Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.641
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 636-644, jul. 2024. graf, tab
Article in English | LILACS | ID: biblio-1538072

ABSTRACT

Thechemical composition, antioxidant and antimicrobial activities of the essential oil from aerial parts (leaves and flowers) of Chuquiraga arcuataHarling grown in the Ecuadorian Andes were studied. One hundred and twenty-six compounds were identified in the essential oil. Monoterpene hydrocarbons (45.8%) and oxygenated monoterpenes (44.1%) had the major percentages. The most abundant compounds were camphor (21.6%), myrcene (19.5%), and 1,8-cineole (13.4%). Antioxidant activity was examined using DPPH, ABTS,and FRAP assays. The essential oil had a moderate scavenging effect and reduction of ferric ion capacity through FRAP assay. Antimicrobial activity of the essential oil was observed against four pathogenic bacteria and a fungus. The essential oil exhibited activity against all microorganism strains under test, particularly against Candida albicansand Staphylococcus aureuswith MICs of 2.43-12.10 µg/mL.


Se estudió la composición química, actividades antioxidantes y antimicrobianas del aceite esencial procedente de las partes aérea (hojas y flores) de Chuquiraga arcuataHarling cultivadas en los Andes ecuatorianos. Se identificaron 126 compuestos en el aceite esencial. Los hidrocarburos monoterpénicos (45,8%) y los monoterpenos oxigenados (44,1%) tuvieron el mayor porcentaje. Los compuestos más abundantes fueron alcanfor (21,6%), mirceno (19,5%) y 1,8-cineol (13,4%). La actividadantioxidante se examinó mediante ensayos DPPH, ABTS y FRAP. El aceite esencial tuvo un efecto eliminador moderado y una reducción de la capacidad de iones férricos mediante el ensayo FRAP. Se observó actividad antimicrobiana del aceite esencial contra cuatro bacterias y un hongo patógenos. El aceite esencial mostró actividad contra todas las cepas de microorganismos bajo prueba, particularmente contra Candida albicansy Staphylococcus aureuscon CMI de 2,43-12,10 µg/mL.


Subject(s)
Oils, Volatile/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Flowers/chemistry , Ecuador , Antioxidants/pharmacology
2.
Food Res Int ; 188: 114496, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823843

ABSTRACT

Agro-industrial co-products, such as fish gelatin, stand out for their capacity in forming biopolymeric films, being biocompatible and non-toxic; however, its hydrophilicity poses a challenge. Essential oils, rich in bioactives, attract research interest aiming to enhance the protective barrier of films and enable their application in packaging. This study produced films based on cross-linked Nile tilapia skin gelatin, incorporating garlic essential oil. Gelatin obtained through partial collagen hydrolysis from the fish skin and cross-linked with gallic acid had hydroxyproline content of 10.02 g 100 g-1 and gel strength of 287 g, which were consistent with other studies. Oil extraction used supercritical CO2 as a solvent and ethanol as a cosolvent, following a factorial experimental design, evaluating the extraction temperature (40 °C and 70 °C) and cosolvent ratio (1:1 and 1:3), with three central points. Extraction was successful, with higher yields on a dry basis at 70 °C (88.35 %), using a 1:1 cosolvent ratio. Films incorporated with oil exhibited lower water vapor permeability (WVP) than those with only cross-linked gelatin (1.59 (g m-1 s-1 Pa-1) 1011). The film with the most suitable tensile strength (19.07 MPa), elongation (120.91 %), and WVP (1.09 (g m-1 s-1 Pa-1) 1011) properties contained garlic oil extracted at the central point (55 °C and 1:2). Thermal analysis indicated increased melting temperatures in films with added oil, suggesting low thermal degradation. These results suggest that garlic oil addition can improve the properties of fish gelatin-based films, making them promising for biodegradable packaging.


Subject(s)
Food Packaging , Garlic , Gelatin , Oils, Volatile , Permeability , Gelatin/chemistry , Oils, Volatile/chemistry , Animals , Garlic/chemistry , Food Packaging/methods , Tensile Strength , Steam , Sulfides/chemistry , Hydrophobic and Hydrophilic Interactions , Skin/chemistry
3.
Planta Med ; 90(7-08): 595-626, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843799

ABSTRACT

Natural raw materials such as essential oils have received more and more attention in recent decades, whether in the food industry, as flavorings and preservatives, or as insecticides and insect repellents. They are, furthermore, very popular as fragrances in perfumes, cosmetics, and household products. In addition, aromatherapy is widely used to complement conventional medicine. This review summarizes investigations on the chemical composition and the most important biological impacts of essential oils and volatile compounds extracted from selected aromatic blossoms, including Lavandula angustifolia, Matricaria recutita, Rosa x damascena, Jasminum grandiflorum, Citrus x aurantium, Cananga odorata, and Michelia alba. The literature was collected from PubMed, Google Scholar, and Science Direct. Blossom essential oils discussed in this work are used in a wide variety of clinical issues. The application is consistently described as safe in studies and meta-analyses, although there are notes that using essential oils can also have side effects, especially dermatologically. However, it can be considered as confirmed that essential oils have positive influences on humans and can improve quality of life in patients with psychiatric disorders, critically ill patients, and patients in other exceptional situations. Although the positive effect of essential oils from blossoms has repeatedly been reported, evidence-based clinical investigations are still underrepresented, and the need for research is demanded.


Subject(s)
Flowers , Lavandula , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Humans , Flowers/chemistry , Lavandula/chemistry , Rosa/chemistry , Citrus/chemistry , Jasminum/chemistry , Matricaria/chemistry , Aromatherapy , Cananga/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
4.
Int J Nanomedicine ; 19: 4941-4956, 2024.
Article in English | MEDLINE | ID: mdl-38828194

ABSTRACT

Background: Due to its prevalence, recurrence, and the emergence of drug-resistance, Candida vaginitis significantly impacts the well-being of women. Although cinnamon essential oil (CEO) possesses antifungal activity, its hydrophobic properties limit its clinical application. Purpose: To overcome this challenge, a nanoemulsification technology was employed to prepare cinnamon essential oil-nanoemulsion (CEO@NE), and its therapeutic efficacy and action mechanism for Candida vaginitis was investigated in vivo and in vitro. Materials and Methods: CEO@NE, composed of 4% CEO, 78% distilled water, and 18% Tween 80, was prepared by ultrasonic nanoemulsification. The physical properties, anti-Candida activity, cytotoxicity, immunomodulatory potential and storage stability of CEO@NE were explored. Subsequently, the effect of intravaginal CEO@NE treatment on Candida vaginitis was investigated in mice. To comprehend the possible mechanism of CEO@NE, an analysis was conducted to ascertain the production of intracellular reactive oxygen species (ROS) in C. albicans. Results: CEO@NE, with the droplet size less than 100 nm and robust storage stability for up to 8 weeks, exhibited comparable anti-Candida activity with CEO. CEO@NE at the concentration lower than 400 µg/mL had no cytotoxic and immunomodulatory effects on murine splenocytes. Intravaginal treatment of CEO@NE (400 µg/mL, 20 µL/day/mouse for 5 consecutive days) curbed Candida colonization, ameliorated histopathological changes, and suppressed inflammatory cytokine production in mice intravaginally challenged with C. albicans. Notably, this treatment preserved the density of vaginal lactic acid bacteria (LAB) crucial for vaginal health. Co-culturing C. albicans with CEO@NE revealed concentration-dependent augmentation of intracellular ROS generation and ensuing cell death. In addition, co-culturing LPS-stimulated murine splenocytes with CEO@NE yielded a decrease in the generation of cytokines. Conclusion: This discovery provides insight into the conceivable antifungal and anti-inflammatory mechanisms of CEO@NE to tackle Candida vaginitis. CEO@NE offers a promising avenue to address the limitations of current treatments, providing novel strategy for treating Candida vaginitis.


Subject(s)
Antifungal Agents , Candida albicans , Candidiasis, Vulvovaginal , Cinnamomum zeylanicum , Emulsions , Oils, Volatile , Female , Animals , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Candidiasis, Vulvovaginal/drug therapy , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/administration & dosage , Mice , Administration, Intravaginal , Cinnamomum zeylanicum/chemistry , Emulsions/chemistry , Reactive Oxygen Species/metabolism , Humans , Nanoparticles/chemistry , Mice, Inbred BALB C
5.
J Oleo Sci ; 73(5): 761-772, 2024.
Article in English | MEDLINE | ID: mdl-38692898

ABSTRACT

Volatile secondary metabolites of plants interact with environments heavily. In this work, characteristic components of Michelia yunnanensis essential oils (EOs) were isolated, purified and identified by column chromatography, GC-MS and NMR. Leaves of M. yunnanensis were collected monthly and extracted for EOs to investigate chemical and insecticidal activity variations as well as potential influencing environments. Different organs were employed to reveal distribution strategies of characteristic components. Results of insecticidal activities showed that all EOs samples exerted stronger contact activity to Lasioderma serricorne, but repellent effect was more efficient on Tribolium castaneum. One oxygenated sesquiterpene was isolated from EOs, basically it could be confirmed as (+)-cyclocolorenone (1). It exerted contact toxicity to L. serricorne (LD 50 = 28.8 µg/adult). Chemical analysis showed that M. yunnanensis leaves in reproductive period would produce and accumulate more 1 than in vegetative period. Moreover, reproductive organs (flowers and fruits) contained more 1 than vegetative organs (leaves and twigs). Partial correlation analysis indicated that temperature-related elements positively correlated with the relative content of 1.


Subject(s)
Insecticides , Oils, Volatile , Plant Leaves , Tribolium , Animals , Insecticides/isolation & purification , Insecticides/analysis , Plant Leaves/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Tribolium/drug effects , Sesquiterpenes/isolation & purification , Sesquiterpenes/analysis , Insect Repellents/analysis , Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Temperature
6.
J Oleo Sci ; 73(5): 773-786, 2024.
Article in English | MEDLINE | ID: mdl-38692899

ABSTRACT

To overcome the defects of Citrus aurantium L. var. amara Engl. essential oil (CAEO), such as high volatility and poor stability, supercritical fluid-extracted CAEO nanoemulsion (SFE-CAEO-NE) was prepared by the microemulsification method. Emulsifiers comprising Tween 80, polyoxyethylenated castor oil (EL-40), and 1,2-hexanediol, and an oil phase containing SFE-CAEO were used for microemulsification. We examined the physicochemical properties of SFE-CAEO-NE and steam distillation-extracted CAEO nanoemulsion (SDE-CAEO-NE), which were prepared using different concentrations of the emulsifiers. The mean particle size and zeta potential were 21.52 nm and -9.82 mV, respectively, for SFE-CAEO-NE, and 30.58 nm and -6.28 mV, respectively, for SDE-CAEO-NE, at an emulsifier concentration of 15% (w/w). SFE-CAEO-NE displayed better physicochemical properties compared with SDE-CAEO-NE. Moreover, its physicochemical properties were generally stable at different temperatures (-20-60℃), pH (3-8), and ionic strengths (0-400 mM). No obvious variations in particle size, zeta potential, and Ke were observed after storing this nanoemulsion for 30 days at 4℃, 25℃, and 40℃, suggesting that it had good stability. The sleep-promoting effect of SFE-CAEO-NE was evaluated using a mouse model of insomnia. The results of behavioral tests indicated that SFE-CAEO-NE ameliorated insomnia-like behavior. Moreover, SFE-CAEO- NE administration increased the serum concentrations of neurotransmitters such as 5-hydroxytryptamine and γ-aminobutyric acid, and decreased that of noradrenaline in mice. It also exerted a reparative effect on the function of damaged neurons. Overall, SFE-CAEO-NE displayed a good sleep-promoting effect.


Subject(s)
Citrus , Emulsions , Oils, Volatile , Sleep , Animals , Citrus/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Mice , Sleep/drug effects , Male , Particle Size , Nanoparticles , Emulsifying Agents/isolation & purification
7.
J Oleo Sci ; 73(5): 787-799, 2024.
Article in English | MEDLINE | ID: mdl-38692900

ABSTRACT

Launaea sarmentosa, also known as Sa Sam Nam, is a widely used remedy in Vietnamese traditional medicine and cuisine. However, the chemical composition and bioactivity of its essential oil have not been elucidated yet. In this study, we identified 40 compounds (98.6% of total peak area) in the essential oil via GC-MS analysis at the first time. Among them, five main compounds including Thymohydroquinone dimethyl ether (52.4%), (E)-α-Atlantone (9.0%), Neryl isovalerate (6.6%), Davanol D2 (isomer 2) (3.9%), and trans-Sesquisabinene hydrate (3.9%) have accounted for 75.8% of total peak area. The anti-bacterial activity of the essential oil against 4 microorganisms including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa has also investigated via agar well diffusion assay. The results showed that the essential oil exhibited a strong antibacterial activity against Bacillus subtilis with the inhibition zones ranging from 8.2 to 18.7 mm. To elucidate the anti-bacterial effect mechanism of the essential oil, docking study of five main compounds of the essential oil (Thymohydroquinone dimethyl ether, (E)-α-Atlantone, Neryl isovalerate, Davanol D2 (isomer 2), and trans-Sesquisabinene hydrate) against some key proteins for bacterial growth such as DNA gyrase B, penicillin binding protein 2A, tyrosyl-tRNA synthetase, and dihydrofolate reductase were performed. The results showed that the main constituents of essential oil were highly bound with penicillin binding protein 2A with the free energies ranging -27.7 to -44.8 kcal/mol, which suggests the relationship between the antibacterial effect of essential oil and the affinity of main compounds with penicillin binding protein. In addition, the free energies of main compounds of the essential oil with human cyclooxygenase 1, cyclooxygenase 2, and phospholipase A2, the crucial proteins related with inflammatory response were less than diclofenac, a non-steroidal antiinflammatory drug. These findings propose the essential oil as a novel and promising anti-bacterial and anti-inflammatory medicine or cosmetic products.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Hemiterpenes , Molecular Docking Simulation , Oils, Volatile , Pentanoic Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Bacillus subtilis/drug effects , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Tetrahydrofolate Dehydrogenase/metabolism , DNA Gyrase/metabolism , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry
8.
Braz J Biol ; 84: e280240, 2024.
Article in English | MEDLINE | ID: mdl-38695422

ABSTRACT

Transporting live fish is a common practice in fish farming, and is certainly one of the main problems that affect fish homeostasis. In this scenario, the use of natural additives has shown promise in improving fish resistance to adverse situations. This study aimed to assess the impact of Ocimum gratissimum L. essential oil (OGEO) on water quality, hematological parameters, and residue levels in the plasma, fillet, and liver of juvenile piraputanga (Brycon hilarii) during a two-hour transportation period. The fish were divided into plastic bags (4 L) and exposed to three different OGEO concentrations (10, 20, and 30 mg L-1), while a control group received no OGEO (three repetitions each). After the two-hour transportation, blood samples were collected, as well as portions of the fillet and liver for quantifying essential oil compounds, which were also measured in the plasma. Oxygen levels remained high throughout the transportation period, in all groups, while the pH decreased. Hemoglobin, MCHC, and MCH increased in fish exposed to OGEO concentrations of 20 and 30 mg L-1, compared to the control group. However, lymphocyte counts and the concentrations of essential oil compounds in plasma, fillet, and liver increased with higher OGEO concentrations. The use of 10 mg L-1 OGEO in the two-hour transport water is promising to ensure the survival and well-being of Brycon hilarii juveniles (weighing 16 g), showing to be safe and effective. The residual concentration of eugenol the major compound of OGEO in the fillet remains below the maximum limit of the recommended daily intake.


Subject(s)
Liver , Ocimum , Oils, Volatile , Water Quality , Animals , Ocimum/chemistry , Oils, Volatile/chemistry , Liver/chemistry , Liver/drug effects , Transportation , Characiformes/blood , Water Pollutants, Chemical/analysis
9.
J Appl Oral Sci ; 32: e20230397, 2024.
Article in English | MEDLINE | ID: mdl-38695444

ABSTRACT

Specific products containing natural resources can contribute to the innovation of complete denture hygiene. OBJECTIVE: To conduct an in vitro evaluation of experimental dentifrices containing essential oils of Bowdichia virgilioides Kunth (BvK), Copaifera officinalis (Co), Eucalyptus citriodora (Ec), Melaleuca alternifolia (Ma) and Pinus strobus (Ps) at 1%. METHODOLOGY: The variables evaluated were organoleptic and physicochemical characteristics, abrasiveness (mechanical brushing machine) simulating 2.5 years, and microbial load (Colony Forming Units - CFU/mL), metabolic activity (XTT assay) and cell viability (Live/Dead® BacLight™ kit) of the multispecies biofilm (Streptococcus mutans: Sm, Staphylococcus aureus: Sa, Candida albicans: Ca and Candida glabrata: Cg). Specimens of heat-polymerized acrylic resins (n=256) (n=96 specimens for abrasiveness, n=72 for microbial load count, n=72 for biofilm metabolic activity, n=16 for cell viability and total biofilm quantification) with formed biofilm were divided into eight groups for manual brushing (20 seconds) with a dental brush and distilled water (NC: negative control), Trihydral (PC: positive control), placebo (Pl), BvK, Co, Ec, Ma or Ps. After brushing, the specimens were washed with PBS and immersed in Letheen Broth medium, and the suspension was sown in solid specific medium. The organoleptic characteristics were presented by descriptive analysis. The values of density, pH, consistency and viscosity were presented in a table. The data were analyzed with the Wald test in a generalized linear model, followed by the Kruskal-Wallis test, Dunn's test (mass change) and the Bonferroni test (UFC and XTT). The Wald test in Generalized Estimating Equations and the Bonferroni test were used to analyze cell viability. RESULTS: All dentifrices showed stable organoleptic characteristics and adequate physicochemical properties. CN, Ec, Ps, Pl and PC showed low abrasiveness. There was a significant difference between the groups (p<0.001) for microbial load, metabolic activity and biofilm viability. CONCLUSIONS: It was concluded that the BvK, Ec and Ps dentifrices are useful for cleaning complete dentures, as they have antimicrobial activity against biofilm. The dentifrices containing Bowdichia virgilioides Kunth showed medium abrasiveness and should be used with caution.


Subject(s)
Biofilms , Dentifrices , Denture, Complete , Materials Testing , Oils, Volatile , Biofilms/drug effects , Dentifrices/pharmacology , Dentifrices/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Denture, Complete/microbiology , Time Factors , Reproducibility of Results , Toothbrushing , Colony Count, Microbial , Staphylococcus aureus/drug effects , Statistics, Nonparametric , Streptococcus mutans/drug effects , Analysis of Variance , Microbial Viability/drug effects , Candida albicans/drug effects , Reference Values , Acrylic Resins/chemistry , Acrylic Resins/pharmacology
10.
Sci Rep ; 14(1): 10052, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698117

ABSTRACT

The Apiaceae family contains many species used as food, spice and medicinal purposes. Different parts of plants including seeds could be used to obtain essential (EO) oils from members of the Apiaceae family. In the present study, EOs were components obtained through hydrodistillation from the seeds of anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), dill (Anethum graveolens), coriander (Coriandrum sativum), fennel (Foeniculum vulgare), and cumin (Cuminum cyminum). EO constituents were determined with Gas Chromatography/Mass Spectrometry (GC-MS) and Gas Chromatography/Flame Ionization Detector (GC-FID) and their antioxidant capacities were determined with the cupric reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) methods. The antimicrobial activity of EOs were tested against four pathogenic bacteria. Phenylpropanoids in anise (94.87%) and fennel (92.52%), oxygenated monoterpenes in dill (67.59%) and coriander (98.96%), monoterpene hydrocarbons in celery (75.42%), mono- (45.42%) and sesquiterpene- (43.25%) hydrocarbons in carrots, monoterpene hydrocarbon (34.30%) and aromatic hydrocarbons (32.92%) in cumin were the major compounds in the EOs. Anethole in anise and fennel, carotol in carrot, limonene in celery, carvone in dill, linalool in coriander, and cumin aldehyde in cumin were predominant compounds in these EOs. The high hydrocarbon content in cumin EO gave high CUPRAC activity (89.07 µmol Trolox g-1), and the moderate monoterpene hydrocarbon and oxygenated monoterpene content in dill EO resulted in higher DPPH activity (9.86 µmol Trolox g-1). The in vitro antibacterial activity of EOs against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli was evaluated using the agar diffusion method and the minimum bactericidal concentration was determined. Coriander, cumin and dill EOs showed inhibitory effect against all tested strains except P. aeruginosa. While fennel and celery EOs were effective against E. coli and B. cereus strains, respectively, anise and carrot EOs did not show any antibacterial effect against the tested bacteria. Hierarchical Cluster Analysis (HCA) produced four groups based on EO constituents of seven species. The potential adoption of the cultivated Apiaceae species for EO extraction could be beneficial for the wild species that are endangered by over collection and consumption.


Subject(s)
Antioxidants , Apiaceae , Daucus carota , Foeniculum , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/analysis , Apiaceae/chemistry , Daucus carota/chemistry , Foeniculum/chemistry , Cuminum/chemistry , Gas Chromatography-Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Coriandrum/chemistry , Seeds/chemistry , Anethum graveolens/chemistry , Pimpinella/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Apium/chemistry
11.
Parasit Vectors ; 17(1): 202, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711138

ABSTRACT

BACKGROUND: The Lone Star tick, Amblyomma americanum is important to human health because of a variety of pathogenic organisms transmitted to humans during feeding events, which underscores the need to identify novel approaches to prevent tick bites. Thus, the goal of this study was to test natural and synthetic molecules for repellent activity against ticks in spatial, contact and human fingertip bioassays. METHODS: The efficacy of essential oils and naturally derived compounds as repellents to Am. americanum nymphs was compared in three different bioassays: contact, spatial and fingertip repellent bioassays. RESULTS: Concentration response curves after contact exposure to 1R-trans-chrysanthemic acid (TCA) indicated a 5.6 µg/cm2 concentration required to repel 50% of ticks (RC50), which was five- and sevenfold more active than DEET and nootkatone, respectively. For contact repellency, the rank order of repellency at 50 µg/cm2 for natural oils was clove > geranium > oregano > cedarwood > thyme > amyris > patchouli > citronella > juniper berry > peppermint > cassia. For spatial bioassays, TCA was approximately twofold more active than DEET and nootkatone at 50 µg/cm2 but was not significantly different at 10 µg/cm2. In spatial assays, thyme and cassia were the most active compounds tested with 100% and 80% ticks repelled within 15 min of exposure respectively and was approximately twofold more effective than DEET at the same concentration. To translate these non-host assays to efficacy when used on the human host, we quantified repellency using a finger-climbing assay. TCA, nootkatone and DEET were equally effective in the fingertip assay, and patchouli oil was the only natural oil that significantly repelled ticks. CONCLUSIONS: The differences in repellent potency based on the assay type suggests that the ability to discover active tick repellents suitable for development may be more complicated than with other arthropod species; furthermore, the field delivery mechanism must be considered early in development to ensure translation to field efficacy. TCA, which is naturally derived, is a promising candidate for a tick repellent that has comparable repellency to commercialized tick repellents.


Subject(s)
Amblyomma , Oils, Volatile , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Amblyomma/drug effects , Insect Repellents/pharmacology , Humans , Plant Oils/pharmacology , Plant Oils/chemistry , Nymph/drug effects , Biological Assay , DEET/pharmacology
12.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 437-447, mayo 2024. tab
Article in Spanish | LILACS | ID: biblio-1538171

ABSTRACT

The aim of this study was to optimize by response surface design, the extraction of the leaf essential oil (EO) from Minthostachys mollis [HBK] Griseb., grown in Ecuador, using steam distillation. The factors used were extraction time (XTIE) of 60, 105 and 150 min and plant material/water ratio (XRMA) of 1:3, 1:4 and 1:5. The optimal combination was reached with XRMA 1:5 and XTIE 150 min, obtaining a process yield of 0.67%. The chemical composition of the EO analyzed by GC - MS was determined, where the main compounds were carvacryl acetate (44.01%), carvacrol (16.51%) and menthone (8.20%). The anti oxidant capacity of EO was evaluated using the FRAP and ABTS methodologies, with an IC 50 243.21 µmol Fe 2+ /g and 0.12 mg/mL, respectively. In addition, the antimicrobial activity of EO was found against Pseudomonas aeruginosa , Salmonella enterica , Escherich ia coli and Staphylococcus aureus .


El objetivo del estudio fue optimizar, mediante un diseño de superficie respuesta, la extracción d el aceite esencial (AE) de hojas de Minthostachys mollis [HBK] Griseb. del Ecuador, mediante destilación por arrastre de vapor. Los factores fueron el tiempo de extracción (XTIE) de 60, 105 y 150 min, y relación de material vegetal/ agua destilada (XRMA) d e 1:3, 1:4 y 1:5. La combinación óptima se logró con XTIE 150 min y XRMA 1:5 para un rendimiento de 0,67%. Se determinó la composición química del AE por GC - MS donde los compuestos mayoritarios fueron acetato de carvacrilo (44,01%), carvacrol (16,51%) y me ntona (8,20%). Se evaluó la capacidad antioxidante del AE por las metodologías FRAP y ABTS, con CI 50 de 243,21 µmol Fe 2+ /g y 0,12 mg/mL, respectivamente. Además, se demostró la actividad antimicrobiana contra Pseudomonas aeruginosa , Salmonella enterica , Es cherichia coli y Staphylococcus aureus .


Subject(s)
Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Anti-Infective Agents/chemistry , Plant Leaves/chemistry , Lamiaceae/metabolism , Lamiaceae/chemistry , Ecuador
13.
BMC Plant Biol ; 24(1): 461, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802729

ABSTRACT

BACKGROUND: Mentha longifolia L. is a perennial plant belonging to the Lamiaceae family that has a wide distribution in the world. M. longifolia has many applications in the food and pharmaceutical industries due to its terpenoid and phenolic compounds. The phytochemical profile and biological activity of plants are affected by their genetics and habitat conditions. In the present study, the content, constituents and antifungal activity of the essential oil extracted from 20 accessions of M. longifolia collected from different regions of Iran and Iraq countries were evaluated. RESULTS: The essential oil content of the accessions varied between 1.54 ± 0.09% (in the Divandarreh accession) to 5.49 ± 0.12% (in the Khabat accession). Twenty-seven compounds were identified in the essential oils of the studied accessions, which accounted for 85.5-99.61% of the essential oil. The type and amount of dominant compounds in the essential oil were different depending on the accession. Cluster analysis of accessions based on essential oil compounds grouped them into three clusters. The first cluster included Baziyan, Boukan, Sarouchavah, Taghtagh, Darbandikhan, Isiveh and Harir. The second cluster included Khabat, Kounamasi, Soni and Mahabad, and other accessions were included in the third cluster. Significant correlations were observed between the essential oil content and components with the climatic and soil conditions of the habitats. The M. longifolia essential oil indicated antifungal activity against Fusarium solani in both methods used. In all studied accessions, the fumigation method compared to the contact method was more able to control mycelia growth. In both methods, the inhibition percentage of essential oil on mycelia growth increased with an increase in essential oil concentration. Significant correlations were found between the essential oil components and the inhibition percentage of mycelium growth. CONCLUSION: The studied M. longifolia accessions showed significant differences in terms of the essential oil content and components. Differences in phytochemical profile of accessions can be due to their genetic or habitat conditions. The distance of the accessions in the cluster was not in accordance with their geographical distance, which indicates the more important role of genetic factors compared to habitat conditions in separating accessions. The antifungal activity of essential oils was strongly influenced by the essential oil quality and concentration, as well as the application method. Determining and introducing the elite accession in this study can be different depending on the breeder's aims, such as essential oil content, desired chemical composition, or antifungal activity.


Subject(s)
Antifungal Agents , Mentha , Oils, Volatile , Phytochemicals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Iran , Antifungal Agents/pharmacology , Mentha/chemistry , Iraq , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Oils/pharmacology , Plant Oils/chemistry , Fusarium/drug effects
14.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747275

ABSTRACT

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Subject(s)
Carbon Dioxide , Chitosan , Cinnamomum zeylanicum , Drug Liberation , Nanoparticles , Silicon Dioxide , Chitosan/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Carbon Dioxide/chemistry , Porosity , Cinnamomum zeylanicum/chemistry , Drug Carriers/chemistry , Oils, Volatile/chemistry , Oils, Volatile/administration & dosage , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , Delayed-Action Preparations
15.
Pak J Pharm Sci ; 37(1(Special)): 223-229, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747273

ABSTRACT

In this study, the anti-osteogenic properties of the volatile oil extracted from Homalomena gigantea rhizome using ethyl acetate (EtOAc) and methanol (MeOH) were examined. Gas chromatography-mass spectrometry (GC-MS) was employed for the identification of volatile components. Following this, bioassays were performed to evaluate their effects on osteogenesis, encompassing parameters like cell viability, osteoblast differentiation, collagen synthesis and mineralization. The GC-MS analysis revealed 19 compounds in the EtOAc extract and 36 compounds in the MeOH extract. In the MeOH extract, major constituents included bis(2-ethylhexyl) terephthalate (13.83%), linalool (9.58%), palmitic acid (6.55%) and stearic acid (4.29%). The EtOAc extract contained bis(2-ethylhexyl) terephthalate (16.64%), palmitic acid (5.60%) and stearic acid (3.11%) as the predominant components. Both the EtOAc and MeOH extracts of H. gigantea exhibited promising potential for further investigation in anti-osteoporosis research. These findings contribute to the exploration of natural compounds with potential anti-osteoporotic properties, expanding our understanding of their therapeutic potential.


Subject(s)
Gas Chromatography-Mass Spectrometry , Oils, Volatile , Osteogenesis , Plant Extracts , Rhizome , Osteogenesis/drug effects , Rhizome/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Animals , Cell Survival/drug effects , Osteoblasts/drug effects , Cell Differentiation/drug effects , Mice , Palmitic Acid/pharmacology , Acyclic Monoterpenes/pharmacology
16.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731509

ABSTRACT

The aim of this study was to develop microcapsules containing juniper or black pepper essential oils, using a combination of faba bean protein and chia seed polysaccharides (in ratios of 1:1, 1:2, 2:1). By synergizing these two polymers, our goal was to enhance the efficiency of essential oil microencapsulation, opening up various applications in the food industry. Additionally, we aimed to investigate the influence of different polymer mixing ratios on the properties of the resulting microcapsules and the course of the complex coacervation process. To dissolve the essential oils and limit their evaporation, soybean and rapeseed oils were used. The powders resulting from the freeze-drying of coacervates underwent testing to assess microencapsulation efficiency (65.64-87.85%), density, flowability, water content, solubility, and hygroscopicity. Additionally, FT-IR and DSC analyses were conducted. FT-IR analysis confirmed the interactions between the components of the microcapsules, and these interactions were reflected in their high thermal resistance, especially at a protein-to-polysaccharide ratio of 2:1 (177.2 °C). The water content in the obtained powders was low (3.72-7.65%), but it contributed to their hygroscopicity (40.40-76.98%).


Subject(s)
Capsules , Drug Compounding , Oils, Volatile , Plant Proteins , Polysaccharides , Salvia , Seeds , Vicia faba , Polysaccharides/chemistry , Seeds/chemistry , Vicia faba/chemistry , Drug Compounding/methods , Oils, Volatile/chemistry , Plant Proteins/chemistry , Salvia/chemistry , Capsules/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Water/chemistry
17.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731569

ABSTRACT

Skin wounds, leading to infections and death, have a huge negative impact on healthcare systems around the world. Antibacterial therapy and the suppression of excessive inflammation help wounds heal. To date, the application of wound dressings, biologics and biomaterials (hydrogels, epidermal growth factor, stem cells, etc.) is limited due to their difficult and expensive preparation process. Cinnamomum burmannii (Nees & T. Nees) Blume is an herb in traditional medicine, and its essential oil is rich in D-borneol, with antibacterial and anti-inflammatory effects. However, it is not clear whether Cinnamomum burmannii essential oil has the function of promoting wound healing. This study analyzed 32 main components and their relative contents of essential oil using GC-MS. Then, network pharmacology was used to predict the possible targets of this essential oil in wound healing. We first proved this essential oil's effects in vitro and in vivo. Cinnamomum burmannii essential oil could not only promote the proliferation and migration of skin stromal cells, but also promote M2-type polarization of macrophages while inhibiting the expression of pro-inflammatory cytokines. This study explored the possible mechanism by which Cinnamomum burmannii essential oil promotes wound healing, providing a cheap and effective strategy for promoting wound healing.


Subject(s)
Cinnamomum , Oils, Volatile , Wound Healing , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Wound Healing/drug effects , Cinnamomum/chemistry , Animals , Mice , Cell Proliferation/drug effects , Cytokines/metabolism , Macrophages/drug effects , Macrophages/metabolism , Cell Movement/drug effects , Skin/drug effects , Humans
18.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731619

ABSTRACT

This study aims to investigate the vegetative buds from Picea abies (spruce), naturally found in a central region of Romania, through a comprehensive analysis of the chemical composition to identify bioactive compounds responsible for pharmacological properties. Using HPLC/derivatization technique of GC-MS and quantitative spectrophotometric assays, the phenolic profile, and main components of an ethanolic extract from the buds were investigated. The essential oil was characterized by GC-MS. Moreover, the antioxidant activity with the DPPH method, and the antimicrobial activity were tested. Heavy metal detection was performed by graphite furnace atomic absorption spectrometry. The main components of the alcoholic extract were astragalin, quercetin, kaempferol, shikimic acid, and quinic acid. A total content of 25.32 ± 2.65 mg gallic acid equivalent per gram of dry plant (mg GAE/g DW) and of 10.54 ± 0.083 mg rutin equivalents/g of dry plant (mg RE/g DW) were found. The essential oil had D-limonene, α-cadinol, δ-cadinene, 13-epimanool, and δ-3-carene as predominant components. The spruce vegetative buds exhibited significant antioxidant activity (IC50 of 53 µg/mL) and antimicrobial effects against Staphylococcus aureus. Furthermore, concentrations of heavy metals Pb and Cd were below detection limits, suggesting that the material was free from potentially harmful contaminants. The results confirmed the potential of this indigenous species to be used as a source of compounds with pharmacological utilities.


Subject(s)
Anti-Infective Agents , Antioxidants , Oils, Volatile , Phytochemicals , Picea , Plant Extracts , Picea/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry , Romania , Phenols/analysis , Phenols/pharmacology , Phenols/chemistry
19.
Nat Prod Res ; 38(11): 1918-1923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739564

ABSTRACT

Blumea eriantha D.C is a weed from Asteraceae family and is reported to have anticancer activity. The essential oil from the aerial parts was extracted by steam distillation method with the yield of 0.36%. Through GC-MS analysis of the oil, seventeen compounds could be identified by comparing with linear retention indices with the library. Out of the seventeen compounds ß-Caryophylline oxide was isolated by column chromatography with gradient elution and the structure was determined through FT-IR, MS, 1HNMR, 13 C NMR and DEPT. The oil was evaluated for its effect on angiogenesis using Chorioallantoic Membrane Assay (CAM Assay). The concentration dependent antiangiogenic effect was observed with IC 50 value of 19.28 ppm.


Subject(s)
Angiogenesis Inhibitors , Asteraceae , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Asteraceae/chemistry , Animals , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply , Plant Components, Aerial/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Polycyclic Sesquiterpenes
20.
Pak J Pharm Sci ; 37(1): 147-154, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741411

ABSTRACT

Zeravschania khorasanica, a species endemic to the eastern part of Iran, possesses distinct characteristics that distinguish it from its two closely related species. This research employed five different extraction techniques to identify the active components, total phenolic content and in vitro antioxidant activity of the extract. Furthermore, hydro-distillation was utilized for GC/MS analysis to determine the composition of the essential oil. The total phenolic content was estimated using the Folin-Ciocalteu assay and the antioxidant capacity was evaluated using the DPPH radical scavenging test. The findings revealed that ethanolic Soxhlet extraction yielded the highest efficiency in extracting total phenolic content (88.19 ±1.99 gallic acid mg/100g). In contrast, water maceration extraction demonstrated the highest antioxidant activity (68.1 ±5.4%). Interestingly, the study uncovered that there is no significant positive correlation between the phenolic content and the antioxidant activity of the plant. Additionally, HPLC analysis identified three phenolic constituents in the extract. The Soxhlet extraction method yielded the highest levels of chlorogenic acid (5.8 ppm), caffeic acid (4.1 ppm) and salicylic acid (10.3 ppm). As per the GC/MS analysis, a total of eleven compounds were identified. The predominant compounds were elemicin at 58.19% and trans--bergamotene at 25.78%.


Subject(s)
Antioxidants , Apiaceae , Gas Chromatography-Mass Spectrometry , Phenols , Plant Extracts , Solvents , Antioxidants/isolation & purification , Antioxidants/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Iran , Solvents/chemistry , Apiaceae/chemistry , Chromatography, High Pressure Liquid , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Biphenyl Compounds/chemistry , Picrates/chemistry , Caffeic Acids/isolation & purification , Caffeic Acids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...