , Administration, Intravaginal , Cinnamomum zeylanicum/chemistry , Emulsions/chemistry , Reactive Oxygen Species/metabolism , Humans , Nanoparticles/chemistry , Mice, Inbred BALB C
2.
BMC Vet Res ; 20(1): 184, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724994

ABSTRACT

Cinnamon and star anise essential oils are extracted from natural plants and provide a theoretical basis for the development and clinical application of compound essential oil pellets. However, cinnamon oil and star anise oil have the characteristics of a pungent taste, extreme volatility, poor palatability, and unstable physical and chemical properties, which limit their clinical use in veterinary medicine. In this study, the inhibitory effects of cinnamon oil and star anise oil on Escherichia coli and Salmonella were measured. Compound essential oil pellets were successfully prepared by centrifugal granulation technology. Subsequently, the in vitro dissolution of the pellets and their pharmacokinetics in pigs were investigated. The results showd that, cinnamon and star anise oils showed synergistic or additive inhibitiory effects on Escherichia coli and Salmonella. The oil pellets had enteric characteristics in vitro and high dissolution in vitro. The pharmacokinetic results showed that the pharmacokinetic parameters Cmax and AUC were directly correlated with the dosage and showed linear pharmacokinetic characteristics, which provided a theoretical basis for the development and clinical application of compound essential oil pellets.


Subject(s)
Cinnamomum zeylanicum , Escherichia coli , Oils, Volatile , Animals , Oils, Volatile/pharmacokinetics , Oils, Volatile/administration & dosage , Cinnamomum zeylanicum/chemistry , Escherichia coli/drug effects , Swine , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Salmonella/drug effects , Satureja/chemistry , Plant Oils/pharmacokinetics , Plant Oils/chemistry , Male , Centrifugation
3.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747275

ABSTRACT

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Subject(s)
Carbon Dioxide , Chitosan , Cinnamomum zeylanicum , Drug Liberation , Nanoparticles , Silicon Dioxide , Chitosan/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Carbon Dioxide/chemistry , Porosity , Cinnamomum zeylanicum/chemistry , Drug Carriers/chemistry , Oils, Volatile/chemistry , Oils, Volatile/administration & dosage , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , Delayed-Action Preparations
4.
Narra J ; 4(1): e621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798873

ABSTRACT

Second-degree burn, the most common among burn degrees, underscores the importance of timely and proper treatment in influencing prognosis. Nutmeg (Myristica fragrans), renowned for its potent antibacterial and antifungal properties, also serves as an effective antiseptic for open wounds. The aim of this study was to identify the phytochemical constituents of nutmeg essential oil and analyze the wound healing effect of nutmeg cream on second-degree burns in an animal model. An experimental study with a completed randomized design was conducted on Rattus norvegicus strain Wistar rats with second-degree burn. This study had four groups and each group consisting of four rats: B (burn-treated base cream), B+N (burn-treated 3% nutmeg cream), B+SSD (burn-treated silver sulfadiazine (BSS)), and B+N+SSD (burn-treated 3% nutmeg cream and SSD in a 1:1 ratio). The phytochemical analysis of nutmeg essential oil was conducted by gas chromatography and mass spectroscopy (GC-MS). The burn diameter and burn wound healing percentage were measured from day 0 to 18. One-way ANOVA followed by post hoc analysis using the least significant difference (LSD) was employed to analysis the effect. The phytochemical analysis of nutmeg essential oil found that myristicin, terpinene-4-ol, terpinene, safrole and terpinolene were the most abundant putative compounds in nutmeg essential oil. On day 0, the average burn wound diameters were 1.4 cm in all groups and increases were observed in all groups on day 3. The wound diameter decreased until day 18 with the smallest burn wound diameter was found in the B+N group (0.86±0.37 cm), followed by B+SSD (0.93±0.29 cm). The B+SSD group exhibited the highest percentage of burn wound healing (56.80±14.05%), which was significantly different from the base cream (p<0.05). The percentage of burn wound healing in rats given 3% nutmeg cream was 41.88±13.81%, suggesting that nutmeg cream could promote burn wound healing in rats induced by second-degree burns.


Subject(s)
Burns , Disease Models, Animal , Myristica , Rats, Wistar , Wound Healing , Animals , Myristica/chemistry , Wound Healing/drug effects , Burns/drug therapy , Burns/pathology , Rats , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Oils, Volatile/chemistry , Skin Cream , Male , Gas Chromatography-Mass Spectrometry , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/therapeutic use , Silver Sulfadiazine/therapeutic use
5.
Brain Behav ; 14(5): e3507, 2024 May.
Article in English | MEDLINE | ID: mdl-38688895

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual loss of cognitive abilities (dementia) and is a major public health problem. Here, we aimed at investigating the effects of Rosa damascena essential oil (RDEO) on learning and memory functions in a rat model of amnesia induced by scopolamine, as well as on changes in acetylcholinesterase (AChE) activity, M1 muscarinic acetylcholine receptor (mAChR) expression, and brain-derived neurotrophic factor (BDNF) levels in the extracted brain tissues. METHODS: The control, amnesia (scopolamine, 1 mg/kg/i.p.) and treatment (RDEO, 100 µL/kg/p.o. or galantamine, 1.5 mg/kg/i.p.) groups were subjected to Morris water maze and new object recognition tests. AChE activity was assayed by ELISA, and M1 mAChR and BDNF concentration changes were determined by western blotting. Also, using computational tools, human M1 mAChR was modeled in an active conformation, and the major components of RDEO were docked onto this receptor. RESULTS: According to our behavioral tests, RDEO was able to mitigate the learning and memory impairments caused by scopolamine in vivo. Our in vitro assays showed that the observed positive effects correlated well with a decrease in AChE activity and an increase in M1 mAChR and BDNF levels in amnestic rat brains. We also demonstrated in an in silico setting that the major components of RDEO, specifically -citronellol, geraniol, and nerol, could be accommodated favorably within the allosteric binding pocket of active-state human M1 mAChR and anchored here chiefly by hydrogen-bonding and alkyl-π interactions. CONCLUSION: Our findings offer a solid experimental foundation for future RDEO-based medicinal product development for patients suffering from AD.


Subject(s)
Acetylcholinesterase , Amnesia , Brain-Derived Neurotrophic Factor , Oils, Volatile , Rosa , Scopolamine , Animals , Rats , Amnesia/chemically induced , Amnesia/drug therapy , Amnesia/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Male , Rosa/chemistry , Brain-Derived Neurotrophic Factor/metabolism , Acetylcholinesterase/metabolism , Receptor, Muscarinic M1/metabolism , Rats, Wistar , Nootropic Agents/pharmacology , Disease Models, Animal , Brain/drug effects , Brain/metabolism , Cognition/drug effects , Maze Learning/drug effects
6.
J Microencapsul ; 41(4): 284-295, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38686964

ABSTRACT

This work aimed to investigate the effectiveness of Lippia sidoides and Syzygium aromaticum essential oils (EOs) encapsulated in nanostructured lipid carriers (NLCs) as SARS-CoV-2 inhibitors through virucidal activity assessment. We developed anionic and cationic NLCs loaded with the EOs and assessed their physicochemical properties and SARS-CoV-2 virucidal activity, focusing on the effects of EO type and the NLCs composition. The NLCs exhibited particle sizes of 141.30 to 160.53 nm for anionic and 109.30 to 138.60 nm for cationic types, with PDIs between 0.16 and 0.25. High zeta potentials (>29.0 in modulus) indicated stable formulations. The NLCs effectively encapsulated the EOs, achieving encapsulation efficiencies between 84.6 to 100% w/w of marker compound. The EOs-loaded NLCs reduced the SARS-CoV-2 virion count, exceeding 2 logs over the control. NLCs loaded with Lippia sidoides and Syzygium aromaticum EOs represent an innovative strategy for combating SARS-CoV-2.


Subject(s)
Antiviral Agents , Drug Carriers , Lipids , Nanostructures , Oils, Volatile , SARS-CoV-2 , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Lipids/chemistry , Drug Carriers/chemistry , Nanostructures/chemistry , Humans , Lippia/chemistry , Syzygium/chemistry , COVID-19 Drug Treatment , Particle Size , Chlorocebus aethiops , Vero Cells , Animals , COVID-19
7.
Int J Pharm ; 657: 124149, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38677395

ABSTRACT

Prostate cancer (PCa) is the second most frequent malignancy in men worldwide. Essential oils (EOs) are natural products which can act in cancer suppression by several mechanisms. In this work, a nanotechnological approach was used to develop and evaluate the antineoplastic effects of EOs loaded by nanostructured lipid carriers (NLCs). Three different NLC systems composed of cinnamon, sage or thyme EOs were optimized using factorial design (23). The optimal formulations were characterized in terms of biophysical parameters, structure, stability, in vivo safety and efficacy. All optimized NLC formulations exhibited excellent structural properties and stability over a year (25 °C). They proved to be in vitro and in vivo biocompatible on PNT2 normal prostate cells and on chicken embryos (CE), respectively. In PC3 PCa cells, optimized NLCs inhibited cell proliferation and migration and changed its morphology. In CE xenograft tumor, NLCs have inhibited tumor growth and angiogenesis. The results from this work suggested that all developed EO-based NLC formulations had their stability improved while the biological activity remains unchanged.


Subject(s)
Cell Proliferation , Drug Carriers , Lipids , Nanostructures , Oils, Volatile , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/administration & dosage , Animals , Lipids/chemistry , Nanostructures/chemistry , Drug Carriers/chemistry , Cell Proliferation/drug effects , Chick Embryo , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , PC-3 Cells , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Drug Stability
8.
Curr Med Res Opin ; 40(5): 753-763, 2024 05.
Article in English | MEDLINE | ID: mdl-38625386

ABSTRACT

Atopic dermatitis (AD) has become a common childhood disease that affects a large number of children worldwide and has become a chronic skin disease that causes huge economical and psychological damage to the whole family. Despite the use of steroids, immunosuppressants, and various topical preparation, the prognosis is still poor. Hence, this review aimed to explore the potential of using essential oils (EO) as an active ingredient in managing AD. The review was completed by using Pubmed, Scopus, and Medline to search for relevant articles that study the pathophysiology of AD, the properties of EO, the use of EO in managing AD, and the suitable advanced formulation to incorporate EO. From the review conducted, it was concluded that EO have huge potential in managing AD and can be used as complimentary therapeutic agents in AD treatment. Scientists and industries should venture into commercializing more topical products with EO to help manage AD more effectively.


Subject(s)
Dermatitis, Atopic , Oils, Volatile , Dermatitis, Atopic/drug therapy , Humans , Oils, Volatile/therapeutic use , Oils, Volatile/administration & dosage , Child
9.
Poult Sci ; 103(5): 103600, 2024 May.
Article in English | MEDLINE | ID: mdl-38471230

ABSTRACT

The aim of this study was to evaluate the effect of microencapsulated essential oils (MEO) on the laying performance, egg quality, immunity, intestinal morphology, and oxidative status of laying hens. A total of 640 Hy-line Brown laying hens, 41 wk of age, were randomly divided into 4 groups, each with 8 replicates containing 20 birds per replicate. The dietary conditions tested included a basal diet (Control) or the basal diet supplemented with various levels of MEO at 100 mg/kg (MEO100), 300 mg/kg (MEO300), and 500 mg/kg (MEO500). The three treatment groups were intermittently fed MEO, following an alternating schedule of 1 wk on and 1 wk off for a total of 56 d. Results showed that feeding MEO at levels of 300 and 500 mg/kg improved both egg production and feed conversion ratios compared to the control group. Hens consumed MEO-supplemented diets exhibited a significant decrease in the breaking egg ratio (P < 0.05) compared to those fed the control diet. Shell thickness and Haugh unit values significantly increased in the groups receiving 300 and 500 mg/kg of MEO (P < 0.05). Both the MEO300 and MEO500 treatments led to improvements in immunoglobulin (IgA, IgM, and IgG) and cytokine (IL-2 and IFN-γ) levels in serum. Hens in the MEO300 and MEO500 groups exhibited higher values for parameters related to intestinal morphometry compared to the control group. Furthermore, supplementation with 300 and 500 mg/kg of MEO enhanced the antioxidant capacity of plasma, as evidenced by increased activities of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT) (P < 0.05). In summary, the intermittent feeding of MEO improved egg production, enhanced antioxidative processes, immune functions, and intestinal morphology, leading to an amelioration in the egg quality of laying hens. Our data demonstrate that supplementation of 300 mg/kg of MEO in feed can significantly improve animal health and egg quality. Implementation of these feeding practices could have a positive economic impact on poultry and egg industry.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Intestines , Oils, Volatile , Animals , Chickens/physiology , Chickens/immunology , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Female , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Intestines/drug effects , Intestines/physiology , Intestines/anatomy & histology , Random Allocation , Ovum/physiology , Ovum/drug effects , Dose-Response Relationship, Drug , Reproduction/drug effects
10.
Poult Sci ; 103(5): 103655, 2024 May.
Article in English | MEDLINE | ID: mdl-38537402

ABSTRACT

To develop effective antibiotics alternatives is getting more and more important to poultry healthy production. The study investigated the effects of a microencapsulated essential oils and organic acids preparation (EOA) on growth performance, slaughter performance, nutrient digestibility and intestinal microenvironment of broilers. A total of 624 1-day-old male Arbor Acres broilers were randomly divided into 6 groups including the control group (T1) fed with basal diet, the antibiotic group (T2) supplemented with basal diet with 45 mg/kg bacitracin methylene disalicylate (BMD), and 4 inclusion levels of EOA-treated groups (T3, T4, T5, T6 groups) chickens given basal diet with 200, 400, 600, and 800 mg EOA/kg of diet, respectively. Results showed that compared with the control, the 200 mg/kg EOA group increased average daily gain (ADG) and average body weight (ABW) during the early stage (P < 0.05). EOA addition decreased crypt depth of the ileum (P < 0.05), but villus height to crypt depth ratio was increased by EOA addition at 200 and 400 mg/kg at d 21 (P < 0.05). Compared with the control, dietary addition EOA at 200, 400 and 600 mg/kg increased the lipase activity in the duodenum at d 21 (P < 0.05). Increased lactic acid bacteria population was found in cecal digesta of the 400 mg/kg EOA group at d 21 (P < 0.05), and higher concentration of butyric acid level was observed in cecal digesta at d 21 and d 42 in the 200 mg/kg EOA group compared with the control (P < 0.05). RT-PCR analysis found that dietary EOA addition decreased the gene expression of IL-1ß, COX-2 and TGF-ß4 in the ileum at d 21 (P < 0.05), while only the 200 mg/kg EOA increased the gene expression of IL-10, TGF-ß4, Claudin-1, ZO-1, CATH-1, CATH-3, AvBD-1, AvBD-9 and AvBD-12 in the ileum at d 42 (P < 0.05) compared with the control. In summary, adding 200 mg/kg and 400 mg/kg of the EOA to the diet could improve the growth performance and intestinal microenvironment through improving intestinal morphology, increasing digestive enzymes activity and cecal lactic acid bacteria abundance and butyric acid content, improving intestinal barrier function as well as maintaining intestinal immune homeostasis. The improving effect induced by EOA addition in the early growth stage was better than that in the later growth stage. Overall, the EOA product might be an effective antibiotic alternative for broiler industry.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Digestion , Oils, Volatile , Animals , Chickens/growth & development , Chickens/physiology , Animal Feed/analysis , Male , Diet/veterinary , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Digestion/drug effects , Animal Nutritional Physiological Phenomena/drug effects , Dietary Supplements/analysis , Intestines/drug effects , Intestines/anatomy & histology , Random Allocation , Dose-Response Relationship, Drug , Drug Compounding/veterinary , Nutrients/metabolism
11.
Poult Sci ; 103(5): 103604, 2024 May.
Article in English | MEDLINE | ID: mdl-38484563

ABSTRACT

The poultry industry is evolving towards antibiotic-free production to meet market demands and decelerate the increasing spread of the antimicrobial resistance. The growing need for antibiotic free products has challenged producers to decrease or completely stop using antimicrobials as feed supplements in broiler diet to improve feed efficiency, growth rate, and intestinal health. Natural feed additives (e.g., probiotics and phytobiotics) are promising alternatives to substitute antimicrobial growth promoters. The goal of our study was to characterize the effects of a Probiotic and an Essential Oils blend on broilers' performance and perform a time-series analysis to describe their excreta microbiome. A total of 320 Cobb 500 (1-day-old) chicks were raised for 21 d in 32 randomly allocated cages. Treatments consisted of 4 experimental diets: a basal diet, and a basal diet mixed with an Antibiotic (bacitracin methylene disalicylate), an essential oils blend (oregano oil, rosemary, and red pepper), or a Probiotic (Bacillus subtilis). Body weight (on 1, 10, and 21d), and feed intake (10d and 21d) were recorded and feed conversion ratio was calculated. Droppings were collected daily (1-21d) to characterize broilers' excreta microbiota by targeted sequencing of the bacterial 16S rRNA gene. The Probiotic significantly improved feed conversion ratio for starter phase 1 to 10d (P = 0.03), grower phase 10 to 21d (P = 0.05), and total period 1 to 21d (P = 0.01) compared to the Antibiotic. Feed supplements did not affect alpha diversity but did impact microbial beta diversity (P < 0.01). Age also impacted microbiome turnover as differences in alpha and beta diversity were detected. Furthermore, when compared to the basal diet, the probiotic and antibiotic significantly impacted relative abundance of Bifidobacterium (log2 fold change -1.44, P = 0.03), Intestinimonas (log2 fold change 0.560, P < 0.01) and Ligilactobacillus (log2 fold change -1.600, P < 0.01). Overall, Probiotic supplementation but not essential oils supplementation positively impacted broilers' growth performance by directly causing directional shifts in broilers' excreta microbiota structure.


Subject(s)
Animal Feed , Anti-Bacterial Agents , Chickens , Diet , Dietary Supplements , Oils, Volatile , Probiotics , Salicylates , Animals , Chickens/growth & development , Chickens/microbiology , Animal Feed/analysis , Probiotics/administration & dosage , Probiotics/pharmacology , Diet/veterinary , Dietary Supplements/analysis , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Bacitracin/pharmacology , Bacitracin/administration & dosage , Random Allocation , Bacillus subtilis/drug effects , Microbiota/drug effects , Male , Plant Oils/pharmacology , Plant Oils/administration & dosage
12.
Vet Res Commun ; 48(3): 1641-1658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453821

ABSTRACT

Early weaning is an important stressor that impairs the piglet´s health, and essential oils appear as promising candidates to improve it instead of antibiotics. The aim of this study was to evaluate the effect of oral supplementation of free and nanoencapsulated Minthostachys verticillata essential oil (EO and NEO, respectively) on immunological, biochemical and antioxidants parameters as well as on gut microbiota in weaned piglets. EO was extracted by hydrodistillation and nanoencapsulation was performed by high-energy method using Tween 80 and Span 60 as surfactants. EO and NEO were chemically analyzed by gas chromatography-mass spectrometry (GC-MS). The cytotoxic effects of both EO and NEO was evaluated on Caco-2 cell line. For in vivo assay, male weaned piglets (age: 28 days, mean initial body weight: 11.63 ± 0.37 kg) were randomly distributed in six groups of six animals each (n = 6) and received orally EO (10.0 mg/kg/day) or NEO (2.5, 5.0 and 10.0 mg/kg/day), named hereinafter as EO-10, NEO-2.5, NEO-5 and NEO-10, for 30 consecutive days. Animals not treated or treated with surfactants mixture were evaluated as control and vehicle control. Subsequently, histological, hematological and biochemical parameters, cytokines production, oxidative markers, CD4+/CD8+ T cells and gut microbiota were evaluated. GC-MS analysis was similar in both EO and NEO. The NEO was more toxic on Caco-2 cells than EO. Oral supplementation of EO-10 or NEO-10 improved growth performance compared to control group NEO-2.5 or NEO-5 (p < 0.05) groups. NEO-2.5, NEO-5 and NEO-10 did not alter the morpho-physiology of digestive organs and decreased malondialdehyde (MDA) levels in liver compared to control (p < 0.05) or EO-10 groups (p < 0.05, p < 0.01). In addition, NEO-10 showed an increase in CD4+/CD8+ T cells ratio (p < 0.001), and induced the highest serum levels of IL-10 (p < 0.01). Serum triglycerides levels were significantly lower in animals treated with EO-10 or NEO-2.5, NEO-5 and NEO-10 compared to control group (p < 0.001). Gut microbiota analysis showed that NEO-10 favor the development of beneficial intestinal microorganisms to improve parameters related to early weaning of piglets. In conclusion, EO and NEO improved parameters altered by early weaning in piglets however, NEO was safer and powerful. Therefore, NEO should be further studied to be applied in swine health.


Subject(s)
Animal Feed , Antioxidants , Dietary Supplements , Gastrointestinal Microbiome , Oils, Volatile , Animals , Gastrointestinal Microbiome/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Oils, Volatile/chemistry , Antioxidants/pharmacology , Male , Dietary Supplements/analysis , Swine , Animal Feed/analysis , Caco-2 Cells , Weaning , Diet/veterinary , Humans , Administration, Oral
13.
J Biomater Sci Polym Ed ; 35(9): 1400-1420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38502545

ABSTRACT

The aim of this study was to develop and evaluate the transdermal patch formulations of nifedipine. The patch formulations containing nifedipine were prepared and optimized with different ratios of vinyl and cellulose-derived polymers, drug contents, and permeation enhancers. Among the various formulations, the patch formulation containing a 1:5 ratio of ethyl cellulose and polyvinyl pyrrolidone was selected for ex vivo pharmacokinetic study based on in vitro permeation studies using stratum corneum of the pig's skin. The cumulative percentage release after the transdermal administration of the optimized patch formulation was 71.43%, and the plasma concentration of nifedipine was maintained for 16 hrs. The physicochemical evaluation study including flatness, thickness, moisture content and uptake, drug content in vitro release, and ex vivo permeation indicated satisfactory results. The formulation batch with clove oil as a penetration enhancer has shown better ex vivo permeation as compared to the formulations without enhancers and another synthetic enhancer. These results suggest that the optimized patch formulation Q3 could be further developed for clinical applications, providing the therapeutic plasma level of nifedipine over an extended period. Hence analyzing the results of the evaluation tests, in vitro and ex vivo data on the preparation and optimization of nifedipine-loaded transdermal patch, it can be concluded that the formulation shows its feasibility as an effective transdermal delivery system for nifedipine.


Subject(s)
Administration, Cutaneous , Cellulose , Nifedipine , Oils, Volatile , Skin Absorption , Transdermal Patch , Nifedipine/pharmacokinetics , Nifedipine/administration & dosage , Nifedipine/chemistry , Animals , Cellulose/chemistry , Cellulose/analogs & derivatives , Swine , Skin Absorption/drug effects , Oils, Volatile/chemistry , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacokinetics , Skin/metabolism , Drug Liberation , Permeability , Male
14.
Inflammopharmacology ; 32(3): 2035-2048, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520575

ABSTRACT

The aim of this investigation was to explore the protective impacts and mechanisms of Anastatica hierochuntica essential oil (EOAH) against dextran sulfate sodium (DSS)-induced experimental colitis in mice. EOAH demonstrated a reduction in DSS-induced body weight decline, disease activity index (DAI), colon length reduction, colonic tissue damage, and myeloperoxidase (MPO) activity. The essential oil significantly mitigated the production of pro-inflammatory agents including TNF-α, IL-1ß, and IL-12. Further analysis revealed that EOAH's anti-inflammatory effects involved the regulation of NF-κB and PPARγ pathways, as well as the inhibition of NLRP3 activation in colitis mice. Notably, EOAH treatment elevated the levels of beneficial commensal bacteria such as Lactobacillus and Bifidobacteria, while reducing Escherichia coli levels in the mice's feces. In addition, EOAH restored the expression of occludin and ZO-1 proteins in colonic tissues affected by ulcerative colitis (UC). These findings indicate that supplementing with EOAH might offer a novel therapeutic approach for UC prevention.


Subject(s)
Anti-Inflammatory Agents , Colitis , Dextran Sulfate , Oils, Volatile , Animals , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Mice , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , NF-kappa B/metabolism , Male , Disease Models, Animal , Mice, Inbred C57BL
15.
J Cosmet Dermatol ; 23(5): 1840-1849, 2024 May.
Article in English | MEDLINE | ID: mdl-38213091

ABSTRACT

BACKGROUND: Sleep is one of the most important factors affecting overall health. During the night, the skin repairs damage caused by daily stresses. Melatonin plays a key role in this process. Toxins are removed, and cellular repair and growth hormone production are increased. Inter alia, this also decreases signs of intrinsic aging. AIMS: The current study was intended to demonstrate the impact of a unique fraction of Melaleuca alternifolia (FMA) essential oil, on sleep and skin quality. METHODS: The effect of FMA was investigated in vitro on skin cells, evaluating its antioxidant and anti-inflammatory properties, and in an ex-vivo study on human skin biopsies treated with FMA following stress induction. In addition, two clinical studies were performed on volunteers with life-style-related sleep complaints. In one study, sleep was measured using a noncontact monitoring device (SleepScore Labs, Max). A second study was conducted to assess skin anti-aging effects. RESULTS: In vitro application of FMA reduced IL-8 and reactive oxygen species (ROS) generation in skin cells. This was confirmed ex vivo through a decrease in inflammatory markers and an increase in antioxidant enzymes after stress induction. Interestingly, FMA also upregulated melatonin-associated genes. Real-world sleep tracking revealed that FMA significantly improved sleep quality, relative to unscented control. In vivo applications also showed a reduction in signs of aging. CONCLUSION: These results provide initial data to suggest that this unique FMA delivers skin anti-aging benefits via a two-pronged mode of action, improving sleep quality, and reducing skin inflammatory and oxidative stress.


Subject(s)
Antioxidants , Melatonin , Skin , Sleep Quality , Humans , Melatonin/pharmacology , Melatonin/administration & dosage , Skin/drug effects , Skin/metabolism , Female , Adult , Middle Aged , Antioxidants/pharmacology , Antioxidants/administration & dosage , Skin Aging/drug effects , Reactive Oxygen Species/metabolism , Interleukin-8/metabolism , Male , Tea Tree Oil/pharmacology , Tea Tree Oil/administration & dosage , Oxidative Stress/drug effects , Melaleuca/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage
16.
Drug Deliv Transl Res ; 14(7): 1888-1908, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38161197

ABSTRACT

Atazanavir or ATV is an FDA-approved, HIV-1 protease inhibitor that belongs to the azapeptide group. Over time, it has been observed that ATV can cause multiple adverse side effects in the form of liver diseases including elevations in serum aminotransferase, indirect hyper-bilirubinemia, and idiosyncratic acute liver injury aggravating the underlying chronic viral hepatitis. Hence, there is an incessant need to explore the safe and efficacious method of delivering ATV in a controlled manner that may reduce the proportion of its idiosyncratic reactions in patients who are on antiretroviral therapy for years. In this study, we assessed ATV formulation along with Rosemary oil to enhance the anti-HIV-1 activity and its controlled delivery through self-nanoemulsifying drug delivery system or SNEDDS to enhance its oral bioavailability. While the designing, development, and characterization of ATV-SNEDDS were addressed through various evaluation parameters and pharmacokinetic-based studies, in vitro cell-based experiments assured the safety and efficacy of the designed ATV formulation. The study discovered the potential of ATV-SNEDDS to inhibit HIV-1 infection at a lower concentration as compared to its pure counterpart. Simultaneously, we could also demonstrate the ATV and Rosemary oil providing leads for designing and developing such formulations for the management of HIV-1 infections with the alleviation in the risk of adverse reactions.


Subject(s)
Atazanavir Sulfate , HIV Infections , HIV-1 , Atazanavir Sulfate/pharmacokinetics , Atazanavir Sulfate/administration & dosage , HIV Infections/drug therapy , Humans , Animals , HIV-1/drug effects , Emulsions , Drug Delivery Systems , Oils, Volatile/administration & dosage , Oils, Volatile/chemistry , Oils, Volatile/pharmacokinetics , Oils, Volatile/pharmacology , Male , HIV Protease Inhibitors/administration & dosage , HIV Protease Inhibitors/pharmacokinetics , HIV Protease Inhibitors/therapeutic use , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nanoparticle Drug Delivery System/chemistry
17.
Eur J Nutr ; 62(8): 3411-3422, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37665425

ABSTRACT

PURPOSE: This study aimed to evaluate the capacity of peppermint essential oil to improve the physical performance of runners in running protocol until exhaustion. METHODS: In a clinical, randomized, double-blind, cross-over and controlled study, fourteen male recreational runners (37.1 ± 2.0 years; 24 ± 1.1 kg/m2; 53.1 ± 1.7 mL kg min) performed two runs to exhaustion at 70% of VO2max, after intake of 500 mL of water added with 0.05 mL of peppermint essential oil (PEO) or placebo (PLA), plus 400 mL of the drink during the initial part of the exercise. Records were made of body temperature (BT), thermal sensation (TS), thermal comfort (TC), subjective perception of effort (SPE), sweat rate (SR), and urine volume and density. RESULTS: Time to exhaustion was 109.9 ± 6.9 min in PEO and 98.5 ± 6.2 min in PLA (p = 0.009; effect size: 0.826). No significant changes were observed in the values of BT, TS, TC, SPE, SR, lost body mass, and urine volume and density (p > 0.05). CONCLUSION: Peppermint essential oil added to water before and during a race significantly increases the time to exhaustion of recreational runners but without altering BT, TS, TC, or hydration status, so the mechanisms involved were not clarified in this study. BRAZILIAN REGISTRY OF CLINICAL TRIALS (REBEC): RBR-75zt25z.


Subject(s)
Mentha piperita , Oils, Volatile , Physical Endurance , Running , Exercise , Mentha piperita/chemistry , Oils, Volatile/administration & dosage , Water , Humans , Male , Physical Endurance/drug effects , Adult
18.
J Vasc Access ; 24(3): 465-474, 2023 May.
Article in English | MEDLINE | ID: mdl-34396816

ABSTRACT

BACKGROUND: The recurrent arteriovenous fistula (AVF) intervention in the treatment of hemodialysis induces pain in patients. Lavender oil has analgesic, antimicrobial, and calming effects. This oil is widely used in patients to reduce anxiety and stress associated with pain caused by analgesics. METHOD: The present study is a randomized controlled and experimental clinical trial in which patients (n = 90) who underwent hemodialysis with AVFs were randomly divided into three groups. The intensity of pain was measured in all patients at three different stages during the insertion of arterial needles for hemodialysis: (1) The topical application of 100% lavender essential oil, (2) the inhaler application of 100% lavender essential oil, and (3) no intervention. The placebo (water) was applied to groups 1 and 2. RESULTS: Our findings revealed that the mean pre-application pain scores in hemodialysis patients were 57.58 ± 20.28 in the working group, 48.53 ± 20.23 in the control group, 19.49 ± 15.66 in the post-application group, and 45.33 ± 25.52 in the control group (p < 0.005). The average pain scores after the application of lavender oil were 22.66 ± 15.35 in the inhaler lavender group, 16.33 ± 15.97 in the topical lavender group, and 45.33 ± 25.52 in the control group. CONCLUSIONS: After inhaler and topical application of lavender oil, a significant decrease in the severity of pain was recorded for patients at the time of arterial insertion of needles.


Subject(s)
Arteriovenous Fistula , Catheterization , Oils, Volatile , Pain , Plant Oils , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Administration, Topical , Aromatherapy , Catheterization/adverse effects , Lavandula/chemistry , Nebulizers and Vaporizers , Oils, Volatile/administration & dosage , Pain/drug therapy , Pain Management/methods , Plant Oils/administration & dosage , Renal Dialysis/adverse effects , Renal Insufficiency, Chronic/therapy , Treatment Outcome , Vascular Access Devices , Visual Analog Scale , Turkey
19.
Ann Pharm Fr ; 81(3): 492-518, 2023 May.
Article in French | MEDLINE | ID: mdl-36049545

ABSTRACT

OBJECTIVES: Non-conventional medicines are not devoid of toxicity and it is relevant to establish an inventory of the general public's knowledge of essential oils. The objective is to identify the profile of the victims of a poisoning, the ways of administration and the symptoms as well as the incriminated essential oils. METHODS: Two surveys, for the general public and health professional, were distributed (January-March 2019). In addition, data from the Angers poison control center for the period 2017-2018 were analyzed and compared with the data from our study. RESULTS: Our surveys gathered 623 and 59 answers. The data of the poison control center of Angers counted 741 intoxications. The precautions for use and contra-indications of essential oils are not well known since 5% of the respondents identified them correctly. Our data show that using a mixture increases the risk of intoxication (P<0.02). The most cited essential oils in case of intoxication are Eucalyptus, Tea tree and Lavender. The symptoms mainly concern a cutaneous application (75%) and remain of short duration and without gravity. Concerning the intoxications referenced to the poison control center in Angers, the same essential oils are involved, the oral route is mostly used (70%) and the symptoms listed for 74% of intoxications concern oropharyngeal, ocular, abdominal and skin pain. CONCLUSION: The delivery of essential oils is not harmless and the data obtained both through our surveys and the processing of data from the poison control center of Angers show that they must be used with caution.


Subject(s)
Oils, Volatile , Plant Oils , Humans , Retrospective Studies , Oils, Volatile/administration & dosage , Oils, Volatile/toxicity , Plant Oils/administration & dosage , Plant Oils/toxicity , Surveys and Questionnaires , Eucalyptus Oil/administration & dosage , Eucalyptus Oil/toxicity , Tea Tree Oil/administration & dosage , Tea Tree Oil/toxicity
20.
Allergol. immunopatol ; 50(4): 83-96, jul. 2022. ilus, tab, graf
Article in English | IBECS | ID: ibc-208898

ABSTRACT

Objective: To observe the antipruritic effect and mechanism of the volatile oil of Zanthoxylum bungeanum and Zanthoxylum schinifolium on chronic eczema to provide data support for clinical application and new drug development of Zanthoxylum bungeanum and Zanthoxylum schinifolium. Methods: The model of chronic eczema was established by using 2-dinitrochlorobenzene (DNCB), and the composition and content of volatile oil in Zanthoxylum schinifolium and Zanthoxylum bungeanum was determined by gas chromatography-mass spectrometry (GC-MS). The antipruritic effect by (EASI) score of eczema area and severity index and scratching times was then evaluated. Then, the contents of histamine, gastrin-releasing peptide (GRP), interleukin-4 (IL-4), and immunoglobulin E (IgE) in serum of rats was determined by enzyme-linked immunosorbent assay (ELISA). The tissue morphology was observed by HE staining. The expressions of H1R, PAR-2, TRPV1, TRPA1, and GRPR was then detected by immunohistochem-istry, Western blot, and QRT-PCR.Results: The results revealed that there were differences in the composition of volatile oil between Zanthoxylum bungeanum and Zanthoxylum schinifolium. Compared to the model group, the medium-dose group of Zanthoxylum bungeanum and Zanthoxylum schinifolium group significantly increased the difference of EASI score and scratching times, significantly decreased the concentrations of IL-4, IgE, GRP, and histamine, and significantly decreased the expression levels of H1R, PAR-2, TRPV1, and GRPR. The degree of inhibition on the patho-logical manifestations of chronic eczema was evident. There was no significant difference in antipruritic effect between the two groups. The expression of TRPA1 was inconsistent at the protein and gene level, which needs to be further researched (AU)


Subject(s)
Animals , Male , Rats , Antipruritics/administration & dosage , Eczema/drug therapy , Histamine Agents/administration & dosage , Oils, Volatile/administration & dosage , Zanthoxylum/chemistry , Disease Models, Animal , Immunoglobulin E , Interleukin-4 , Rats, Wistar , Chronic Disease
SELECTION OF CITATIONS
SEARCH DETAIL
...