Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
Add more filters










Publication year range
1.
Curr Biol ; 34(9): 1977-1986.e8, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38626764

ABSTRACT

Self-incompatibility (SI) has evolved independently multiple times and prevents self-fertilization in hermaphrodite angiosperms. Several groups of Oleaceae such as jasmines exhibit distylous flowers, with two compatibility groups each associated with a specific floral morph.1 Other Oleaceae species in the olive tribe have two compatibility groups without associated morphological variation.2,3,4,5 The genetic basis of both homomorphic and dimorphic SI systems in Oleaceae is unknown. By comparing genomic sequences of three olive subspecies (Olea europaea) belonging to the two compatibility groups, we first locate the genetic determinants of SI within a 700-kb hemizygous region present only in one compatibility group. We then demonstrate that the homologous hemizygous region also controls distyly in jasmine. Phylogenetic analyses support a common origin of both systems, following a segmental genomic duplication in a common ancestor. Examination of the gene content of the hemizygous region in different jasmine and olive species suggests that the mechanisms determining compatibility groups and floral phenotypes (whether homomorphic or dimorphic) in Oleaceae rely on the presence/absence of two genes involved in gibberellin and brassinosteroid regulation.


Subject(s)
Phylogeny , Self-Incompatibility in Flowering Plants , Self-Incompatibility in Flowering Plants/genetics , Flowers/genetics , Olea/genetics , Olea/physiology , Oleaceae/genetics , Genes, Plant
2.
Sensors (Basel) ; 24(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38676174

ABSTRACT

The present research had two aims. The first was to evaluate the effect of height and exposure on the vegetative response of olive canopies' vertical axis studied through a multispectral sensor and on the qualitative and quantitative product characteristics. The second was to examine the relationship between multispectral data and productive characteristics. Six olive plants were sampled, and their canopy's vertical axis was subdivided into four sectors based on two heights (Top and Low) and two exposures (West and East). A ground-vehicle-mounted multispectral proximal sensor (OptRx from AgLeader®) was used to investigate the different behaviours of the olive canopy vegetation index (VI) responses in each sector. A selective harvest was performed, in which each plant and sector were harvested separately. Product characterisation was conducted to investigate the response of the products (both olives and oils) in each sector. The results of Tukey's test (p > 0.05) showed a significant effect of height for the VI responses, with the Low sector obtaining higher values than the Top sector. The olive product showed some height and exposure effect, particularly for the olives' dimension and resistance to detachment, which was statistically higher in the upper part of the canopies. The regression studies highlighted some relationships between the VIs and product characteristics, particularly for resistance to detachments (R2 = 0.44-0.63), which can affect harvest management. In conclusion, the results showed the complexity of the olive canopies' response to multispectral data collection, highlighting the need to study the vertical axis to assess the variability of the canopy itself. The relationship between multispectral data and product characteristics must be further investigated.


Subject(s)
Olea , Olea/physiology , Agriculture/methods
3.
Photosynth Res ; 159(1): 1-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37923970

ABSTRACT

A complete study of 14 olive cultivars of great economic importance was carried out. These cultivars are Arbequina, Arbosana, Chemlali, Cornicabra, Cornezuelo de Jaén, Empeltre, Frantoio, Hojiblanca, Koroneiki, Manzanilla de Sevilla, Martina, Picual, Sikitita1 and Sikitita 2. All of them are certified by the World Olive Germplasm Bank of Córdoba (Spain). They are predominant cultivars in the olive groves of different locations throughout the Mediterranean basin, and they were subjected to total water deficit for a minimum of 14 days and a maximum of 42 days in the present study. Data such as chlorophyll content, soil moisture and specific leaf area were gathered. Photosynthetic parameters measured at the respective saturation irradiance of each cultivar were also analysed: assimilation rate, transpiration, stomatal conductance, photosynthetic efficiency, photochemical and non-photochemical quenching, photonic flux density, electron transference ratio, efficient use of water and amount of proline and malondialdehyde as indicators of oxidative stress. In addition to the control, two different experimental conditions were analysed: moderate drought, after 14 days of lack of irrigation, and severe drought, after 28-42 days of total absence of irrigation, depending on the tolerance of each cultivar. Based on the results, the cultivars were characterised and divided into four groups according to their drought tolerance: tolerant, moderately tolerant, moderately sensitive and sensitive to drought. This work represents the first contribution of drought tolerance of a considerable number of olive cultivars, with all of them being subjected to the same criteria and experimental conditions for their classification.


Subject(s)
Olea , Olea/physiology , Drought Resistance , Photosynthesis , Chlorophyll , Water , Plant Leaves/physiology , Droughts
4.
Tree Physiol ; 43(2): 277-287, 2023 02 04.
Article in English | MEDLINE | ID: mdl-36263987

ABSTRACT

The presence of fruits provokes significant modifications in plant water relations and leaf gas exchange. The underlying processes driving these modifications are still uncertain and likely depend on the water deficit level. Our objective was to explain and track the modification of leaf-water relations by the presence of fruits and water deficit. With this aim, net photosynthesis rate (AN), stomatal conductance (gs), leaf osmotic potential (Ψπ), leaf soluble sugars and daily changes in a variable related to leaf turgor (leaf patch pressure) were measured in olive trees with and without fruits at the same time, under well-watered (WW) and water stress (WS) conditions. Leaf gas exchange was increased by the presence of fruits, this effect being observed mainly in WW trees, likely because under severe water stress, the dominant process is the response of the plant to the water stress and the presence of fruits has less impact on the leaf gas exchange. Ψπ was also higher for WW trees with fruits than for WW trees without fruits. Moreover, leaves from trees without fruits presented higher concentrations of soluble sugars and starch than leaves from trees with fruits for both WW and WS, these differences matching those found in Ψπ. Thus, the sugar accumulation would have had a dual effect because on one hand, it decreased Ψπ, and on the other hand, it would have downregulated AN, and finally gs in WW trees. Interestingly, the modification of Ψπ by the presence of fruits affected turgor in WW trees, the change in which can be identified with leaf turgor sensors. We conclude that plant water relationships and leaf gas exchange are modified by the presence of fruits through their effect on the export of sugars from leaves to fruits. The possibility of automatically identifying the onset of sugar demand by the fruit through the use of sensors, in addition to the water stress produced by soil water deficit and atmosphere drought, could be of great help for fruit orchard management in the future.


Subject(s)
Fruit , Olea , Olea/physiology , Dehydration , Plant Leaves/physiology , Photosynthesis/physiology , Carbohydrates , Droughts , Sugars , Trees/physiology
5.
PLoS One ; 16(9): e0256843, 2021.
Article in English | MEDLINE | ID: mdl-34591856

ABSTRACT

Understanding the responses of different ontogenetic stages to environmental and human disturbance factors is essential for developing efficient conservation strategies for endangered plant species. We examined how three ontogenetic stages of a locally endangered tree species, Olea europaea subsp. cuspidata, responded to environmental factors and human disturbance in Hugumburda dry Afromontane forest in Ethiopia. We counted individual seedlings, saplings and adults of O. europaea in 70 20 × 20 m quadrats over ca. 2.8 ha, and measured biotic (woody species richness, canopy cover, aboveground tree biomass, herbaceous cover), abiotic (soil and topographic variables), and human disturbance factors (logging and tracks). To detect ontogenetic niche shifts, we compared observed vs. simulated locations of trees in the three life stages and how they related to the environmental and human disturbance factors. We found that the population structure of O. europaea showed generally low recruitment, with few seedlings per hectare compared with the abundance of saplings and adults. The probability of finding O. europaea individuals was influenced by biotic (woody species richness) and abiotic (soil depth, slope) environmental conditions and human disturbance (logging intensity), but the direction, strength and shape of the relationships differed between seedling, sapling and adult life stages, indicating ontogenetic niche shifts. All life stages showed a positive relationship with elevation. The observed environmental niches of the different lifestages of O. europaea, and their association with human disturbance levels, should be considered when conservation strategies are developed for this species. Human disturbance in terms of logging decreases the abundance of saplings, but may facilitate emerging seedlings through creation of gaps with improved light conditions. Recruitment is, however, very low in the study area, and seedlings should be protected from browsing to enhance survival. Woody species richness in general should be conserved to optimize conditions also for O. europaea saplings.


Subject(s)
Conservation of Natural Resources/methods , Endangered Species/trends , Forestry/ethics , Olea/physiology , Seedlings/physiology , Ecosystem , Ethiopia , Forestry/methods , Forests , Humans , Soil/chemistry , Wood/analysis
6.
Plant J ; 107(6): 1788-1801, 2021 09.
Article in English | MEDLINE | ID: mdl-34250661

ABSTRACT

Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.


Subject(s)
Fruit/growth & development , Olea/physiology , Photosynthesis , Plant Leaves/physiology , Carbon/metabolism , Dehydration , Fruit/cytology , Olea/cytology , Plant Cells , Spain , Water/metabolism
7.
Sci Rep ; 10(1): 15105, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934262

ABSTRACT

In this work, several attributes of the internal morphology of drupaceous fruits found in the archaeological site Monte Castelo (Rondonia, Brazil) are analyzed by means of two different imaging methods. The aim is to explore similarities and differences in the visualization and analytical properties of the images obtained via High Resolution Light Microscopy and X-ray micro-computed tomography (X-ray MicroCT) methods. Both provide data about the three-layered pericarp (exo-, meso- and endocarp) of the studied exemplars, defined by cell differentiation, vascularisation, cellular contents, presence of sclerenchyma cells and secretory cavities. However, it is possible to identify a series of differences between the information that can be obtained through each of the methods. These variations are related to the definition of contours and fine details of some characteristics, their spatial distribution, size attributes, optical properties and material preservation. The results obtained from both imaging methods are complementary, contributing to a more exhaustive morphological study of the plant remains. X-ray MicroCT in phase-contrast mode represents a suitable non-destructive analytic technique when sample preservation is required.


Subject(s)
Fruit/physiology , Imaging, Three-Dimensional/methods , Olea/physiology , X-Ray Microtomography/methods , Brazil , Fruit/anatomy & histology , Microscopy, Phase-Contrast , Olea/anatomy & histology
8.
Int J Mol Sci ; 21(11)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545387

ABSTRACT

Cellular aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life, playing important roles in the uptake of water and many solutes across the membranes. In olive trees, AQP diversity, protein features and their biological functions are still largely unknown. This study focuses on the structure and functional and evolution diversity of AQP subfamilies in two olive trees, the wild species Olea europaea var. sylvestris (OeuAQPs) and the domesticated species Olea europaea cv. Picual (OleurAQPs), and describes their involvement in different physiological processes of early plantlet development and in biotic and abiotic stress tolerance in the domesticated species. A scan of genomes from the wild and domesticated olive species revealed the presence of 52 and 79 genes encoding full-length AQP sequences, respectively. Cross-genera phylogenetic analysis with orthologous clustered OleaAQPs into five established subfamilies: PIP, TIP, NIP, SIP, and XIP. Subsequently, gene structures, protein motifs, substrate specificities and cellular localizations of the full length OleaAQPs were predicted. Functional prediction based on the NPA motif, ar/R selectivity filter, Froger's and specificity-determining positions suggested differences in substrate specificities of Olea AQPs. Expression analysis of the OleurAQP genes indicates that some genes are tissue-specific, whereas few others show differential expressions at different developmental stages and in response to various biotic and abiotic stresses. The current study presents the first detailed genome-wide analysis of the AQP gene family in olive trees and it provides valuable information for further functional analysis to infer the role of AQP in the adaptation of olive trees in diverse environmental conditions in order to help the genetic improvement of domesticated olive trees.


Subject(s)
Aquaporins/chemistry , Aquaporins/genetics , Olea/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Amino Acid Motifs , Aquaporins/metabolism , Ascomycota/physiology , Domestication , Gene Expression Regulation, Plant , Genetic Variation , Genome-Wide Association Study , Multigene Family , Olea/microbiology , Olea/physiology , Phylogeny , Plant Proteins/metabolism , Seedlings/genetics , Seedlings/growth & development , Stress, Physiological , Trees/genetics
9.
Sensors (Basel) ; 20(12)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580426

ABSTRACT

The Biot-Granier (Gbt) is a new thermal dissipation-based sap flow measurement methodology, comprising sensors, data management and automatic data processing. It relies on the conventional Granier (Gcv) methodology upgraded with a modified Granier sensor set, as well as on an algorithm to measure the absolute temperatures in the two observation points and perform the Biot number approach. The work described herein addresses the construction details of the Gbt sensors and the characterization of the overall performance of the Gbt method after comparison with a commercial sap flow sensor and independent data (i.e., volumetric water content, vapor pressure deficit and eddy covariance technique). Its performance was evaluated in three trials: potted olive trees in a greenhouse and two vineyards. The trial with olive trees in a greenhouse showed that the transpiration measures provided by the Gbt sensors showed better agreement with the gravimetric approach, compared to those provided by the Gcv sensors. These tended to overestimate sap flow rates as much as 4 times, while Gbt sensors overestimated gravimetric values 1.5 times. The adjustments based on the Biot equations obtained with Gbt sensors contribute to reduce the overestimates yielded by the conventional approach. On the other hand, the heating capacity of the Gbt sensor provided a minimum of around 7 °C and maximum about 9 °C, contrasting with a minimum around 6 °C and a maximum of 12 °C given by the Gcv sensors. The positioning of the temperature sensor on the tip of the sap flow needle proposed in the Gbt sensors, closer to the sap measurement spot, allow to capture sap induced temperature variations more accurately. This explains the higher resolution and sensitivity of the Gbt sensor. Overall, the alternative Biot approach showed a significant improvement in sap flow estimations, contributing to adjust the Granier sap flow index, a vulnerability of that methodology.


Subject(s)
Olea/physiology , Plant Transpiration , Trees/physiology , Temperature , Vapor Pressure , Water
10.
Microbiome ; 8(1): 11, 2020 02 01.
Article in English | MEDLINE | ID: mdl-32007096

ABSTRACT

BACKGROUND: Verticillium wilt of olive (VWO) is caused by the soilborne fungal pathogen Verticillium dahliae. One of the best VWO management measures is the use of tolerant/resistant olive cultivars. Knowledge on the olive-associated microbiome and its potential relationship with tolerance to biotic constraints is almost null. The aims of this work are (1) to describe the structure, functionality, and co-occurrence interactions of the belowground (root endosphere and rhizosphere) microbial communities of two olive cultivars qualified as tolerant (Frantoio) and susceptible (Picual) to VWO, and (2) to assess whether these communities contribute to their differential disease susceptibility level. RESULTS: Minor differences in alpha and beta diversities of root-associated microbiota were detected between olive cultivars regardless of whether they were inoculated or not with the defoliating pathotype of V. dahliae. Nevertheless, significant differences were found in taxonomic composition of non-inoculated plants' communities, "Frantoio" showing a higher abundance of beneficial genera in contrast to "Picual" that exhibited major abundance of potential deleterious genera. Upon inoculation with V. dahliae, significant changes at taxonomic level were found mostly in Picual plants. Relevant topological alterations were observed in microbial communities' co-occurrence interactions after inoculation, both at structural and functional level, and in the positive/negative edges ratio. In the root endosphere, Frantoio communities switched to highly connected and low modularized networks, while Picual communities showed a sharply different behavior. In the rhizosphere, V. dahliae only irrupted in the microbial networks of Picual plants. CONCLUSIONS: The belowground microbial communities of the two olive cultivars are very similar and pathogen introduction did not provoke significant alterations in their structure and functionality. However, notable differences were found in their networks in response to the inoculation. This phenomenon was more evident in the root endosphere communities. Thus, a correlation between modifications in the microbial networks of this microhabitat and susceptibility/tolerance to a soilborne pathogen was found. Moreover, V. dahliae irruption in the Picual microbial networks suggests a stronger impact on the belowground microbial communities of this cultivar upon inoculation. Our results suggest that changes in the co-occurrence interactions may explain, at least partially, the differential VWO susceptibility of the tested olive cultivars. Video abstract.


Subject(s)
Microbial Consortia , Olea/microbiology , Plant Diseases/microbiology , Plant Roots/microbiology , Verticillium/pathogenicity , Olea/classification , Olea/physiology , Rhizosphere
11.
Nat Prod Res ; 34(1): 183-186, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31104509

ABSTRACT

The effectiveness of dairy treated wastewater (TWW) was evaluated, in comparison with tap water (TW), on a Tunisian olive orchard (Olea europea, cv Chemlali), irrigated manually (MI) and by surface dripping (SDI). To this purpose, tree growth, biomass and fruiting were monthly tested for a one-year period. Similar trunk diameters, nodes/tree, root lengths were obtained, independently of source and system of irrigation. Also, comparable tree length and leaf area, shoots/tree and biomass, were observed between TWW and TW plants. However, such parameters improved under SDI rather than MI. Fruiting occurred only in TWW and TW trees treated by MI. Concerning growth, biomass and fruiting, TWW represented a valid alternative source for the irrigation of olive orchard, especially in Tunisia, already facing the freshwater scarcity. Monitoring of soil, TWW, fruits and oil will be required to validate the use of such effluent for olive orchard irrigation.


Subject(s)
Agricultural Irrigation/methods , Olea/growth & development , Wastewater , Water/pharmacology , Biomass , Fruit/drug effects , Fruit/physiology , Olea/physiology , Trees , Tunisia , Water/analysis
12.
New Phytol ; 225(1): 126-134, 2020 01.
Article in English | MEDLINE | ID: mdl-31498457

ABSTRACT

Efficient water transport from soil to leaves sustains stomatal opening and steady-state photosynthesis. The aboveground portion of this pathway is well-described, yet the roots and their connection with the soil are still poorly understood due to technical limitations. Here we used a novel rehydration technique to investigate changes in the hydraulic pathway between roots and soil and within the plant body as individual olive plants were subjected to a range of water stresses. Whole root hydraulic resistance (including the radial pathway from xylem to the soil-root interface) constituted 81% of the whole-plant resistance in unstressed plants, increasing to > 95% under a moderate level of water stress. The decline in this whole root hydraulic conductance occurred in parallel with stomatal closure and contributed significantly to the reduction in canopy conductance according to a hydraulic model. Our results demonstrate that losses in root hydraulic conductance, mainly due to a disconnection from the soil during moderate water stress in olive plants, are profound and sufficient to induce stomatal closure before cavitation occurs. Future studies will determine whether this core regulatory role of root hydraulics exists more generally among diverse plant species.


Subject(s)
Olea/physiology , Plant Roots/physiology , Plant Stomata/physiology , Plant Transpiration , Water/metabolism , Biological Transport , Dehydration , Photosynthesis , Plant Leaves/physiology , Soil/chemistry , Xylem/physiology
13.
Sci Rep ; 9(1): 16968, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31740728

ABSTRACT

Olive is a long-living perennial species with a wide geographical distribution, showing a large genetic and phenotypic variation in its growing area. There is an urgent need to uncover how olive phenotypic traits and plasticity can change regardless of the genetic background. A two-year study was conducted, based on the analysis of fruit and oil traits of 113 cultivars from five germplasm collections established in Mediterranean Basin countries and Argentina. Fruit and oil traits plasticity, broad-sense heritability and genotype by environment interaction were estimated. From variance and heritability analyses, it was shown that fruit fresh weight was mainly under genetic control, whereas oleic/(palmitic + linoleic) acids ratio was regulated by the environment and genotype by environment interaction had the major effect on oil content. Among the studied cultivars, different level of stability was observed, which allowed ranking the cultivars based on their plasticity for oil traits. High thermal amplitude, the difference of low and high year values of temperature, negatively affected the oil content and the oleic acid percentage. Information derived from this work will help to direct the selection of cultivars with the highest global fitness averaged over the environments rather than the highest fitness in each environment separately.


Subject(s)
Olea/physiology , Olive Oil/chemistry , Argentina , Fatty Acids/analysis , Fruit/chemistry , Fruit/physiology , Genotype , Linoleic Acids/analysis , Mediterranean Region , Multifactorial Inheritance , Olea/chemistry , Olea/genetics , Olive Oil/analysis , Palmitic Acid/analysis , Temperature
14.
PLoS One ; 14(7): e0219908, 2019.
Article in English | MEDLINE | ID: mdl-31314789

ABSTRACT

Climate-related studies have generally focussed upon physiologically well-defined 'mechanistic' traits rather than 'functional' ones relating indirectly to resource capture. Nevertheless, field responses to climate are likely to typically include both 'mechanistic' specialization to climatic extremes and 'functional' strategies that optimize resource acquisition during less climatically-severe periods. Here, this hypothesis was tested. Seventeen traits (six 'functional', six 'mechanistic' and five 'intermediate') were measured from 19 populations of oleaster (wild olive) along a climatic gradient in Morocco. Principal components analysis of the trait dataset identified size and the 'worldwide leaf economics spectrum' as PCA axes 1 and 2. However, contrary to our prediction, these axes, and commonly-measured 'functional' traits, were little correlated with climate. Instead, PCA 3, perhaps relating to water-use and succulence, together stomatal density, specific leaf water content and leaf shape, patterned with altitude, aridity, rainfall and temperature. We concluded that, at least for slow-growing species, such as oleaster, 'mechanistic' traits are key to identifying mechanisms of climatic restriction. Meaningful collaboration between 'mechanistic' and 'functional' disciplines provides the best way of improving our understanding of the global impacts of climate change on species distribution and performance.


Subject(s)
Climate , Ecology , Olea/physiology , Plant Leaves/physiology , Plant Physiological Phenomena , Quantitative Trait, Heritable , Altitude , Geography, Medical , Temperature
15.
Plant Physiol Biochem ; 141: 407-414, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31228797

ABSTRACT

Polyphenols are constituents of all higher plants. However, their biosynthesis is often induced when plants are exposed to abiotic stresses, such as drought. The aim of the present work was to determine the phenolic status in the roots of olive trees grown under water deficit conditions. The results revealed that roots of water-stressed plants had a higher content of total phenols. The main compound detected in well-watered olive tree roots was verbascoside. Oleuropein was established as the predominant phenolic compound of water-stressed plants. The oleuropein/verbascoside ratio varied between 0.31 and 6.02 in well-watered and water-stressed plants respectively, which could be a useful indicator of drought tolerance in olive trees. Furthermore, this study is the first to provide experimental evidence showing that luteolin-7-rutinoside, luteolin-7-glucoside and apigenin-7-glucoside were the dominant flavonoid glucosides in olive tree roots and showed the most significant variations under water stress.


Subject(s)
Droughts , Iridoids/chemistry , Olea/physiology , Plant Roots/physiology , Antioxidants/chemistry , Apigenin/chemistry , Flavonoids/chemistry , Glucosides/chemistry , Iridoid Glucosides , Phenol/chemistry , Phenols/chemistry , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry , Plant Extracts/chemistry , Plant Leaves/physiology , Polyphenols/chemistry , Spectrophotometry, Ultraviolet , Stress, Physiological , Water
16.
Plant Physiol Biochem ; 139: 521-527, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31015091

ABSTRACT

Olive trees are known for their capacity to adapt to drought through several phenotypic and molecular variations, although this can vary according to the different provenances of the same olive cultivar. We confronted the same olive cultivar from two different location in Spain: Freila, in the Granada province, with low annual precipitation, and Grazalema, in the Cadiz province, with high annual precipitation, and subjected them to five weeks of severe drought stress. We found distinctive physiological and developmental adaptations among the two provenances. Thus, trees from Freila subjected to drought stress exhibited increasing root dry weights and decreasing leaf numbers and relative stem heights. On the other hand, the treatment with drought in Grazalema trees reduced their leaf chlorophyll contents, but increased their relative stem diameter and their root hydraulic conductivity. The physiological responses of Freila tree roots to drought were linked to different molecular adaptations that involved the regulation of genes related to transcription factors induced by ABA, auxin and ethylene signaling, as well as, the action of a predicted membrane intrinsic protein (MIP). On the other hand, the responses of Grazalema trees were related with different root genes related to oxidation-reduction, ATP synthesis, transduction and posttranslational regulation, with a special mention to the cytokinins signaling through the transcript predicted as a histidine-containing phosphotransfer protein. Our results show that olive trees adapted to dry environments will adjust their growth and water uptake capacity through transcription factors regulation, and this will influence the different physiological responses to drought stress.


Subject(s)
Olea/metabolism , Olea/physiology , Plant Leaves/metabolism , Plant Leaves/physiology , Droughts , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Water/metabolism
17.
Planta ; 249(5): 1583-1598, 2019 May.
Article in English | MEDLINE | ID: mdl-30771046

ABSTRACT

MAIN CONCLUSION: A water-deficit period, leading to stomatal control and overexpression of protective proteins (sHSP and DHN), contributes to olive´s tolerance to later imposed stress episodes. Aquaporins modulation is important in olive recovery. Olive is traditionally cultivated in dry farming or in high water demanding irrigated orchards. The impact of climate change on these orchards remains to unveil, as heat and drought episodes are increasing in the Mediterranean region. To understand how young plants face such stress episodes, olive plants growing in pots were exposed to well-irrigated and non-irrigated treatments. Subsequently, plants from each treatment were either exposed to 40 °C for 2 h or remained under control temperature. After treatments, all plants were allowed to grow under well-irrigated conditions (recovery). Leaves were compared for photosynthesis, relative water content, mineral status, pigments, carbohydrates, cell membrane permeability, lipid peroxidation and expression of the protective proteins' dehydrin (OeDHN1), heat-shock proteins (OeHSP18.3), and aquaporins (OePIP1.1 and OePIP2.1). Non-irrigation, whilst increasing carbohydrates, reduced some photosynthetic parameters to values below the ones of the well-irrigated plants. However, when both groups of plants were exposed to heat, well-irrigated plants suffered more drastic decreases of net CO2 assimilation rate and chlorophyll b than non-irrigated plants. Overall, OeDHN1 and OeHSP18.3 expression, which was increased in non-irrigated treatment, was potentiated by heat, possibly to counteract the increase of lipid peroxidation and loss of membrane integrity. Plants recovered similarly from both irrigation and temperature treatments, and recovery was associated with increased aquaporin expression in plants exposed to one type of stress (drought or heat). These data represent an important contribution for further understanding how dry-farming olive will cope with drought and heat episodes.


Subject(s)
Olea/metabolism , Olea/physiology , Photosynthesis/physiology , Agricultural Irrigation , Aquaporins/metabolism , Climate Change , Droughts , Heat-Shock Proteins/metabolism , Heat-Shock Response , Plant Proteins/metabolism
18.
J Plant Physiol ; 231: 210-218, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30286324

ABSTRACT

Olive is one of the most important fruit crop trees in the history of Mediterranean because of the high quality oil. Olive oil has a well-balanced fatty acid composition along with biophenols, which make it exceptional in human diet and provide an exceptional value to the olive oil. Leaf non-glandular peltate trichomes are specialized cell types representing a protective barrier against acute environmental conditions. To characterize the proteome of this highly differentiated cell type, we performed a comparative proteomic analysis among isolated trichomes and trichome-less leaves. Proteins were separated and identified using the 2-DE MALDI-TOF/MS method. A number of enzymes involved in abiotic and biotic stress responses are present and may be responsible for the adaptation to prolonged adverse environmental conditions. The results show that this highly differentiated cell type is physiologically active fulfilling the demands of the trichomes in furnishing the leaf with a highly protective mechanism.


Subject(s)
Olea/metabolism , Plant Proteins/metabolism , Proteome , Trichomes/metabolism , Isoelectric Focusing , Microscopy, Fluorescence , Olea/physiology , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Proteins/analysis , Plant Proteins/physiology , Stress, Physiological , Trichomes/chemistry , Trichomes/cytology , Trichomes/physiology
19.
Sci Rep ; 8(1): 11841, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30093696

ABSTRACT

Charred olive wood is abundant in the archaeological record, especially around the Mediterranean. As the outermost ring closest to the bark is assumed to represent the latest time that the tree was alive, the radiocarbon date obtained from the outermost rings of an olive branch buried during the Santorini volcanic eruption is regarded as crucial evidence for the date of this cataclysmic event. The date of this eruption has far reaching consequences in the archaeology of the Aegean, Egypt and the Levant, and the understanding of their interconnections. We analyzed the radiocarbon concentrations in cross-sections from a modern olive tree trunk as well as from a living branch, and obtained near-annual resolution dates using the radiocarbon "bomb peak". In both cases we show that radiocarbon dates of the last formed wood along the circumference are not chronologically homogenous, and can differ by up to a few decades. Thus the outermost wood layer does not necessarily represent the date of the last year of growth. These findings challenge the interpretation of the results obtained from dating the olive branch from the Santorini volcanic eruption, as it could predate the eruption by a few decades. In addition, our results are also significant for any future studies based on archaeologically preserved olive wood.


Subject(s)
Archaeology , Carbon Radioisotopes/analysis , Olea/physiology , Radiometric Dating/methods , Volcanic Eruptions/history , Wood/chemistry , History, Ancient , Humans , Israel , Mediterranean Region , Radiometric Dating/history
20.
J Plant Physiol ; 230: 21-32, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30142470

ABSTRACT

The predicted accentuation of drought events highlights the importance of optimize plants capacity to tolerate drought, but also the capacity to recovery from it, especially in species, as olive tree (Olea europaea L.), that grows in particularly susceptible regions. Three different concentrations (10, 100 and 1000 µM) of salicylic acid (SA), a stress signaling phytohormone, was sprayed on 3-year-old potted olive trees subjected to three successive drought and rewatering events. Trees responses to SA application are concentration dependent, being 100 µM the most effective concentration to improve drought tolerance and recovery capacity. During drought events, this effectiveness was achieved by osmolytes accumulation, leaf water status maintenance, reduced photosynthetic systems drought-associated damages, and by optimizing shoot/root ratio. The better plant fitness during drought allowed a fast recovery of the physiological functions upon rewatering and reduced the necessity to invest in extra repair damages, allowing the regrowth. The intense abscisic acid (ABA) signal close to upper epidermis in stressed controls suggests a "memory" of the worst water status displayed by those plants. SA attenuated the limitation of total biomass accumulation imposed by drought, mainly in root system, increased water use efficiency and lead to a higher intense signal of indoleacetic acid (IAA) in leaves during recovery period. In summary, in a suitable concentration, SA demonstrate to be a promising tool to increase drought adaptability of olive trees.


Subject(s)
Olea/growth & development , Plant Growth Regulators/pharmacology , Salicylic Acid/pharmacology , Dehydration , Dose-Response Relationship, Drug , Olea/drug effects , Olea/physiology , Plant Leaves/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...