Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 632
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 487-515, jul. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1538020

ABSTRACT

Myrtus communis L., commonly known as true myrtle, is a medicinal plant native to the Mediterranean area. Since ancient times, the inhabitant s of this area have been using it for its cultural and medicinal properties. Because of the vast diversity of biomolecules in its aerial parts, it exhibits several biological properties, including antioxidant, antimicrobial, and anticancer properties. This review retrospect the research on the source, biological activities with empirical evidence, chemical composition, applications, and cellular targets of extracts and essential oils obtained from M. communis leaves, which provides a perspective for further studies on the applications and formulations of extract and EO of M. communis leaves. The efficacy of constituents' individually, in association with other bioactive constituents, or in combination with available commercial drugs would provide insights in to the development of these bio - actives as future drugs and their evolving future potential applications in the pharmaceutical, food, and aroma industries.


Myrtus communis L., comúnmente conocido como arrayán verdadero, es una planta medicinal originaria de la zona mediterránea. Desde la antigüedad, los habitantes de esta zona lo utilizan por sus propiedades culturales y medicinales. Debido a la gran div ersidad de biomoléculas en sus partes aéreas, exhibe varias propiedades biológicas, incluidas propiedades antioxidantes, antimicrobianas y anticancerígenas. Esta revisión retrospectiva de la investigación sobre la fuente, las actividades biológicas con evi dencia empírica, la composición química, las aplicaciones y los objetivos celulares de los extractos y aceites esenciales obtenidos de las hojas de M. communis , lo que brinda una perspectiva para futuros estudios sobre las aplicaciones y formulaciones de l os extractos y EO de M. communis . La eficacia de los componentes individualmente, en asociación con otros componentes bioactivos o en combinación con medicamentos comerciales disponibles proporcionaría información sobre el desarrollo de estos bioactivos co mo medicamentos futuros y sus futuras aplicaciones potenciales en las industrias farmacéutica, alimentaria y aromática


Subject(s)
Myrtus communis/pharmacology , Plants, Medicinal , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Plant Leaves/metabolism , Anti-Bacterial Agents , Antifungal Agents , Antioxidants
2.
Plant Physiol Biochem ; 211: 108705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714128

ABSTRACT

Research on nanoparticles (NPs) and future elevated CO2 (eCO2) is extensive, but the effects of SeNPs on plant growth and secondary metabolism under eCO2 remain uncertain. In this study, we explored the impact of SeNPs and/or eCO2 on the growth, physiology, chemical composition (primary metabolites, coumarins, and essential oils), and antioxidant capacity of Trachyspermum (T.) ammi. The treatment with SeNPs notably improved the biomass and photosynthesis of T. ammi plants, particularly under eCO2 conditions. Plant fresh and dry weights were improved by about 19, 33 and 36% in groups treated by SeNPs, eCO2, and SeNPs + eCO2, respectively. SeNPs + eCO2 induced photosynthesis, consequently enhancing sugar and amino acid levels. Similar to the increase in total sugars, amino acids showed variable enhancements ranging from 6 to 42% upon treatment with SeNPs + eCO2. At the level of the secondary metabolites, SeNPs + eCO2 substantially augmented coumarin biosynthesis and essential oil accumulation. Consistently, there were increases in coumarins and essential oil precursors (shikimic and cinnamic acids) and their biosynthetic enzymes. The enhanced accumulation of coumarins and essential oils resulted in increased overall antioxidant activity, as evidenced by improvements in FRAP, ORAC, TBARS, conjugated dienes, and inhibition % of hemolysis. Conclusively, the application of SeNPs demonstrates significant enhancements in plant growth and metabolism under future CO2 conditions, notably concerning coumarin metabolism and essential oil production of T. ammi.


Subject(s)
Carbon Dioxide , Coumarins , Oils, Volatile , Selenium , Oils, Volatile/metabolism , Coumarins/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Selenium/metabolism , Selenium/pharmacology , Antioxidants/metabolism , Nanoparticles , Photosynthesis/drug effects
3.
BMC Genomics ; 25(1): 540, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822238

ABSTRACT

The citral-type is the most common chemotype in Cinnamomum bodinieri Levl (C. bodinieri), which has been widely used in the daily necessities, cosmetics, biomedicine, and aromatic areas due to their high citral content. Despite of this economic prospect, the possible gene-regulatory roles of citral biosynthesis in the same geographic environment remains unknown. In this study, the essential oils (EOs) of three citral type (B1, B2, B3) and one non-citral type (B0) varieties of C. bodinieri were identified by GC-MS after hydrodistillation extraction in July. 43 components more than 0.10% were identified in the EOs, mainly composed of monoterpenes (75.8-91.84%), and high content citral (80.63-86.33%) were identified in citral-type. Combined transcriptome and metabolite profiling analysis, plant-pathogen interaction(ko04626), MAPK signaling pathway-plant(ko04016), starch and sucrose metabolism(ko00500), plant hormone signal transduction(ko04075), terpenoid backbone biosynthesis (ko00900) and monoterpenoid biosynthesis (ko00902) pathways were enriched significantly. The gene expression of differential genes were linked to the monoterpene content, and the geraniol synthase (CbGES), alcohol dehydrogenase (CbADH), geraniol 8-hydroxylase-like (CbCYP76B6-like) and 8-hydroxygeraniol dehydrogenase (Cb10HGO) were upregulated in the citral-type, indicating that they were associated with high content of geraniol and citral. The activities of CbGES and CbADH in citral type were higher than in non-citral type, which was corroborated by enzyme-linked immunosorbent assay (ELISA). This study on the accumulation mechanism of citral provides a theoretical basis for the development of essential oil of C. bodinieri.


Subject(s)
Acyclic Monoterpenes , Cinnamomum , Gene Expression Profiling , Monoterpenes , Cinnamomum/metabolism , Cinnamomum/genetics , Acyclic Monoterpenes/metabolism , Monoterpenes/metabolism , Transcriptome , Oils, Volatile/metabolism , Gene Expression Regulation, Plant , Genes, Plant
4.
Planta ; 260(1): 3, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767800

ABSTRACT

MAIN CONCLUSION: Transcription factors MhMYB1 and MhMYB2 correlate with monoterpenoid biosynthesis pathway in l-menthol chemotype of Mentha haplocalyx Briq, which could affect the contents of ( -)-menthol and ( -)-menthone. Mentha haplocalyx Briq., a plant with traditional medicinal and edible uses, is renowned for its rich essential oil content. The distinct functional activities and aromatic flavors of mint essential oils arise from various chemotypes. While the biosynthetic pathways of the main monoterpenes in mint are well understood, the regulatory mechanisms governing different chemotypes remain inadequately explored. In this investigation, we identified and cloned two transcription factor genes from the M. haplocalyx MYB family, namely MhMYB1 (PP236792) and MhMYB2 (PP236793), previously identified by our research group. Bioinformatics analysis revealed that MhMYB1 possesses two conserved MYB domains, while MhMYB2 contains a conserved SANT domain. Yeast one-hybrid (Y1H) analysis results demonstrated that both MhMYB1 and MhMYB2 interacted with the promoter regions of MhMD and MhPR, critical enzymes in the monoterpenoid biosynthesis pathway of M. haplocalyx. Subsequent virus-induced gene silencing (VIGS) of MhMYB1 and MhMYB2 led to a significant reduction (P < 0.01) in the relative expression levels of MhMD and MhPR genes in the VIGS groups of M. haplocalyx. In addition, there was a noteworthy decrease (P < 0.05) in the contents of ( -)-menthol and ( -)-menthone in the essential oil of M. haplocalyx. These findings suggest that MhMYB1 and MhMYB2 transcription factors play a positive regulatory role in ( -)-menthol biosynthesis, consequently influencing the essential oil composition in the l-menthol chemotype of M. haplocalyx. This study serves as a pivotal foundation for unraveling the regulatory mechanisms governing monoterpenoid biosynthesis in different chemotypes of M. haplocalyx.


Subject(s)
Gene Expression Regulation, Plant , Mentha , Menthol , Monoterpenes , Plant Proteins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Mentha/genetics , Mentha/metabolism , Monoterpenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Menthol/metabolism , Oils, Volatile/metabolism , Biosynthetic Pathways/genetics , Promoter Regions, Genetic/genetics
5.
Physiol Plant ; 176(3): e14365, 2024.
Article in English | MEDLINE | ID: mdl-38802725

ABSTRACT

Lavender plantation is globally expanded due to the increasing demand of its essential oil and its popularity as an ornamental species. However, lavender plantations, and consequently essential oil industries, are threatened by more frequent and severe drought episodes in a globally changing climate. Still little is known about the changes in the general metabolome, which provides the precursors of essential oil production, by extended drought events. Prolonged drought fundamentally results in yield losses and changing essential oil composition. In the present study, the general metabolome of a main cultivated lavender species (Lavandula angustifolia Mill.) in response to water deprivation (WD) and re-watering was analyzed to identify the metabolomics responses. We found prolonged WD resulted in significant accumulations of glucose, 1,6-anhydro-ß-D-glucose, sucrose, melezitose and raffinose, but declines of allulose, ß-D-allose, altrose, fructose and D-cellobiose accompanied by decreased organic acids abundances. Amino acids and aromatic compounds of p-coumaric acid, hydrocaffeic acid and caffeic acid significantly accumulated at prolonged WD, whereas aromatics of cis-ferulic acid, taxifolin and two fatty acids (i.e., palmitic acid and stearic acid) significantly decreased. Prolonged WD also resulted in decreased abundances of polyols, particularly myo-inositol, galactinol and arabitol. The altered metabolite profiles by prolonged WD were mostly not recovered after re-watering, except for branched-chain amino acids, proline, serine and threonine. Our study illustrates the complex changes of leaf primary and secondary metabolic processes of L. angustifolia by drought events and highlights the potential impact of these precursors of essential oil production on the lavender industry.


Subject(s)
Lavandula , Metabolome , Plant Leaves , Water , Lavandula/metabolism , Lavandula/genetics , Plant Leaves/metabolism , Water/metabolism , Droughts , Oils, Volatile/metabolism , Metabolomics
6.
Plant Cell Rep ; 43(6): 147, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771491

ABSTRACT

KEY MESSAGE: Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::Thchit42. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.


Subject(s)
Disease Resistance , Fusarium , Gene Expression Regulation, Plant , Pelargonium , Plant Leaves , Plants, Genetically Modified , Pelargonium/genetics , Fusarium/pathogenicity , Fusarium/physiology , Disease Resistance/genetics , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Colletotrichum/pathogenicity , Colletotrichum/physiology , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Geranium/genetics
7.
PeerJ ; 12: e17240, 2024.
Article in English | MEDLINE | ID: mdl-38685939

ABSTRACT

Background: Schisandra sphenanthera Rehd. et Wils. is a plant used in traditional Chinese medicine (TCM). However, great differences exist in the content of active secondary metabolites in various parts of S. sphenanthera. Do microorganisms critically influence the accumulation of active components in different parts of S. sphenanthera? Methods: In this study, 16S/ITS amplicon sequencing analysis was applied to unravel microbial communities in rhizospheric soil and different parts of wild S. sphenanthera. At the same time, the active secondary metabolites in different parts were detected, and the correlation between the secondary metabolites and microorganisms was analyzed. Results: The major components identified in the essential oils were sesquiterpene and oxygenated sesquiterpenes. The contents of essential oil components in fruit were much higher than that in stem and leaf, and the dominant essential oil components were different in these parts. The dominant components of the three parts were γ-muurolene, δ-cadinol, and trans farnesol (stem); α-cadinol and neoisolongifolene-8-ol (leaf); isosapathulenol, α-santalol, cedrenol, and longiverbenone (fruit). The microbial amplicon sequences were taxonomically grouped into eight (bacteria) and seven (fungi) different phyla. Community diversity and composition analyses showed that different parts of S. sphenanthera had similar and unique microbial communities, and functional prediction analysis showed that the main functions of microorganisms were related to metabolism. Moreover, the accumulation of secondary metabolites in S. sphenanthera was closely related to the microbial community composition, especially bacteria. In endophytic bacteria, Staphylococcus and Hypomicrobium had negative effects on five secondary metabolites, among which γ-muurolene and trans farnesol were the dominant components in the stem. That is, the dominant components in stems were greatly affected by microorganisms. Our results provided a new opportunity to further understand the effects of microorganisms on the active secondary metabolites and provided a basis for further research on the sustainable utilization of S. sphenanthera.


Subject(s)
Schisandra , Schisandra/metabolism , Schisandra/chemistry , Soil Microbiology , Microbiota/genetics , Oils, Volatile/metabolism , Secondary Metabolism , Plant Stems/microbiology , Plant Stems/metabolism , Sesquiterpenes/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism
8.
Plant Physiol Biochem ; 210: 108590, 2024 May.
Article in English | MEDLINE | ID: mdl-38574692

ABSTRACT

The essential oil of Pelargonium graveolens (rose-scented geranium), an important aromatic plant, comprising mainly mono- and sesqui-terpenes, has applications in food and cosmetic industries. This study reports the characterization of isoprenyl disphosphate synthases (IDSs) involved in P. graveolens terpene biosynthesis. The six identified PgIDSs belonged to different classes of IDSs, comprising homomeric geranyl diphosphate synthases (GPPSs; PgGPPS1 and PgGPPS2), the large subunit of heteromeric GPPS or geranylgeranyl diphosphate synthases (GGPPSs; PgGGPPS), the small subunit of heteromeric GPPS (PgGPPS.SSUI and PgGPPS.SSUII), and farnesyl diphosphate synthases (FPPS; PgFPPS).All IDSs exhibited maximal expression in glandular trichomes (GTs), the site of aroma formation, and their expression except PgGPPS.SSUII was induced upon treatment with MeJA. Functional characterization of recombinant proteins revealed that PgGPPS1, PgGGPPS and PgFPPS were active enzymes producing GPP, GGPP/GPP, and FPP respectively, whereas both PgGPPS.SSUs and PgGPPS2 were inactive. Co-expression of PgGGPPS (that exhibited bifunctional G(G)PPS activity) with PgGPPS.SSUs in bacterial expression system showed lack of interaction between the two proteins, however, PgGGPPS interacted with a phylogenetically distant Antirrhinum majus GPPS.SSU. Further, transient expression of AmGPPS.SSU in P. graveolens leaf led to a significant increase in monoterpene levels. These findings provide insight into the types of IDSs and their role in providing precursors for different terpenoid components of P. graveolens essential oil.


Subject(s)
Pelargonium , Plant Proteins , Terpenes , Terpenes/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pelargonium/metabolism , Pelargonium/genetics , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Gene Expression Regulation, Plant , Phylogeny , Trichomes/metabolism , Oils, Volatile/metabolism
9.
J Cell Mol Med ; 28(8): e18178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553964

ABSTRACT

Bergamot essential oil (BEO) is an extract of the bergamot fruit with significant neuroprotective effect. This study was to investigate the effects and the underlying mechanism of BEO in mitigating depression. GC-MS were used to identify its constituents. Antidepressive properties of BEO were evaluated by sucrose preference test (SPT), force swimming test (FST) and open field test (OFT). Nissl staining was used to determine the number of Nissl bodies in hippocampus (HIPP) of rats. Changes in HIPP dendritic length and dendritic spine density were detected by Golgi-Cox staining. Immunohistochemistry and Western blot were used to detect the postsynaptic density protein-95 (PSD-95) and synaptophysin (SYP) in the HIPP of rats. The enzyme-linked immunosorbent assay was used to determine the 5-hydroxytryptamine (5-HT), insulin-like growth factor 1 (IGF-1) and interleukin-1ß (IL-1ß) in the HIPP, serum and cerebrospinal fluid (CSF) of rats. Inhaled BEO significantly improved depressive behaviour in chronic unpredictable mild stress (CUMS) rats. BEO increased Nissl bodies, dendritic length and spine density, PSD-95 and SYP protein in the HIPP. Additionally, BEO upregulated serum 5-HT, serum and CSF IGF-1, while downregulating serum IL-1ß. Collectively, inhaled BEO mitigates depression by protecting the plasticity of hippocampal neurons, hence, providing novel insights into treatment of depression.


Subject(s)
Depression , Oils, Volatile , Rats , Animals , Depression/drug therapy , Depression/etiology , Depression/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Insulin-Like Growth Factor I/metabolism , Serotonin/metabolism , Hippocampus/metabolism , Disks Large Homolog 4 Protein/metabolism , Neurons/metabolism , Stress, Psychological/complications , Stress, Psychological/drug therapy , Disease Models, Animal , Behavior, Animal
10.
Int J Biol Macromol ; 264(Pt 2): 130763, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467223

ABSTRACT

Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.


Subject(s)
Lindera , Oils, Volatile , Terpenes/metabolism , Fruit , Lindera/genetics , Lindera/metabolism , Oils, Volatile/metabolism , Monoterpenes/metabolism
11.
Science ; 383(6683): 659-666, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38330135

ABSTRACT

Secretory structures in terrestrial plants serve as reservoirs for a variety of secondary metabolites. Among these, the secretory cavity of the Rutaceae family is notable for containing essential oils with a wide range of applications. However, the molecular basis underlying secretory cavity development is unknown. Here, we reveal a molecular framework for Citrus oil gland formation. Using genetic mapping and genome editing, we demonstrated that this process requires LATE MERISTEM IDENTITY1 (LMI1), a key regulator of leaf serration. A conserved GCC box element of the LMI1 promoter recruits DORNROSCHEN-like (DRNL) for transcriptional activation. This DRNL-LMI1 cascade triggers MYC5 activation, facilitating the development of oil glands and the biosynthesis of essential oils. Our findings spotlight cis-regulatory divergence within leaf shape genes, propelling novel functional tissue formation.


Subject(s)
Citrus , Oils, Volatile , Plant Proteins , Transcription Factors , Trichomes , Citrus/genetics , Citrus/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Oils, Volatile/metabolism , Trichomes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Sci Rep ; 14(1): 3554, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347010

ABSTRACT

The study evaluated the effect of adding of nutmeg (Myristica fragrans Houtt.) essential oil (NEO) as a feed additive on methane production, rumen fermentation parameters, rumen enzyme activity, and nutrient digestibility in vitro. This study was divided into three treatments based on the level of NEO addition, which included 0 µL/L (T0), 100 µL/L (T1), and 200 µL/L (T2). The feed substrate composition consisted of king grass as forage and concentrate in a 60:40 ratio. Feed fermentation was conducted using the Menke and Steingass gas production and two-step Tilley and Terry in-vitro digestibility technique. The data obtained from the study were analyzed using one-way ANOVA and if there were differences between means, they were further assessed using DMRT. The results showed that T2 treatment significantly decreased (P < 0.05) ammonia (NH3) levels, total VFA, acetate, propionate, butyrate, and microbial protein (P < 0.05). Methane production and the activity of rumen protease enzyme significantly decreased (P < 0.05) at T1 and T2 treatment. The T2 treatment significantly reduced (P < 0.05) protein digestibility (IVCPD) at 48 h, while IVCPD at 96 h significantly increased (P < 0.05). On the other hand, the addition of nutmeg essential oil did not effect the activity of the amylase, carboxymethyl cellulase, and ß-glucosidase enzymes, as well as the in-vitro digestibility of dry matter (IVDMD), crude fiber (IVCFD), and organic matter (IVOMD). The conclusion drawn from this study is that the optimum level for NEO is 200 µL/L, which can reduce methane production and increase crude protein digestibility at 96 h without any negative effect on rumen fermentation and nutrient digestibility.


Subject(s)
Myristica , Oils, Volatile , Animals , Diet , Myristica/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Digestion , Rumen/metabolism , Fermentation , Nutrients , Methane/metabolism , Animal Feed/analysis
13.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279251

ABSTRACT

Glucose transporter-4 (GLUT4) represents the major glucose transporter isoform responsible for glucose uptake into insulin-sensitive cells, primarily in skeletal muscle and adipose tissues. In insulin-resistant conditions, such as type 2 diabetes mellitus, GLUT4 expression and/or translocation to the cell plasma membrane is reduced, compromising cell energy metabolism. Therefore, the use of synthetic or naturally occurring molecules able to stimulate GLUT4 expression represents a good tool for alternative treatments of insulin resistance. The present study aimed to investigate the effects of essential oils (EOs) derived from Pinus spp. (P. nigra and P. radiata) and of their main terpenoid constituents (α- and ß-pinene) on the expression/translocation of GLUT4 in myoblast C2C12 murine cells. For this purpose, the chemical profiles of the EOs were first analyzed through gas chromatography-mass spectrometry (GC-MS). Cell viability was assessed by MTT assay, and GLUT4 expression/translocation was evaluated through RT-qPCR and flow cytometry analyses. The results showed that only the P. nigra essential oil (PnEO) and α-pinene can increase the transcription of the Glut4/Scl2a4 gene, resulting in a subsequent increase in the amount of GLUT4 produced and its plasma membrane localization. Moreover, the PnEO or α-pinene can induce Glut4 expression both during myogenesis and in myotubes. In summary, the PnEO and α-pinene emulate insulin's effect on the GLUT4 transporter expression and its translocation to the muscle cell surface.


Subject(s)
Bicyclic Monoterpenes , Diabetes Mellitus, Type 2 , Oils, Volatile , Mice , Animals , Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Insulin, Regular, Human/pharmacology , Glucose/metabolism
14.
Poult Sci ; 103(3): 103440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38271757

ABSTRACT

This study aimed to evaluate the beneficial role of chamomile essential oil in improving productive and reproductive performances, egg quality, and blood metabolites and reducing the toxic effect of Ochratoxin A (OTA) in quail breeder's diets. A total of 144 mature quails, 8 wk old, were divided into 6 groups. The treatments were: G1 (the control), G2 (supplemented with OTA 1 mg/kg diet), G3 (supplemented with chamomile oil 0.5 g/kg diet), G4 (supplemented with chamomile oil 1 G/kg diet), G5 (supplemented with OTA 1 mg/kg diet + chamomile oil 0.5 g/kg diet), and G6 (supplemented with OTA 1 mg/kg diet + chamomile oil 1 g/kg diet). The OTA administration alone significantly decreased egg production and mass in quail breeders (P < 0.0001). Moreover, poor feed conversion ratio (FCR), fertility percentage (P < 0.0001), and hatchability percentage (P < 0.0009) were recorded. A significant decline (P < 0.05) in the levels of serum protein (total protein and globulin) was also recorded in OTA-contaminated groups, along with elevated serum levels of liver enzymes such as alanine transaminase (ALT) and Aspartate transaminase (AST) and kidney function test as urea and creatinine levels (P < 0.05). Ochratoxin A-contaminated feed resulted in a significant elevation (P < 0.05) in total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), along with a significant reduction (P < 0.05) in antioxidant status and immunological response. The supplementation of chamomile essential oil, either 0.5 g/kg or 1g/kg, to the basal diet or OTA-supplemented feed, revealed a significant increase in hatchability %, fertility, egg mass, and egg production and better FCR, egg quality, and immunological status when compared to OTA only. Moreover, chamomile essential oil supplementation improves liver and kidney function markers, decreases LDL, VLDL), TG, and TC. Along with a significant increase (P < 0.05) in terms of antioxidant status as glutathione peroxidase enzyme (GPX), total antioxidant capacity (TAC), and superoxide dismutase (SOD) and significantly (P < 0.05) improves immunological response as IgM, IgG, lysozyme and complement 3. In summary, chamomile oil supplementation, either separate or combined with OTA, reduced the adverse effects of OTA and led to improved productive and reproductive performance, egg quality, and blood metabolites in Japanese quail breeders.


Subject(s)
Antioxidants , Ochratoxins , Oils, Volatile , Animals , Antioxidants/metabolism , Quail/metabolism , Chamomile/metabolism , Coturnix/physiology , Chickens/metabolism , Ovum/metabolism , Oils, Volatile/metabolism , Lipoproteins, LDL
15.
Curr Drug Deliv ; 21(5): 744-752, 2024.
Article in English | MEDLINE | ID: mdl-36683374

ABSTRACT

BACKGROUND: The stratum corneum (SC) is the main barrier of the skin, and cosmeceuticals are different from ordinary cosmetics in that they need to deliver active ingredients targeting specific skin problems through the SC into the deeper layers of the skin. Thus, we designed a compound essential oil (CEO) extracted from Salvia miltiorrhiza Bge and Cinnamomum cassia Presl, supplemented with borneol to deliver active ingredients through the SC. METHODS: The CEO was prepared by flash extraction combined with the microwave method. Moreover, the main components of the CEO were determined using gas chromatography-mass spectrometry (GCMS). Visualization techniques, such as scanning electron microscopy (SEM), haematoxylin-eosin (HE) staining, and confocal laser scanning microscopy (CLSM), were used to study the permeationpromoting mechanism of the CEO on the skin. Furthermore, the permeation-promoting effects of the CEO on both hydrophobic and hydrophilic ingredients were tested via in vitro skin penetration experiments and in vivo microdialysis experiments. RESULTS: The results indicated the ability of the CEO to alter the structure of the SC, leading to enhanced transdermal permeation of hydrophobic and hydrophilic ingredients. The 1.5% CEO group demonstrated the best permeation-promoting effect compared to the other CEO groups and blank groups (P<0.05). Furthermore, the CEO displayed an expedited permeability-promoting effect on hydrophobic ingredients compared to hydrophilic ingredients. CONCLUSION: It is concluded that the prepared CEO can promote the transdermal permeation of hydrophobic and hydrophilic ingredients. This study will provide a reference for the application of the prepared CEO in the development of cosmeceuticals with natural efficacy.


Subject(s)
Cosmeceuticals , Oils, Volatile , Skin Absorption , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Administration, Cutaneous , Skin/metabolism
16.
Vet Res Commun ; 48(1): 139-152, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37572186

ABSTRACT

This study explored the effects of the essential oil of Ocimum basilicum (EOOB) and ginger extract (GE) during the transportation of pearl gentian grouper from water quality, serum biochemistry, oxidative stress, meat flavor, and gill tissue morphology. Fish (450 ± 50 g) were allocated to the following 5 treatments: control group (fish transported in water only), 5 mg/LEOOB, 10 mg/LEOOB, 3 mg/LGE, and 6 mg/LGE and transported in insulation boxes (66 × 51 × 37.8 cm) for 72 h. Samples were taken at 0, 12, 36, 60, and 72 h immediately after transport. It was found that 10 mg/LEOOB and 6 mg/LGE could reduce the levels of total ammonia nitrogen (TAN), dissolved oxygen (DO), water pH, serum glucose (GLU), cortisol (COR), liver superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GPX), increase the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as significantly increase the total free amino acid (TFAA) content in muscle compared to the control group (P < 0.05). In addition, by observing the microstructure of gill tissue, it was found that compared with untreated grouper, the morphological damage of gill tissue in EOOB and GE treatment was alleviated. These results indicated that adding appropriate amounts of EOOB and GE to transport water could improve the water quality, relieve stress, and lower energy metabolism of grouper during transport. The results of this research will help to improve the survival rate of grouper after transportation and decrease economic losses to fishery.


Subject(s)
Bass , Ocimum basilicum , Oils, Volatile , Plant Extracts , Zingiber officinale , Animals , Gills/metabolism , Oxidative Stress , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Liver/metabolism
17.
Gene ; 896: 148041, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38036074

ABSTRACT

The newly released interspecific hybrid variety CIM-Shishir, resulting from a cross between Ocimum basilicum and Ocimum kilimandscharicum claims to be a multicut, lodging resistant, cold tolerant, high essential oil yielding with linalool rich variety. It has a purple-green stem and has a unique feature and advantage of better survival in the winter season than other O. basilicum varieties, illustrating its physiological mechanisms for cold tolerance. In this study, we subjected both the CIM-Shishir variety and a control plant to cold stress to investigate the impact of low temperatures on various physiological, trichome developments, secondary metabolite constitution aspects related to essential oil production, and gene expression. The analysis revealed a significantly higher density and altered morphology of trichomes on the leaf surface of the variety subjected to low temperatures, indicating its adaptation to cold conditions. Furthermore, when comparing the treated plants under low-temperature stress, it was observed that the relative electrolyte leakage and Malondialdehyde (MDA) contents substantially increased in the control in contrast to the CIM-Shishir variety. This finding suggests that CIM-Shishir exhibits superior cold tolerance. Additionally, an increase in proline content was noted in the variety exposed to low temperatures compared to the control. Moreover, the chlorophyll and anthocyanin content gradually increased with prolonged exposure to low-temperature stress in the newly developed variety, indicating its ability to maintain photosynthetic capacity and adapt to cold conditions. The activities of superoxide dismutase (SOD) also increased under low-temperature conditions in the CIM-Shishir variety, further highlighting its cold tolerance behaviour. In our research, we investigated the comprehensive molecular mechanisms of cold response in Ocimum. We analyzed the expression of key genes associated with cold tolerance in two plant groups: the newly developed hybrid variety known as CIM-Shishir Ocimum, which exhibits cold tolerance, and the control plants susceptible to cold climates that include WRKY53, ICE1, HOS1, COR47, LOS15, DREB5, CBF4, LTI6, KIN, and ERD2. These genes exhibited significantly higher expression levels in the CIM-Shishir variety compared to the control, shedding light on the genetic basis of its cold tolerance. The need for climate-smart, resilient high-yielding genotype is of high importance due to varied climatic conditions as this will hit the yield drastically and further to the economic sectors including farmers and many industries that are dependent on the bioactive constituents of Ocimum.


Subject(s)
Ocimum basilicum , Ocimum , Oils, Volatile , Resilience, Psychological , Ocimum basilicum/genetics , Ocimum basilicum/metabolism , Temperature , Ocimum/genetics , Ocimum/metabolism , Oils, Volatile/analysis , Oils, Volatile/metabolism , Perception , Cold Temperature
18.
Int J Radiat Biol ; 100(2): 151-160, 2024.
Article in English | MEDLINE | ID: mdl-37755121

ABSTRACT

PURPOSE: The genus Mentha spp. is an aromatic herb from the family 'Lamiaceae'. It is extensively predominant in temperate and sub-temperate regions of the world. The essential oil of this species is enriched with broad aroma constituents extensively utilized in food, beverages, flavor, cosmetics, perfumery, and pharmaceutical enterprises. With the global menthol market size estimated to be worth USD 765 million in 2022, India (accompanied by China and Brazil) is the world's primary manufacturer, consumer, and exporter of Mentha oil. Despite prominent global demand, the crucial bottleneck in mint cultivation is the need for more superior commercial cultivars. Predominant vegetative propagation mode with difficulties in manual emasculation, differential blooming times, sterile/sub-sterile hybrids, and low seed viability are the primary containment in creating genetic variability by classical breeding approaches. Therefore, genetic complications encountered in conventional breeding have led the breeders to apply mutation breeding as an alternative crop improvement approach in Mentha spp. These attempts at mutation breeding have produced some distinctive mutants as genetic pools for plant breeding programs, and some novel mutant mint cultivars have been made available for commercial cultivation. CONCLUSIONS: The prime strategy in mutation-based breeding has proven an adept means of encouraging the expression of recessive genes and producing new genetic variations. The present review comprises a significant contribution of mutation breeding approaches in the development of mutant mint species and its effects on physiological variation, photosynthetic pigment, essential oil content and composition, phytochemical-mediated defense response, pathogen resistivity, and differential expression of genes related to terpenoid biogenesis. Development and diversification have led to the release of varieties, namely Todd's Mitcham, Murray Mitcham, Pranjal, Tushar, and Kukrail in M. piperita L., Mukta, and Pratik in M. cardiaca Baker, Neera in M. spicata L., Kiran in M. citrata Ehrh., and Rose mint in M. arvensis L. that have revolutionized and uplifted mint cultivation leading to economic gain by the farmers and entrepreneurs.


Subject(s)
Mentha , Oils, Volatile , Mentha/genetics , Mentha/metabolism , Menthol/metabolism , Plant Extracts , Oils, Volatile/metabolism , Genotype
19.
BMC Plant Biol ; 23(1): 555, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37946108

ABSTRACT

BACKGROUND: The different wavelengths of solar radiation incident on earth [herein: Photosynthetically Active Radiation (PAR) , Ultra Violet-A (UV-A) and Ultra Violet-B (UV-B)] and their spectral balance not only have an impact on plants' growth, morphology and physiology, but also are important for the quality and quantity of plant secondary metabolites. MATERIAL AND METHODS: In an outdoor study we addressed the effects of PAR intensity and UV-A and UV-B on the growth, yield, phenolic and flavonoid content, antioxidant activity and essential oil composition of Pelargonium graveolens L'Hér. The experiment was performed with split plots in a randomized complete block design with three replications. During the growth, two PAR intensities (ambient PAR and reduced PAR) and four UV treatments (ambient UV, enhanced UV-A, enhanced UV-B and enhanced UVA + B) were applied. RESULTS: High PAR intensity decreased the length and width of leaf, the height of plant and fresh weight of aerial parts, and increased the dry weight of aerial parts. Enhanced UV-B irradiation was associated with reduced plant height, leaf expansion and fresh and dry weight of aerial parts. Interestingly, the negative effect of UV-B radiation on morphology and growth of plant was largely alleviated by high PAR intensity. The amount of total phenols and flavonoids, antioxidant activity and essential oil production of P. graveolens strongly increased with the increase of UV-B irradiation and PAR. On the other hand, UV-A radiation did not significantly influence total phenol and flavonoid content, antioxidant activity and essential oil composition. Moreover, the combination of high PAR intensity and UV-B led to further increases in total flavonoid content and antioxidant capacity. Both high PAR intensity and enhanced UV-B increased the percentage of geraniol in essential oil, leading to a slight reduction of citronellol/geraniol ratio which is a marker of quality for rose geranium essential oil. CONCLUSIONS: Overall, we conclude that UV-B irradiation was associated to reduction of plant growth and yield, while, the adverse effect of UV-B irradiation on the plant was mitigated by high PAR intensity. On the other hand, both high PAR and enhanced UV-B boosted the production of phenols, flavonoids and essential oil. Considering that the lower citronellol/geraniol ratio is the most important indicator for the economic value of rose geranium essential oil, reducing citronellol/geraniol ratio under enhanced UV-B radiation and/or high PAR is likely to be favorable.


Subject(s)
Oils, Volatile , Pelargonium , Antioxidants/metabolism , Oils, Volatile/metabolism , Pelargonium/metabolism , Ultraviolet Rays , Plants/metabolism , Flavonoids/metabolism , Phenols/metabolism , Plant Leaves/metabolism
20.
Sci Rep ; 13(1): 18846, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914748

ABSTRACT

Recently, interest has increased in using bio-additives, herbs, and their extracts as feed additives because of their potential role in improving chick's health and productivity, especially during stress. Thus, our aim in this study is to examine whether nutritional supplementation (probiotics and clove essential oils) will help mitigate the negative effect of heat stress on the bird by modifying the microbial content, boosting immunity, oxidative status, metabolic, and growth. In this study, three hundred one-day-old broiler chicks (Ross 308) were fed the following experimental diet: (CON) basal diet (control diet); (CEO) CON with clove essential oils (300 mg/kg); (PRO) CON with probiotics (2 g/kg); (PC) CON with probiotics and clove essential oils. Our results showed a significant improvement (P < 0.05) in body weight gain, feed conversion ratio, nutrient digestibility, and digestive enzymes activities in broilers fed on PC, CEO, and PRO compared to the control group. Moreover, a significant decrease was recorded in the abdominal fat content and an increase in the relative weight of bursa of Fabricius, and higher antibody levels against Newcastle disease virus, as well as, there was an increase (P < 0.05) in interleukin 10 (IL-10) in all treated groups. Meanwhile, there was a decrease in tumor necrosis factor-α (TNF-α) in all supplemented groups compared with the control group. Serum triglycerides, cholesterol, low-density lipoprotein concentrations, and alanine aminotransferase activities were significantly lower in the treated groups. Superoxide dismutase and glutathione peroxidase levels were elevated (P < 0.05) and the malondialdehyde level value significantly decreased in all supplemented groups. The treated groups enhanced the ileum structure by increasing Lactobacillus, decreasing E. coli, and improving the morphometrically (P < 0.05). This study strongly suggests that clove essential oil and probiotic mixture can be used as a feed supplement to reduce the effects of heat stress by improving the growth performance and enhancing immuno-antioxidant status, ileum morphometric, as well as modifying the microbial community structure of the ileum of broilers.


Subject(s)
Microbiota , Oils, Volatile , Probiotics , Syzygium , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Chickens/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Escherichia coli/metabolism , Dietary Supplements , Probiotics/pharmacology , Diet/veterinary , Ileum/metabolism , Heat-Shock Response , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...