Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 589, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902627

ABSTRACT

BACKGROUND: The plant-specific YABBY transcription factor family plays important roles in plant growth and development, particularly leaf growth, floral organ formation, and secondary metabolite synthesis. RESULTS: Here, we identified a total of 13 OfYABBY genes from the Osmanthus fragrans genome. These 13 OfYABBY genes were divided into five subfamilies through phylogenetic analysis, and genes in the same subfamily showed similar gene structures and conserved protein motifs. Gene duplication promoted the expansion of the OfYABBY family in O. fragrans. Tissue-specific expression analysis showed that the OfYABBY family was mainly expressed in O. fragrans leaves and floral organs. To better understand the role of OfYABBY genes in plant growth and development, OfYABBY12 was selected for heterologous stable overexpression in tobacco, and OfYABBY12-overexpressing tobacco leaves released significantly fewer volatile organic compounds than wild-type tobacco leaves. Overexpression of OfYABBY12 led to the downregulation of NtCCD1/4 and decreased ß-ionone biosynthesis. Correspondingly, a dual-luciferase assay showed that OfYABBY12 negatively regulated the expression of OfCCD4, which promotes ß-ionone synthesis. Furthermore, tobacco leaves overexpressing OfYABBY12 were curled and wrinkled and had significantly reduced leaf thickness and leaf inclusions and significantly extended flower pistils (styles). CONCLUSION: Overall, the results suggest that the OfYABBY gene family may influence the biosynthesis of the floral scent (especially ß-ionone) in O. fragrans and may regulate leaf morphogenesis and lateral organs.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Oleaceae , Plant Leaves , Plant Proteins , Transcription Factors , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/anatomy & histology , Oleaceae/genetics , Oleaceae/growth & development , Oleaceae/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/anatomy & histology , Flowers/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Odorants , Volatile Organic Compounds/metabolism
2.
Plant J ; 119(2): 927-941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38872484

ABSTRACT

Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.


Subject(s)
Catechol Oxidase , Glucosides , Phenols , Plant Proteins , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Glucosides/metabolism , Glucosides/biosynthesis , Phenols/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Biosynthetic Pathways , Oleaceae/enzymology , Oleaceae/genetics , Oleaceae/metabolism , Catechols/metabolism , Gene Expression Regulation, Plant , Polyphenols
3.
Curr Biol ; 34(9): 1967-1976.e6, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38626763

ABSTRACT

In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.


Subject(s)
Gibberellins , Gibberellins/metabolism , Oleaceae/genetics , Oleaceae/metabolism , Oleaceae/growth & development , Self-Incompatibility in Flowering Plants/genetics , Genome, Plant , Flowers/genetics , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
4.
BMC Genomics ; 23(1): 418, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35659179

ABSTRACT

BACKGROUND: Temperature is involved in the regulation of carotenoid accumulation in many plants. The floral color of sweet osmanthus (Osmanthus fragrans Lour.) which is mainly contributed by carotenoid content, is affected by temperature in autumn. However, the mechanism remains unknown. Here, to reveal how temperature regulates the floral color of sweet osmanthus, potted sweet osmanthus 'Jinqiu Gui' were treated by different temperatures (15 °C, 19 °C or 32 °C). The floral color, carotenoid content, and the expression level of carotenoid-related genes in petals of sweet osmanthus 'Jinqiu Gui' under different temperature treatments were investigated. RESULTS: Compared to the control (19 °C), high temperature (32 °C) changed the floral color from yellow to yellowish-white with higher lightness (L*) value and lower redness (a*) value, while low temperature (15 °C) turned the floral color from yellow to pale orange with decreased L* value and increased a* value. Total carotenoid content and the content of individual carotenoids (α-carotene, ß-carotene, α-cryptoxanthin, ß-cryptoxanthin, lutein and zeaxanthin) were inhibited by high temperature, but were enhanced by low temperature. Lower carotenoid accumulation under high temperature was probably attributed to transcriptional down-regulation of the biosynthesis gene OfPSY1, OfZ-ISO1 and OfLCYB1, and up-regulation of degradation genes OfNCED3, OfCCD1-1, OfCCD1-2, and OfCCD4-1. Up-regulation of OfLCYB1, and down-regulation of OfNCED3 and OfCCD4-1 were predicted to be involved in low-temperature-regulated carotenoid accumulation. Luciferase assays showed that the promoter activity of OfLCYB1 was activated by low temperature, and repressed by high temperature. However, the promoter activity of OfCCD4-1 was repressed by low temperature, and activated by high temperature. CONCLUSIONS: Our study revealed that high temperature suppressed the floral coloration by repressing the expression of carotenoid biosynthesis genes, and activating the expression of carotenoid degradation genes. However, the relative low temperature had opposite effects on floral coloration and carotenoid biosynthesis in sweet osmanthus. These results will help reveal the regulatory mechanism of temperature on carotenoid accumulation in the petals of sweet osmanthus.


Subject(s)
Citrus sinensis , Oleaceae , Carotenoids/metabolism , Citrus sinensis/metabolism , Gene Expression Regulation, Plant , Oleaceae/genetics , Oleaceae/metabolism , Temperature
5.
Genes (Basel) ; 12(11)2021 10 30.
Article in English | MEDLINE | ID: mdl-34828354

ABSTRACT

GLOBOSA (GLO), a B-class MADS-box gene, is involved in floral organ determination but has rarely been studied in Osmanthus fragrans, which is a very popular ornamental tree species in China. Here, the full-length cDNA of a homologous GLO1 gene (named OfGLO1) was cloned from a flower bud of O. fragrans using the RACE technique. The OfGLO1 has a 645 bp open reading frame, encoding 214 amino acids. Similar to other PI/GLO proteins, OfGLO1 has two conserved domains, MADS MEF2-like and K-box, and a 16-amino-acid PI motif in the C terminal region. Our phylogeny analysis classified OfGLO1 as a PI-type member of the B-class MADS-box gene family. The qRT-PCR assay showed that the expression of OfGLO1 in O. fragrans was continuously upregulated from the tight bud stage to the full flowering stage but barely expressed in the pistils, sepals, and non-floral organs, such as root, leaf, and stem. The genetic effect of OfGLO1 was assayed by ectopic expression in tobacco plants. Compared with the wild-type, OfGLO1 transformants showed reduced plant size, earlier flowering, shorter stamens, and lower seed setting rates. Furthermore, some stamens were changed into petal-like structures. These findings indicate that OfGLO1 plays an important role in the regulation of flower development. This study improved our understanding of class B gene function in woody plants.


Subject(s)
Cloning, Molecular/methods , Homeodomain Proteins/genetics , MADS Domain Proteins/genetics , Nicotiana/genetics , Oleaceae/genetics , Plant Proteins/genetics , China , Gene Expression Regulation, Plant , Homeodomain Proteins/metabolism , Oleaceae/metabolism , Open Reading Frames , Phylogeny , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/metabolism , Plants, Genetically Modified/growth & development , Nicotiana/growth & development
6.
BMC Plant Biol ; 21(1): 468, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34645403

ABSTRACT

BACKGROUND: The fragrant flower plant Osmanthus fragrans has an extremely rare androdioecious breeding system displaying the occurrence of males and hermaphrodites in a single population, which occupies a crucial intermediate stage in the evolutionary transition between hermaphroditism and dioecy. However, the molecular mechanism of androdioecy plant is very limited and still largely unknown. RESULTS: Here, we used SWATH-MS-based quantitative approach to study the proteome changes between male and hermaphroditic O. fragrans pistils. A total of 428 proteins of diverse functions were determined to show significant abundance changes including 210 up-regulated and 218 down-regulated proteins in male compared to hermaphroditic pistils. Functional categorization revealed that the differentially expressed proteins (DEPs) primarily distributed in the carbohydrate metabolism, secondary metabolism as well as signaling cascades. Further experimental analysis showed the substantial carbohydrates accumulation associated with promoted net photosynthetic rate and water use efficiency were observed in purplish red pedicel of hermaphroditic flower compared with green pedicel of male flower, implicating glucose metabolism serves as nutritional modulator for the differentiation of male and hermaphroditic flower. Meanwhile, the entire upregulation of secondary metabolism including flavonoids, isoprenoids and lignins seem to protect and maintain the male function in male flowers, well explaining important feature of androdioecy that aborted pistil of a male flower still has a male function. Furthermore, nine selected DEPs were validated via gene expression analysis, suggesting an extra layer of post-transcriptional regulation occurs during O. fragrans floral development. CONCLUSION: Taken together, our findings represent the first SWATH-MS-based proteomic report in androdioecy plant O. fragrans, which reveal carbohydrate metabolism, secondary metabolism and post-transcriptional regulation contributing to the androdioecy breeding system and ultimately extend our understanding on genetic basis as well as the industrialization development of O. fragrans.


Subject(s)
Carbohydrate Metabolism/genetics , Flowers/growth & development , Flowers/genetics , Oleaceae/growth & development , Oleaceae/genetics , Oleaceae/metabolism , Reproduction/genetics , Reproduction/physiology , Biological Evolution , China , Gene Expression Regulation, Plant , Genetic Variation , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/growth & development , Hermaphroditic Organisms/metabolism , Phenotype , Proteomics
7.
J Chem Ecol ; 46(11-12): 1117-1130, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33037529

ABSTRACT

White fringetree is a host for the invasive emerald ash borer (EAB) but is of lower quality than the related and highly susceptible black ash. Field observations suggest that host trees grown in full sun are more resistant to EAB than those in shade, however the impact of light limitation on chemical defenses has not been assessed. We quantified constitutive and jasmonate-induced phloem defenses and growth patterns of white fringetree and black ash under differential light conditions and related them to EAB larval performance. White fringetree had significantly lower constitutive and induced activities of peroxidase, polyphenol oxidase, ß-glucosidase, chitinase and lignin content, but significantly higher gallic acid equivalent soluble phenolic, soluble sugar, and oleuropein concentrations compared to black ash. Multivariate analyses based on tissue chemical attributes displayed clear separation of species and induced defense responses. Further, EAB performed significantly worse on white fringetree than black ash, consistent with previous studies. Light limitation did not impact measured defenses or EAB larval performance, but it did decrease current year growth and increase photosynthetic efficiency. Overall our results suggest that phenolic profiles, metabolite abundance, and growth traits are important in mediating white fringetree resistance to EAB, and that short-term light limitation does not influence phloem chemistry or larval success.


Subject(s)
Coleoptera/physiology , Cyclopentanes/metabolism , Fraxinus/chemistry , Oleaceae/chemistry , Oxylipins/metabolism , Plant Extracts/chemistry , Animals , Behavior, Animal , Catechol Oxidase/metabolism , Chitinases/metabolism , Fraxinus/metabolism , Gallic Acid/metabolism , Iridoid Glucosides/metabolism , Larva , Light , Lignin/metabolism , Oleaceae/metabolism , Phenols/metabolism , Phloem/metabolism , Photosynthesis , Sugars/metabolism , beta-Glucosidase/metabolism
8.
Genes (Basel) ; 11(4)2020 03 26.
Article in English | MEDLINE | ID: mdl-32224874

ABSTRACT

Osmanthus fragrans is widely grown for the purpose of urban greening and the pleasant aroma emitted from its flowers. The floral scent is determined by several monoterpenoid volatiles, such as linalool and its oxides, which are a few of the most common volatiles and the main components of the essential oils in most sweet osmanthus cultivars. In addition, the relative contents of cis- and trans-linalool oxide (furan) may affect the aromas and quality of the essential oils. MYB proteins represent the largest family of transcription factors in plants and participate in regulating secondary metabolites. Several cis-elements, especially AC-rich regions, are known to be bound by 2R-MYBs and could be found in the promoter of the enzyme genes in the terpenoid metabolic pathway. However, there has to date been no investigation into the 2R-MYB family genes involved in regulating terpenoid biosynthesis in O. fragrans. Here, 243 non-redundant 2R-MYB proteins were grouped into 33 clusters based on the phylogeny and exon-intron distribution. These genes were unevenly distributed on 23 chromosomes. Ka/Ks analysis showed that the major mode of 2R-MYB gene evolution was purifying selection. Expression analysis indicated that 2R-MYB genes in O. fragrans exhibited varied expression patterns. A total of 35 OfMYBs representing the highest per kilobase per million mapped reads in the flower were selected for quantitative real-time PCR analysis. The correlation analysis between the expression level and the contents of fragrant compounds at different flowering stages suggested that OfMYB19/20 exhibited remarkably positive correlation with the accumulation of cis-linalool oxides. OfMYB51/65/88/121/137/144 showed significantly negative correlations with one or more linalool oxides. Characterization of these proteins revealed that OfMYB19 and OfMYB137 were localized in the nuclei, but did not show transcriptional activation in the yeast system, which suggested that they may be bound to other transcription factors to exert regulatory functions. These findings provide useful information for further functional investigation of the 2R-MYBs and offer a foundation for clarifying the 2R-MYB transcription factors involved in the molecular mechanism of the regulation of monoterpenoid biosynthesis in Osmanthus fragrans.


Subject(s)
Flowers/metabolism , Gene Expression Regulation, Plant , Monoterpenes/metabolism , Oleaceae/metabolism , Plant Proteins/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Transcription Factors/metabolism , Flowers/genetics , Flowers/growth & development , Oleaceae/genetics , Oleaceae/growth & development , Plant Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics , Transcription Factors/genetics
9.
Biomolecules ; 10(4)2020 04 04.
Article in English | MEDLINE | ID: mdl-32260448

ABSTRACT

Osmanthus fragrans 'Yinbi Shuanghui' not only has a beautiful shape and fresh floral fragrance, but also rich leaf colors that change, making the tree useful for landscaping. In order to study the mechanisms of color formation in O. fragrans 'Yinbi Shuanghui' leaves, we analyzed the colored and green leaves at different developmental stages in terms of leaf pigment content, cell structure, and transcriptome data. We found that the chlorophyll content in the colored leaves was lower than that of green leaves throughout development. By analyzing the structure of chloroplasts, the colored leaves demonstrated more stromal lamellae and low numbers of granum thylakoid. However, there was a large number of plastoglobuli. Using transcriptome sequencing, we demonstrated that the expression of differentially expressed genes (DEGs) involved in chlorophyll degradation was upregulated, i.e., heme oxygennase-1 (HO1), pheophorbide a oxidase (PAO), and chlorophyllase-2 (CLH2), affecting the synthesis of chlorophyll in colored leaves. The stay-green gene (SGR) was upregulated in colored leaves. Genes involved in carotenoid synthesis, i.e., phytoene synthase 1 (PSY1) and 1-Deoxyxylulose-5-phosphate synthase (DXS), were downregulated in colored leaves, impeding the synthesis of carotenoids. In the later stage of leaf development, the downregulated expression of Golden2-Like (GLK) inhibited chloroplast development in colored leaves. Using weighted gene co-expression network analysis (WGCNA) to investigate the correlation between physiological indicators and DEGs, we chose the modules with the highest degree of relevance to chlorophyll degradation and carotenoid metabolism. A total of five genes (HSFA2, NFYC9, TCP20, WRKY3, and WRKY4) were identified as hub genes. These analyses provide new insights into color formation mechanisms in O. fragrans 'Yinbi Shuanghui' leaves at the transcriptional level.


Subject(s)
Gene Expression Profiling , Genes, Plant/genetics , Oleaceae/genetics , Oleaceae/metabolism , Pigmentation/genetics , Plant Leaves/metabolism , Molecular Sequence Annotation , Oleaceae/growth & development
10.
BMC Plant Biol ; 19(1): 315, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31307378

ABSTRACT

BACKGROUND: Abaxially anthocyanic leaves of deeply-shaded understorey plants play important ecological significance for the environmental adaption. In contrast to the transient pigmentation in other plants, anthocyanins are permanently presented in these abaxially red leaves, however, the mechanism for the pigment maintenance remains unclear. In the present study, we investigated phenolic metabolites that may affect pigment stability and degradation in Excoecaria cochinchinensis (a bush of permanently abaxial-red leaves), via a comparison with Osmanthus fragrans (a bush of transiently red leaves). RESULTS: High levels of galloylated anthocyanins were identified in the Excoecaria but not in the Osmanthus plants. The galloylated anthocyanin showed slightly higher stability than two non-galloylated anthocyanins, while all the 3 pigments were rapidly degraded by peroxidase (POD) in vitro. High levels of hydrolysable tannins [mainly galloylglucoses/ellagitannins (GGs/ETs)] were identified in Excoecaria but none in Osmanthus. GGs/ETs showed inhibition effect on POD, with IC50 ranged from 35.55 to 83.27 µM, correlated to the markedly lower POD activities detected in Excoecaria than in Osmanthus. Strong copigmentation was observed for GGs/ETs and anthocyanins, with more than 30% increase in the red intensity of non-galloylated anthocyanin solutions. In the leaf tissue, the hydrolysable tannins were observed to be co-localized with anthocyanins at the abaxial layer of the Excoecaria leaves, correlated to the low POD activity, more acidity and increased red intensity of the tissue. CONCLUSION: The results suggest that the Excoecaria leaves accumulate a distinct group of phenolic metabolites, mainly GGs/ETs, at the abaxial layer, which prevent anthocyanin degradation and increase the pigment stability, and consequently lead to the permanent maintenance of the red leaves.


Subject(s)
Anthocyanins/metabolism , Euphorbiaceae/metabolism , Hydrolyzable Tannins/metabolism , Peroxidase/antagonists & inhibitors , Pigmentation , Plant Leaves/metabolism , Euphorbiaceae/enzymology , Oleaceae/metabolism , Peroxidase/metabolism , Plant Leaves/growth & development
11.
Acta Biol Hung ; 69(4): 423-436, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30587024

ABSTRACT

The aim of the present study is to extend the applicability of MRI measurements similar to those used in human diagnostics to the examination of water barriers in living plants, thus broadening their use in natural sciences. The cucumber, Cucumis sativus, and Phillyrea angustifolia, or false olive, were chosen as test plants. The MRI measurements were carried out on three samples of each plant in the same position vis-a-vis the MRI apparatus using a Siemens Avanto MRI scanner. Two different relaxation times were employed, T1, capable of histological mapping, and T2, used for the examination of water content. In the course of the analysis, it was found that certain histological formations and branching cause modifications to the intensity detected with relaxation time T2. Furthermore, these positions can also be found in T1 measurements. A monotonic correlation (cucumber: ρ = 0.829; false olive: ρ = -0.84) was observed between the T1 and T2 measurements. In the course of the statistical analysis of the signal intensities of the xylems it was concluded that they cannot be regarded as independent in a statistical sense; these changes rather depend on the anatomic structure of the plant, as the intensity profile is modified by nodes, leaves and branches. This serves as a demonstration of the applicability of MRI to the measurement of well know plant physiological processes. The special parametrization required for this equipment, which is usually used in human diagnostics, is also documented in the present study.


Subject(s)
Cucumis sativus/anatomy & histology , Cucumis sativus/metabolism , Magnetic Resonance Imaging/methods , Oleaceae/anatomy & histology , Oleaceae/metabolism , Water/metabolism , Xylem/anatomy & histology , Xylem/metabolism , Magnetic Resonance Imaging/instrumentation
12.
J Asian Nat Prod Res ; 20(7): 649-661, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29629568

ABSTRACT

To comprehend the molecular mechanisms that control the differences in the composition of Osmanthus essential oils, the RNA-seq data and differentially expressed genes in different cultivar Osmanthus were studied. cDNA libraries of "jinqiugui," "baijie," and "rixianggui" were sequenced using Illumina HiSeq TM 2000. All of the enzymes involved in ionone synthesis were verified. DEGs were revealed and their enriched pathways were analyzed. A total of 20 DEGsencoding four enzymes that were potential candidates involved in ionone biosynthesis, as well as ispH, GPPS, ZDS, and CCD. It provided a way for Osmanthus oil monomer material to be synthesized in vitro.


Subject(s)
Norisoprenoids/biosynthesis , Oleaceae/genetics , Oleaceae/metabolism , RNA, Plant/genetics , Chromosome Mapping , DNA, Complementary/chemistry , DNA, Complementary/genetics , Databases, Genetic , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant , Oils, Volatile/chemistry , Oils, Volatile/metabolism , Plant Proteins/biosynthesis , RNA, Plant/chemistry , Sequence Analysis, RNA , Transcriptome
13.
Environ Sci Pollut Res Int ; 25(3): 2112-2120, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29110232

ABSTRACT

Numerous studies have demonstrated the negative effects of elevated O3 on leaf photosynthesis. Within trees, a portion of respired CO2 is assimilated by woody tissue photosynthesis, but its response to elevated O3 remains unclear. Saplings of two evergreen tree species, EuCahetus dunnii Maiden (E. dunnii) and Osmanthus fragrans (Thunb.) Lour. (O. fragrans), were exposed to non-filtered air (NF), 100 nmol mol-1 O3 air (E1) and 150 nmol mol-1 O3 air (E2) in open-top chambers from May 5 to September 5, 2016 (8 h a day; 7 days a week) in subtropical China. In this study, O3 fumigation significantly reduced leaf net photosynthesis rate in both two tree species on most measurements. However, compared with leaf net photosynthesis rate, woody tissue gross photosynthesis rate showed less negative response to O3 fumigation and was even stimulated to increase. Refixation rate reflects the utilization efficiency of the respired CO2 by woody tissue photosynthesis. During the experiment period, E1 and E2 both increased refixation rate in O. fragrans compared with NF. Whereas for E. dunnii, E1 increased refixation rate until 81 days after starting of fumigation and then decreased it, and E2 decreased it all the time. Refixation rate had a significant positive correlation with woody tissue chlorophyll contents, indicating that the response of refixation rate to elevated O3 may relate to chlorophyll contents. All these suggested that under O3 fumigation, when atmospheric CO2 uptake and fixation by leaf is limited, woody tissue photosynthesis can contribute more to the total carbon assimilation in trees. The findings help to understand the significance of woody tissue photosynthesis under elevated O3 conditions.


Subject(s)
Oleaceae/metabolism , Ozone/metabolism , Photosynthesis/drug effects , Rutaceae/metabolism , Wood/metabolism , Carbon Dioxide/pharmacology , China , Chlorophyll/metabolism , Plant Leaves/metabolism , Trees/metabolism
14.
Yakugaku Zasshi ; 137(12): 1443-1482, 2017.
Article in Japanese | MEDLINE | ID: mdl-29199255

ABSTRACT

Studies on the structural determination, biosynthesis, and biological activities of secondary metabolites from natural sources are significant in the field of natural products chemistry. This review focuses on diverse secondary metabolites isolated from medicinal plants and cultivated mycobionts of lichens in our laboratory. Monoterpene-tetrahydroisoquinoline glycosides and alkaloids isolated from Cephaelis acuminata and Alangium lamarckii gave important information on the biosynthesis of ipecac alkaloids. A variety of glycosides linked with a secologanin unit and indole alkaloids were obtained from medicinal plants belonging to the families of Rubiaceae, Apocynaceae, and Loganiaceae. Plant species of the four genera Fraxinus, Syringa, Jasminum, and Ligustrum of the family Oleaceae were chemically investigated to provide several types of secoiridoid and iridoid glucosides. The biosynthetic pathway leading from protopine to benzophenanthridine alkaloids in suspension cell cultures of Eschscholtzia californica was elucidated. The structures and biological activities of the bisbenzylisoquinoline alkaloids of Stephania cepharantha and Nelumbo nucifera were also investigated. In addition, the mycobionts of lichens were cultivated to afford various types of metabolites that differ from the lichen substances of intact lichens but are structurally similar to fungal metabolites. The biosynthetic origins of some metabolites were also studied. These findings suggest that cultures of lichen mycobionts could be sources of new bioactive compounds and good systems for investigating secondary metabolism in lichens.


Subject(s)
Alkaloids/isolation & purification , Glycosides/isolation & purification , Lichens/metabolism , Plants, Medicinal/metabolism , Alangiaceae/metabolism , Alkaloids/biosynthesis , Alkaloids/chemistry , Benzylisoquinolines , Cephaelis/metabolism , Eschscholzia/metabolism , Glycosides/biosynthesis , Glycosides/chemistry , Iridoids , Monoterpenes , Oleaceae/metabolism , Rubiaceae/metabolism , Stephania/metabolism , Tetrahydroisoquinolines
15.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 1067-1076, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28502749

ABSTRACT

A highly prevalent IgE-binding protein band of 28kDa is observed when Salsola kali pollen extract is incubated with individual sera from Amaranthaceae pollen sensitized patients. By an immunoproteomic analysis of S. kali pollen extract, we identified this protein band as an allergenic polygalacturonase enzyme. The allergen, named Sal k 6, exhibits a pI of 7.14 and a molecular mass of 39,554.2Da. It presents similarities to Platanaceae, Poaceae, and Cupressaceae allergenic polygalacturonases. cDNA-encoding sequence was subcloned into the pET41b vector and produced in bacteria as a His-tag fusion recombinant protein. The far-UV CD spectrum determined that rSal k 6 was folded. Immunostaining of the S. kali pollen protein extract with a rSal k 6-specific pAb and LC-MS/MS proteomic analyses confirmed the co-existence of the 28kDa band together with an allergenic band of about 47kDa in the pollen extract. Therefore, the 28kDa was assigned as a natural degradation product of the 47kDa integral polygalacturonase. The IgE-binding inhibition to S. kali pollen extract using rSal k 6 as inhibitor showed that signals directed to both protein bands of 28 and 47kDa were completely abrogated. The average prevalence of rSal k 6 among the three populations analyzed was 30%, with values correlating well with the levels of grains/m3 of Amaranthaceae pollen. Sal k 6 shares IgE epitopes with Oleaceae members (Fraxinus excelsior, Olea europaea and Syringa vulgaris), with IgE-inhibition values ranging from 20% to 60%, respectively. No IgE-inhibition was observed with plant-derived food extracts.


Subject(s)
Antigens, Plant/metabolism , Glycosides/metabolism , Immunoglobulin E/metabolism , Plant Proteins/metabolism , Pollen/metabolism , Salsola/metabolism , Amaranthaceae/chemistry , Amaranthaceae/metabolism , Amino Acid Sequence , Antigens, Plant/chemistry , Base Sequence , Cloning, Molecular/methods , Cross Reactions/physiology , Glycosides/chemistry , Oleaceae/chemistry , Oleaceae/metabolism , Plant Proteins/chemistry , Pollen/chemistry , Protein Binding/physiology , Proteomics/methods , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Salsola/chemistry , Sequence Alignment
16.
Chem Biodivers ; 14(4)2017 Apr.
Article in English | MEDLINE | ID: mdl-27997755

ABSTRACT

The study of the monoterpene glycosides content of Odontites luteus has shown the presence of a total of fifteen iridoid glucosides. The presence of compounds 1 - 5 and 7 - 10 is perfectly on-line with both the biogenetic pathway for iridoids biosynthesis in Lamiales and the current botanical classification of the species. On the other side, the presence of compounds like agnuside (6), adoxosidic acid (11), monotropein (12), 6,7-dihydromonotropein (13), methyl oleoside (14) and methyl glucooleoside (15) is of high interest because, first of all, they have never been reported before in Lamiales. In second instance, the majority of the last compounds are formally derived from a different biogenetic pathway which involves deoxyloganic acid/loganin and led to the formation of decarboxylated iridoid showing the 8ß-configuration. Furthermore, a second abnormality was found during our study and this regards compounds 14 and 15 which are seco-iriodids and thus not typical for this family. The presence of these unusual compounds, biogenetically not related to species belonging to Lamiales, is a clear evidence of the metabolites transfer from the hosts. In fact, the collection area is also populated by species belonging to Oleaceae and Ericaceae which could be the possible hosts since the biosynthesis of seco-iridoids and or iridoids related to deoxyloganic acid/loganin pathway, with the 8ß-configuration, is well documented in these species.


Subject(s)
Iridoids/chemistry , Orobanchaceae/chemistry , Animals , Ericaceae/chemistry , Ericaceae/metabolism , Glycosides , Metabolic Networks and Pathways , Metabolomics , Monoterpenes , Oleaceae/chemistry , Oleaceae/metabolism , Orobanchaceae/metabolism
17.
Plant Sci ; 226: 101-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25113455

ABSTRACT

A long-term experimental drought to simulate future expected climatic conditions for Mediterranean forests, a 15% decrease in soil moisture for the following decades, was conducted in a holm oak forest since 1999. Net photosynthetic rate, stomatal conductance and leaf water potential were measured from 1999 to 2013 in Quercus ilex and Phillyrea latifolia, two co-dominant species of this forest. These measurements were performed in four plots, two of them received the drought treatment and the two other plots were control plots. The three studied variables decreased with increases in VPD and decreases in soil moisture in both species, but the decrease of leaf water potential during summer drought was larger in P. latifolia, whereas Q. ilex reached higher net photosynthetic rates and stomatal conductance values during rainy periods than P. latifolia. The drought treatment decreased ca. 8% the net photosynthetic rates during the overall studied period in both Q. ilex and P. latifolia, whereas there were just non-significant trends toward a decrease in leaf water potential and stomatal conductance induced by drought treatment. Future drier climate may lead to a decrease in the carbon balance of Mediterranean species, and some shrub species well resistant to drought could gain competitive advantage relative to Q. ilex, currently the dominant species of this forest.


Subject(s)
Carbon Dioxide/metabolism , Climate Change , Oleaceae/metabolism , Plant Leaves/metabolism , Quercus/metabolism , Droughts , Ecosystem , Random Allocation , Seasons , Spain , Trees/metabolism
18.
Bioresour Technol ; 143: 653-6, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23816358

ABSTRACT

In the present work, Forsythia suspense seed oil (FSSO) was investigated for the first time as an alternative non-conventional feedstock for the preparation of biodiesel. The FSSO yield is 30.08±2.35% (dry weight of F. suspense seed basis), and the oil has low acid value (1.07 mg KOH/g). The fatty acid composition of FSSO exhibits the predominance of linoleic acid (72.89%) along with oleic acid (18.68%) and palmitic acid (5.65%), which is quite similar to that of sunflower oil. Moreover, microwave-assisted transesterification process of FSSO with methanol in the presence of potassium hydroxide catalyst was optimized and an optimal biodiesel yield (90.74±2.02%) was obtained. Furthermore, the fuel properties of the biodiesel product were evaluated as against ASTM D-6751 biodiesel standards and an acceptable agreement was observed except the cetane number. Overall, this study revealed the possibility of FSSO as a potential resource of biodiesel feedstock.


Subject(s)
Biofuels , Oleaceae/metabolism , Plant Oils/metabolism , Seeds/metabolism , Esterification , Fatty Acids/metabolism , Gas Chromatography-Mass Spectrometry , Oleaceae/embryology
19.
Environ Pollut ; 162: 80-5, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22243850

ABSTRACT

Foliar δ(34)S values of three soil-growing plant species (Platanus Orientalis L., Osmanthus fragrans L. and Cinnamomum camphora) have been analyzed to indicate atmospheric sulfur. The foliar δ(34)S values of the three plant species averaged -3.11±1.94‰, similar to those of both soil sulfur (-3.73±1.04‰) and rainwater sulfate (-3.07±2.74‰). This may indicate that little isotopic fractionation had taken place in the process of sulfur uptake by root or leaves. The δ(34)S values changed little in the transition from mature leaves to old/senescing leaves for both the plane tree and the osmanthus tree, suggestive of little isotope effect during sulfur redistribution in plant tissues. Significantly linear correlation between δ(34)S values of leaves and rainwater sulfate for the plane and osmanthus trees allowed the tracing of temporal variations of atmospheric sulfur by means of foliar sulfur isotope, while foliage δ(34)S values of the camphor is not an effective indicator of atmospheric sulfur.


Subject(s)
Air Pollutants/analysis , Cinnamomum camphora/chemistry , Environmental Monitoring/methods , Oleaceae/chemistry , Plant Leaves/chemistry , Sulfur Isotopes/analysis , Air Pollutants/metabolism , Cinnamomum camphora/metabolism , Oleaceae/metabolism , Plant Leaves/metabolism , Sulfur Isotopes/metabolism
20.
Int J Phytoremediation ; 13(6): 567-79, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21972503

ABSTRACT

The possibility of remediating contaminated soils though the use of high biomass-generating, native plant species capable of removing heavy metals is receiving increased attention. The cadmium (Cd) accumulation capacities of the native Mediterranean, perennial shrubs Atriplex halimus, Phyllirea angustifolia, Rhamnus alaternus and Rosmarinus officinalis were tested by growing transplanted specimens in a pine bark compost substrate (pH 5.6) contaminated with 100 mg Cd kg(-1). After 70 days, only R. alaternus showed reduced growth. The increase in biomass seen in all the test species enhanced the phytoextraction of Cd. However, the species behaved as metal excluders, except for the halophyte A. halimus, which behaved as an indicator plant. In this species the leaf Cd concentration reached 35 mg Cd kg(-1), with the shoot responsible for some 86% of total Cd accumulation. Atriplex halimus showed the highest bioconcentration factor (BCF) (0.36) and leaf Cd transport index (1.68); consequently, this species showed the highest Cd phytoextraction capacity.


Subject(s)
Atriplex/metabolism , Cadmium/metabolism , Oleaceae/metabolism , Rhamnus/metabolism , Rosmarinus/metabolism , Soil Pollutants/metabolism , Atriplex/chemistry , Atriplex/growth & development , Biodegradation, Environmental , Biological Transport , Biomass , Cadmium/analysis , Hydrogen-Ion Concentration , Oleaceae/chemistry , Oleaceae/growth & development , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Plant Shoots/chemistry , Plant Shoots/metabolism , Rhamnus/chemistry , Rhamnus/growth & development , Rosmarinus/chemistry , Rosmarinus/growth & development , Soil , Soil Pollutants/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...