Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.842
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 97-107, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836674

ABSTRACT

This study employed a multifaceted approach to investigate the inhibitory potential of alpha-amyrin against TLR2, a key player in bacterial infection and sepsis. A high-resolution TLR2 model was constructed using Swiss-MODEL, exhibiting excellent quality with 100% sequence identity and coverage. Cavity detection revealed five significant cavities on TLR2. Molecular docking identifies alpha-amyrin as a potent inhibitor, displaying a strong binding affinity of -8.6 kcal/mol. Comprehensive analyses, including ADMET predictions, PASS analysis, and SwissTargetPrediction, affirm alpha-amyrin's drug-like properties and diverse biological activities. Cytotoxicity assays on HEK-293 cells confirm its safety, and fluorescence-based inhibition assays provide empirical evidence of its inhibitory potency on TLR2 enzymatic activity. Further validations in HUVECs show a significant decrease in TLR2 mRNA expression (p<0.01) and activity (p<0.05) upon alpha-amyrin treatment. In conclusion, this integrative study positions alpha-amyrin as a promising therapeutic candidate for TLR2 inhibition, emphasizing its potential in combating bacterial infections with safety and efficacy.


Subject(s)
Bacterial Infections , Molecular Docking Simulation , Oleanolic Acid , Sepsis , Toll-Like Receptor 2 , Toll-Like Receptor 2/metabolism , Humans , Sepsis/drug therapy , Sepsis/microbiology , HEK293 Cells , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Oleanolic Acid/chemistry , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Human Umbilical Vein Endothelial Cells/metabolism , Computer Simulation
2.
J Mass Spectrom ; 59(6): e5035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726730

ABSTRACT

Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.


Subject(s)
Bupleurum , Metabolomics , Oleanolic Acid , Plant Roots , Saponins , Sorghum , Zea mays , Sorghum/metabolism , Sorghum/chemistry , Bupleurum/chemistry , Bupleurum/metabolism , Zea mays/metabolism , Zea mays/chemistry , Saponins/analysis , Saponins/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/analysis , Oleanolic Acid/metabolism , Metabolomics/methods , Chromatography, High Pressure Liquid/methods , Plant Roots/metabolism , Plant Roots/chemistry , Mass Spectrometry/methods , Agriculture/methods , Liquid Chromatography-Mass Spectrometry
3.
Wiad Lek ; 77(3): 497-505, 2024.
Article in English | MEDLINE | ID: mdl-38691792

ABSTRACT

OBJECTIVE: Aim: The aim of this research is to clarify the potential effect of CDDO-EA against experimentally sepsis induced lung injury in mice. PATIENTS AND METHODS: Materials and Methods: Mice have divided into four groups: Sham group CLP group, Vehicle-treatment group, CDDO-EA-treated group: mice in this group received CDDO-EA 2mg/kg intraperitoneally, 1hr before CLP, then the animals were sacrificed 24hr after CLP. After exsAngpuinations, tissue samples of lung were collected, followed by markers measurement including, TNF-α, IL-1ß, VEGF, MPO, caspase11, Angp-1and Angp-2 by ELISA, gene expression of TIE2 and VE-cadherin by qRT-PCR, in addition to histopathological study. RESULTS: Results: A significant elevation (p<0.05) in TNF-α, IL-1ß, MPO, ANGP-2, VEGF, CASPASE 11 in CLP and vehicle groups when compared with sham group. CDDO-EA group showed significantly lower levels p<0.05, level of ANGP-1 was significantly lower p<0.05 in the CLP and vehicle groups as compared with the sham group. Quantitative real-time PCR demonstrated a significant decrement in mRNA expression of TIE2&ve-cadherin genes p<0.05 in sepsis & vehicle. CONCLUSION: Conclusions: CDDO-EA has lung protective effects due to its anti-inflammatory and antiAngpiogenic activity, additionally, CDDO-EA showes a lung protective effect as they affect tissue mRNA expression of TIE2 and cadherin gene. Furthermore, CDDO-EA attenuate the histopathological changes that occur during polymicrobial sepsis thereby lung protection effect.


Subject(s)
Acute Lung Injury , Disease Models, Animal , Endotoxemia , Sepsis , Animals , Mice , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Endotoxemia/metabolism , Sepsis/complications , Sepsis/metabolism , Male , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Lung/pathology , Lung/metabolism , Interleukin-1beta/metabolism
4.
Toxicol In Vitro ; 98: 105842, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761881

ABSTRACT

Oleanane pentacyclic triterpenoids have been widely used in clinical practice. However, studies on their interactions with hepatic transporters remain limited. In this study, we systematically investigated the inhibitory effects of 14 oleanane pentacyclic triterpenoids on organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1 and OATP1B3), two liver-specific uptake transporters. Through fluorescence-based cellular uptake assays, we identified three potent OATP1B1 inhibitors (saikosaponin B1, saikosaponin A and 18ß-glycyrrhetinic acid) and five potent OATP1B3 inhibitors (echinocystic acid, 3-oxo-16α-hydroxy-olean-12-en-28ß-oic acid, chikusetsu saponin IVa, saikosaponin B1 and 18ß-glycyrrhetinic acid). Structural analysis revealed that free oleanane triterpenoids inhibited OATP1B1/1B3 more potently than triterpene glycosides. Despite their similar structures, 18ß-glycyrrhetinic acid exhibited much stronger inhibition on OATP1B1/1B3 than 18α-glycyrrhetinic acid, while both were substrates of OATP1B3. Interestingly, OATP1B3 overexpression significantly increased reactive oxygen species (ROS) levels in HepG2 cells after treatment with 18ß-glycyrrhetinic acid. To conclude, this study highlights the potential interactions of oleanane pentacyclic triterpenoids with OATP1B1/1B3, and provides novel insights into the anti-cancer activity of 18ß-glycyrrhetinic acid.


Subject(s)
Liver-Specific Organic Anion Transporter 1 , Oleanolic Acid , Solute Carrier Organic Anion Transporter Family Member 1B3 , Humans , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Liver-Specific Organic Anion Transporter 1/metabolism , HEK293 Cells , Hep G2 Cells , Saponins/pharmacology , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives
5.
Drug Dev Res ; 85(3): e22200, 2024 May.
Article in English | MEDLINE | ID: mdl-38747107

ABSTRACT

In this study, we analyzed and verified differentially expressed genes (DEGs) in ROS and KEAP1 crosstalk in oncogenic signatures using GEO data sets (GSE4107 and GSE41328). Multiple pathway enrichment analyses were finished based on DEGs. The genetic signature for colorectal adenocarcinoma (COAD) was identified by using the Cox regression analysis. Kaplan-Meier survival and receiver operating characteristic curve analysis were used to explore the prognosis value of specific genes in COAD. The potential immune signatures and drug sensitivity prediction were also analyzed. Promising small-molecule agents were identified and predicted targets of α-hederin in SuperPred were validated by molecular docking. Also, expression levels of genes and Western blot analysis were conducted. In total, 48 genes were identified as DEGs, and the hub genes such as COL1A1, CXCL12, COL1A2, FN1, CAV1, TIMP3, and IGFBP7 were identified. The ROS and KEAP1-associated gene signatures comprised of hub key genes were developed for predicting the prognosis and evaluating the immune cell responses and immune infiltration in COAD. α-hederin, a potential anti-colorectal cancer (CRC) agent, was found to enhance the sensitivity of HCT116 cells, regulate CAV1 and COL1A1, and decrease KEAP1, Nrf2, and HO-1 expression significantly. KEAP1-related genes could be an essential mediator of ROS in CRC, and KEAP1-associated genes were effective in predicting prognosis and evaluating individualized CRC treatment. Therefore, α-hederin may be an effective chemosensitizer for CRC treatments in clinical settings.


Subject(s)
Colorectal Neoplasms , Kelch-Like ECH-Associated Protein 1 , Reactive Oxygen Species , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Molecular Docking Simulation , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Cell Death/drug effects , Cell Line, Tumor , Prognosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
6.
Biochem Biophys Res Commun ; 718: 150085, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735142

ABSTRACT

Lung cancer poses a significant threat globally, especially in China. This puts higher demands on the treatment methods and drugs for lung cancer. Natural plants provide valuable resources for the development of anti-cancer drugs. Hederagenin (Hed) is a triterpenoid compound extracted from ivy leaves and has anti-tumor activity against multifarious cancers, including lung cancer. However, the regulatory mechanism of Hed in lung cancer remains unclear. In this study, we used Hed to treat lung cancer cells, and observed the effect of Hed on cell proliferation (including CCK-8 and colony formation experiments), apoptosis (including flow cytometry and apoptosis gene detection (BAX and Bcl-2)). The results showed that Hed induced lung cancer cell death (inhibiting proliferation and promoting apoptosis). Next, we performed bioinformatics analysis of the expression profile GSE186218 and found that Hed treatment significantly increased the expression of CHAC1 gene. CHAC1 is a ferroptosis-inducing gene. RT-qPCR detection of lung cancer clinical tissues and related cell lines also showed that CHAC1 was lowly expressed in lung cancer. Therefore, we knocked down and overexpressed CHAC1 in lung cancer cells, respectively. Subsequently, cell phenotype experiments showed that down-regulating CHAC1 expression inhibited lung cancer cell death (promoting proliferation and inhibiting apoptosis); on the contrary, up-regulating CHAC1 expression promoted lung cancer cell death. To further verify that Hed exerts anti-tumor effects in lung cancer by promoting CHAC1 expression, we performed functional rescue experiments. The results showed that down-regulating CHAC1 expression reversed the promoting effect of Hed on lung cancer cell death. Mechanistically, in vitro and in vivo experiments jointly demonstrated that Hed exerts anti-cancer effects by promoting CHAC1-induced ferroptosis. In summary, our study further enriches the regulatory mechanism of Hed in lung cancer.


Subject(s)
Cell Proliferation , Ferroptosis , Lung Neoplasms , Oleanolic Acid , Ferroptosis/drug effects , Ferroptosis/genetics , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , A549 Cells , Signal Transduction/drug effects
7.
Int Immunopharmacol ; 135: 112303, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38776855

ABSTRACT

Diabetic nephropathy (DN) is a common complication of diabetes, characterized by renal fibrosis and poor patient prognosis. Hederagenin (HDG) has shown promising improvement in chronic kidney disease (CKD) kidney fibrosis, but its mechanism in DN-induced kidney fibrosis remains unclear. In this study, a model of diabetic nephropathy (DN) in mice was induced by intraperitoneal injection of streptozocin (50 mg/kg), while in vitro, high glucose (25 mM) was used to induce HK2 cell damage, simulating tubular injury in DN kidneys. The improvement of HDG treatment intervention was evaluated by observing changes in renal function, pathological structural damage, and the expression of fibrosis-related proteins in renal tubular cells. The results demonstrate that HDG intervention alleviates renal dysfunction and pathological damage in DN mice, accompanied by reduced expression of fibrotic markers α-smooth muscle actin (α-SMA), fibronectin (FN) and Collagen-I. Mechanistically, this study found that HDG can inhibit ferroptosis and fibrosis induced by the ferroptosis inducer Erastin (1 µM) in renal tubular cells. Phosphorylation of Smad3 promotes ferroptosis in renal tubular cells. After using its specific inhibitor SIS3 (4 µM), the expression of downstream target protein NADPH oxidase 4 (NOX4) significantly decreases, while the level of glutathione peroxidase 4 (GPX4) is notably restored, mitigating ferroptosis. Smad3 overexpression attenuates the therapeutic effect of HDG on tubular cell fibrosis induced by high glucose. These results demonstrate HDG inhibits Smad3 phosphorylation, thereby reducing the expression of NOX4 and enhancing the expression of GPX4, ultimately attenuating ferroptosis induced renal fibrosis. These findings suggest that HDG offer therapeutic potential for DN renal fibrosis by targeting Smad3-mediated ferroptosis in renal tubular cells.


Subject(s)
Diabetic Nephropathies , Ferroptosis , Fibrosis , Mice, Inbred C57BL , NADPH Oxidase 4 , Oleanolic Acid , Signal Transduction , Smad3 Protein , Animals , Ferroptosis/drug effects , Smad3 Protein/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Humans , Mice , Signal Transduction/drug effects , Male , Cell Line , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Kidney Tubules/pathology , Kidney Tubules/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism
8.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612411

ABSTRACT

Biofilm formation plays a crucial role in the pathogenesis of Candida albicans and is significantly associated with resistance to antifungal agents. Tea seed saponins, a class of non-ionic triterpenes, have been proven to have fungicidal effects on planktonic C. albicans. However, their anti-biofilm activity and mechanism of action against C. albicans remain unclear. In this study, the effects of three Camellia sinensis seed saponin monomers, namely, theasaponin E1 (TE1), theasaponin E2 (TE2), and assamsaponin A (ASA), on the metabolism, biofilm development, and expression of the virulence genes of C. albicans were evaluated. The results of the XTT reduction assay and crystal violet (CV) staining assay demonstrated that tea seed saponin monomers concentration-dependently suppressed the adhesion and biofilm formation of C. albicans and were able to eradicate mature biofilms. The compounds were in the following order in terms of their inhibitory effects: ASA > TE1 > TE2. The mechanisms were associated with reductions in multiple crucial virulence factors, including cell surface hydrophobicity (CSH), adhesion ability, hyphal morphology conversion, and phospholipase activity. It was further demonstrated through qRT-PCR analysis that the anti-biofilm activity of ASA and TE1 against C. albicans was attributed to the inhibition of RAS1 activation, which consequently suppressed the cAMP-PKA and MAPK signaling pathways. Conversely, TE2 appeared to regulate the morphological turnover and hyphal growth of C. albicans via a pathway that was independent of RAS1. These findings suggest that tea seed saponin monomers are promising innovative agents against C. albicans.


Subject(s)
Candida albicans , Oleanolic Acid/analogs & derivatives , Saponins , Saponins/pharmacology , Biofilms , Tea
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 515-522, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597443

ABSTRACT

OBJECTIVE: To explore the inhibitory effect of saikosonin a (SSa) on pentylenetetrazol-induced acute epilepsy seizures in a mouse model of depression and explore the mechanism mediating this effect. METHODS: Male C57BL/6J mouse models of depression was established by oral administration of corticosterone via drinking water for 3 weeks, and acute epileptic seizures were induced by intraperitoneal injection of a single dose of pentylenetetrazole. The effect of intraperitoneal injection of SSa prior to the treatment on depressive symptoms and epileptic seizures were assessed using behavioral tests, epileptic seizure grading and hippocampal morphology observation. ELISA was used to detect blood corticosterone levels of the mice, and RTqPCR was performed to detect the pro- and anti-inflammatory factors. Microglia activation in the mice was observed using immunofluorescence staining. RESULTS: The mouse model of corticosterone-induced depression showed body weight loss and obvious depressive behaviors with significantly increased serum corticosterone level (all P < 0.05). Compared with those with pentylenetetrazole-induced epilepsy alone, the epileptic mice with comorbid depression showed significantly shorter latency of epileptic seizures, increased number, grade and duration of of seizures, reduced Nissl bodies in hippocampal CA1 and CA3 neurons, increased number of Iba1-positive cells, and significantly enhanced hippocampal expressions of IL-1ß, IL-10, TNF-α and IFN-γ. Pretreatment of the epileptic mice with SSa significantly prolonged the latency of epileptic seizures, reduced the number, duration, and severity of seizures, increased the number of Nissl bodies, decreased the number of Iba1-positive cells, and reduced the expression levels of IL-1ß, IL-10, TNF-α, and IFN-γ in the hippocampus (P < 0.05). CONCLUSION: Depressive state aggravates epileptic seizures, increases microglia activation, and elevates inflammation levels. SSA treatment can alleviate acute epileptic seizures in mouse models of depression possibly by suppressing microglia activation-mediated inflammation.


Subject(s)
Epilepsy , Oleanolic Acid/analogs & derivatives , Pentylenetetrazole , Saponins , Male , Mice , Animals , Pentylenetetrazole/adverse effects , Interleukin-10 , Microglia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Depression , Corticosterone/metabolism , Corticosterone/pharmacology , Corticosterone/therapeutic use , Mice, Inbred C57BL , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Disease Models, Animal
10.
Chem Pharm Bull (Tokyo) ; 72(4): 365-373, 2024.
Article in English | MEDLINE | ID: mdl-38569867

ABSTRACT

Obesity is known to be associated with increased inflammation and dysregulated autophagy, both of which contribute to insulin resistance. Saikosaponin-A (SSA) has been reported to exhibit anti-inflammatory and lipid-lowering properties. In this research, we employed a combination of computational modeling and animal experiments to explore the effects of SSA. Male C57BL/6 mice were categorized into four groups: normal diet, high-fat diet (HFD), HFD + atorvastatin 10 mg/kg, and HFD + SSA 10 mg/kg. We conducted oral glucose and fat tolerance tests to assess metabolic parameters and histological changes. Furthermore, we evaluated the population of Kupffer cells (KCs) and examined gene expressions related to inflammation and autophagy. Computational analysis revealed that SSA displayed high binding affinity to tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, fibroblast growth factor 21 (FGF21), and autophagy-related 7 (ATG7). Animal study demonstrated that SSA administration improved fasting and postprandial glucose levels, homeostatic model assessment of insulin resistance (HOMA-IR) index, as well as triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol (LDL-C)-cholesterol, and high-density lipoprotein cholesterol (HDL-C)-cholesterol levels in HFD-fed mice. Moreover, SSA significantly reduced liver weight and fat accumulation, while inhibiting the infiltration and M1 activation of KCs. At the mRNA level, SSA downregulated TNF-α and NF-κB expression, while upregulating FGF21 and ATG7 expression. In conclusion, our study suggests that SSA may serve as a therapeutic agent for addressing the metabolic complications associated with obesity. This potential therapeutic effect is attributed to the suppression of inflammatory cytokines and the upregulation of FGF21 and ATG7.


Subject(s)
Animal Experimentation , Insulin Resistance , Oleanolic Acid/analogs & derivatives , Saponins , Mice , Male , Animals , Insulin Resistance/physiology , Mice, Inbred C57BL , Obesity/drug therapy , Liver , Inflammation/metabolism , Glucose/metabolism , Cholesterol , Diet, High-Fat/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Insulin/metabolism
11.
Appl Microbiol Biotechnol ; 108(1): 282, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573330

ABSTRACT

Oleanane-type ginsenosides are a class of compounds with remarkable pharmacological activities. However, the lack of effective preparation methods for specific rare ginsenosides has hindered the exploration of their pharmacological properties. In this study, a novel glycoside hydrolase PlGH3 was cloned from Paenibacillus lactis 154 and heterologous expressed in Escherichia coli. Sequence analysis revealed that PlGH3 consists of 749 amino acids with a molecular weight of 89.5 kDa, exhibiting the characteristic features of the glycoside hydrolase 3 family. The enzymatic characterization results of PlGH3 showed that the optimal reaction pH and temperature was 8 and 50 °C by using p-nitrophenyl-ß-D-glucopyranoside as a substrate, respectively. The Km and kcat values towards ginsenoside Ro were 79.59 ± 3.42 µM and 18.52 s-1, respectively. PlGH3 exhibits a highly specific activity on hydrolyzing the 28-O-ß-D-glucopyranosyl ester bond of oleanane-type saponins. The mechanism of hydrolysis specificity was then presumably elucidated through molecular docking. Eventually, four kinds of rare oleanane-type ginsenosides (calenduloside E, pseudoginsenoside RP1, zingibroside R1, and tarasaponin VI) were successfully prepared by biotransforming total saponins extracted from Panax japonicus. This study contributes to understanding the mechanism of enzymatic hydrolysis of the GH3 family and provides a practical route for the preparation of rare oleanane-type ginsenosides through biotransformation. KEY POINTS: • The glucose at C-28 in oleanane-type saponins can be directionally hydrolyzed. • Mechanisms to interpret PlGH3 substrate specificity by molecular docking. • Case of preparation of low-sugar alternative saponins by directed hydrolysis.


Subject(s)
Ginsenosides , Oleanolic Acid/analogs & derivatives , Paenibacillus , Saponins , Glycoside Hydrolases/genetics , Molecular Docking Simulation , Escherichia coli/genetics , Esters
12.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612877

ABSTRACT

Hedera helix is a traditional medicinal plant. Its primary active ingredients are oleanane-type saponins, which have extensive pharmacological effects such as gastric mucosal protection, autophagy regulation actions, and antiviral properties. However, the glycosylation-modifying enzymes responsible for catalyzing oleanane-type saponin biosynthesis remain unidentified. Through transcriptome, cluster analysis, and PSPG structural domain, this study preliminarily screened four candidate UDP-glycosyltransferases (UGTs), including Unigene26859, Unigene31717, CL11391.Contig2, and CL144.Contig9. In in vitro enzymatic reactions, it has been observed that Unigene26859 (HhUGT74AG11) has the ability to facilitate the conversion of oleanolic acid, resulting in the production of oleanolic acid 28-O-glucopyranosyl ester. Moreover, HhUGT74AG11 exhibits extensive substrate hybridity and specific stereoselectivity and can transfer glycosyl donors to the C-28 site of various oleanane-type triterpenoids (hederagenin and calenduloside E) and the C-7 site of flavonoids (tectorigenin). Cluster analysis found that HhUGT74AG11 is clustered together with functionally identified genes AeUGT74AG6, CaUGT74AG2, and PgUGT74AE2, further verifying the possible reason for HhUGT74AG11 catalyzing substrate generalization. In this study, a novel glycosyltransferase, HhUGT74AG11, was characterized that plays a role in oleanane-type saponins biosynthesis in H. helix, providing a theoretical basis for the production of rare and valuable triterpenoid saponins.


Subject(s)
Hedera , Oleanolic Acid/analogs & derivatives , Saponins , Glycosyltransferases/genetics
13.
Mediators Inflamm ; 2024: 9078794, 2024.
Article in English | MEDLINE | ID: mdl-38590775

ABSTRACT

Background: Acute pancreatitis (AP) is a clinically frequent acute abdominal condition, which refers to an inflammatory response syndrome of edema, bleeding, and even necrosis caused by abnormal activation of the pancreas's own digestive enzymes. Intestinal damage can occur early in the course of AP and is manifested by impaired intestinal mucosal barrier function, and inflammatory reactions of the intestinal mucosa, among other factors. It can cause translocation of intestinal bacteria and endotoxins, further aggravating the condition of AP. Therefore, actively protecting the intestinal mucosal barrier, controlling the progression of intestinal inflammation, and improving intestinal dynamics in the early stages of AP play an important role in enhancing the prognosis of AP. Methods: The viability and apoptosis of RAW264.7 cells treated with Esculentoside A (EsA) and/or lipopolysaccharide were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry, respectively. The expression of apoptosis-related proteins and NF-κB signaling pathway-related proteins were detected by western blot (WB). An enzyme-linked immunosorbent assay was used to measure TNF-α and IL-6 secretion. Results: In vitro experiments demonstrated that EsA not only promoted the apoptosis of inflammatory cells but also reduced the secretion of TNF-α and IL-6 in a dose-dependent manner. Additionally, it inhibited the activation of the NF-κB signaling pathway by decreasing the expression of phosphorylated-p65(p-p65) and elevating the expression of IκBα. Similarly, in vivo experiments using a rat AP model showed that EsA inhibited the expression of p-p65 elevating the expression of IκBα in the intestinal tissues of the rat AP model and promoting the apoptosis of inflammatory cells in the intestinal mucosa in vivo experiments, while improving the pathological outcome of the pancreatic and intestinal tissues. Conclusion: Our results suggest that EsA can reduce intestinal inflammation in the rat AP model and that EsA may be a candidate for treating intestinal inflammation in AP and further arresting AP progression.


Subject(s)
NF-kappa B , Oleanolic Acid/analogs & derivatives , Pancreatitis , Saponins , Rats , Animals , NF-kappa B/metabolism , Pancreatitis/metabolism , NF-KappaB Inhibitor alpha , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Acute Disease , Inflammation/drug therapy
14.
Cancer Med ; 13(8): e7202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38659391

ABSTRACT

BACKGROUND: Non-apoptotic cell death is presently emerging as a potential direction to overcome the apoptosis resistance of cancer cells. In the current study, a natural plant agent α-hederin (α-hed) induces caspase-independent paraptotic modes of cell death. PURPOSE: The present study is aimed to investigate the role of α-hed induces paraptosis and the associated mechanism of it. METHODS: The cell proliferation was detected by CCK-8. The cytoplasm organelles were observed under electron microscope. Calcium (Ca2+) level was detected by flow cytometry. Swiss Target Prediction tool analyzed the potential molecule targets of α-hed. Molecular docking methods were used to evaluate binding abilities of α-hed with targets. The expressions of genes and proteins were analyzed by RT-qPCR, western blotting, immunofluorescence, and immunohistochemistry. Xenograft models in nude mice were established to evaluate the anticancer effects in vivo. RESULTS: α-hed exerted significant cytotoxicity against a panel of CRC cell lines by inhibiting proliferation. Besides, it induced cytoplasmic vacuolation in all CRC cells. Electron microscopy images showed the aberrant dilation of endoplasmic reticulum and mitochondria. Both mRNA and protein expressions of Alg-2 interacting proteinX (Alix), the marker of paraptosis, were inhibited by α-hed. Besides, both Swiss prediction and molecular docking showed that the structure of α-hed could tightly target to GPCRs. GPCRs were reported to activate the phospholipase C (PLC)-ß3/ inositol 1,4,5-trisphosphate receptor (IP3R)/ Ca2+/ protein kinase C alpha (PKCα) pathway, and we then found all proteins and mRNA expressions of PLCß3, IP3R, and PKCα were increased by α-hed. After blocking the GPCR signaling, α-hed could not elevate Ca2+ level and showed less CRC cell cytotoxicity. MAPK cascade is the symbol of paraptosis, and we then demonstrated that α-hed activated MAPK cascade by elevating Ca2+ flux. Since non-apoptotic cell death is presently emerging as a potential direction to overcome chemo-drug resistance, we then found α-hed also induced paraptosis in 5-fluorouracil-resistant (5-FU-R) CRC cells, and it reduced the growth of 5-FU-R CRC xenografts. CONCLUSIONS: Collectively, our findings proved α-hed as a promising candidate for inducing non-apoptotic cell death, paraptosis. It may overcome the resistance of apoptotic-based chemo-resistance in CRC.


Subject(s)
Calcium , Cell Proliferation , Colorectal Neoplasms , Oleanolic Acid , Paraptosis , Animals , Humans , Mice , Apoptosis/drug effects , Calcium/metabolism , Calcium Signaling/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , MAP Kinase Signaling System/drug effects , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Saponins/pharmacology , Xenograft Model Antitumor Assays
15.
Biomolecules ; 14(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38672468

ABSTRACT

So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms, including colon shortening and body weight loss, were attenuated by SSHT. Moreover, representative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured. A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in SSHT preparations.


Subject(s)
Anti-Inflammatory Agents , Dextran Sulfate , Lipopolysaccharides , Macrophages , Animals , Mice , Lipopolysaccharides/pharmacology , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Inflammation/drug therapy , Inflammation/chemically induced , Inflammation/pathology , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Male , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology
16.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674101

ABSTRACT

Betulonic acid (B(O)A) is a pentacyclic lupane-type triterpenoid that widely exists in plants. There are scientific reports indicating anticancer activity of B(O)A, as well as the amides and esters of this triterpenoid. In the first step of the study, the synthesis of novel amide derivatives of B(O)A containing an acetylenic moiety was developed. Subsequently, the medium-soluble compounds (EB171 and EB173) and the parent compound, i.e., B(O)A, were investigated for potential cytotoxic activity against breast cancer (MCF-7 and MDA-MB-231) and melanoma (C32, COLO 829 and A375) cell lines, as well as normal human fibroblasts. Screening analysis using the WST-1 test was applied. Moreover, the lipophilicity and ADME parameters of the obtained derivatives were determined using experimental and in silico methods. The toxicity assay using zebrafish embryos and larvae was also performed. The study showed that the compound EB171 exhibited a significant cytotoxic effect on cancer cell lines: MCF-7, A-375 and COLO 829, while it did not affect the survival of normal cells. Moreover, studies on embryos and larvae showed no toxicity of EB171 in an animal model. Compared to EB171, the compound EB173 had a weaker effect on all tested cancer cell lines and produced less desirable effects against normal cells. The results of the WST-1 assay obtained for B(O)A revealed its strong cytotoxic activity on the examined cancer cell lines, but also on normal cells. In conclusion, this article describes new derivatives of betulonic acid-from synthesis to biological properties. The results allowed to indicate a promising direction for the functionalization of B(O)A to obtain derivatives with selective anticancer activity and low toxicity.


Subject(s)
Amides , Antineoplastic Agents , Betulinic Acid , Oleanolic Acid , Zebrafish , Humans , Animals , Amides/chemistry , Amides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Oleanolic Acid/chemistry , Oleanolic Acid/chemical synthesis , Oleanolic Acid/pharmacokinetics , Cell Line, Tumor , Computer Simulation , MCF-7 Cells , Cell Survival/drug effects
17.
Biomed Pharmacother ; 174: 116529, 2024 May.
Article in English | MEDLINE | ID: mdl-38569275

ABSTRACT

Myocardial infarction (MI) is the primary cause of cardiac mortality. Esculentoside A (EsA), a triterpenoid saponin, has anti-inflammatory and antioxidant activities. However, its effect on MI remains unknown. In this study, the protective effect and mechanisms of EsA against MI were investigated. EsA significantly alleviated hypoxia-induced HL-1 cell injury, including increasing cell viability, inhibiting reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) and lactate dehydrogenase (LDH) leakage. In mouse MI model by left coronary artery (LAD) ligating, EsA obviously restored serum levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI), superoxide dismutase (SOD) and malondialdehyde (MDA). In addition, the cardioprotective effect of EsA was further confirmed by infarct size, electrocardiogram and echocardiography. Mechanistically, the targeted binding relationship between EsA and C-X-C motif chemokine receptor 2 (CXCR2) was predicted by molecular docking and dynamics, and validated by small molecule pull-down and surface plasmon resonance tests. EsA inhibited CXCR2 level both in vitro and in vivo, correspondingly alleviated oxidative stress by suppressing NOX1 and NOX2 and relieved inflammation through inhibiting p65 and p-p65. It demonstrated that EsA could play a cardioprotective role by targeting CXCR2. However, the effect of EsA against MI was abolished in combination with CXCR2 overexpression both in vitro and in vivo. This study revealed that EsA showed excellent cardioprotective activities by targeting CXCR2 to alleviate oxidative stress and inflammation in MI. EsA may function as a novel CXCR2 inhibitor and a potent candidate for the prevention and intervention of MI in the future.


Subject(s)
Myocardial Infarction , Oleanolic Acid/analogs & derivatives , Receptors, Interleukin-8B , Saponins , Animals , Saponins/pharmacology , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardial Infarction/prevention & control , Male , Mice , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Oxidative Stress/drug effects , Molecular Docking Simulation , Mice, Inbred C57BL , Oleanolic Acid/pharmacology , Cardiotonic Agents/pharmacology , Reactive Oxygen Species/metabolism , Cell Line , Disease Models, Animal , Membrane Potential, Mitochondrial/drug effects , Anti-Inflammatory Agents/pharmacology
18.
J Sep Sci ; 47(7): e2300901, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605456

ABSTRACT

An effective method by high-speed countercurrent chromatography coordinated with silver nitrate for the preparative separation of sterones and triterpenoid saponins from Achyranthes bidentata Blume was developed. Methyl tert-butyl ether/n-butanol/acetonitrile/water (4:2:3:8, v/v/v/v) was selected for 20-hydroxyecdysone (compound 1), chikusetsusaponin IVa methyl ester (compound 4), 2'-glycan-11-keto-pigmented saponin V (compound 5), as well as a pair of isomers of 25S-inokosterone (compound 2) and 25R-inokosterone (compound 3), which were further purified by silver nitrate coordinated high-speed countercurrent chromatography. What is more, dichloromethane/methanol/isopropanol/water (6:6:1:4, v/v/v/v) was applied for calenduloside E (compound 6), 3ß-[(O-ß-d-glucuronopyranosyl)-oxy]-oleana-11,13-dien-28-oic acid (compound 7), zingibroside R1 (compound 8) and chikusetsusaponin IVa (compound 9). Adding Ag+ to the solvent system resulted in unique selectivity for 25R/25S isomers of inokosterone, which increased the complexing capability and stability of Ag+ coordinated 25S-inokosterone, as well as the α value between them. These results were further confirmed by the computational calculation of geometry optimization and frontier molecular orbitals assay. Comprehensive mass spectrometry and nuclear magnetic resonance analysis demonstrated the structures of the obtained compounds.


Subject(s)
Achyranthes , Cholestenes , Oleanolic Acid/analogs & derivatives , Saponins , Countercurrent Distribution , Achyranthes/chemistry , Silver Nitrate , Plant Extracts/chemistry , Water/chemistry , Chromatography, High Pressure Liquid/methods
19.
J Chem Ecol ; 50(3-4): 168-184, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443712

ABSTRACT

Many plant species, particularly legumes, protect themselves with saponins. Previously, a correlation was observed between levels of oleanolic acid-derived saponins, such as hederagenin-derived compounds, in the legume Medicago truncatula and caterpillar deterrence. Using concentrations that reflect the foliar levels of hederagenin-type saponins, the sapogenin hederagenin was not toxic to 4th instar caterpillars of the cabbage looper Trichoplusia ni nor did it act as a feeding deterrent. Female caterpillars consumed more diet than males, presumably to obtain the additional nutrients required for oogenesis, and are, thus, exposed to higher hederagenin levels. When fed the hederagenin diet, male caterpillars expressed genes encoding trypsin-like proteins (LOC113500509, LOC113501951, LOC113501953, LOC113501966, LOC113501965, LOC113499659, LOC113501950, LOC113501948, LOC113501957, LOC113501962, LOC113497819, LOC113501946, LOC113503910) as well as stress-responsive (LOC113503484, LOC113505107) proteins and cytochrome P450 6B2-like (LOC113493761) at higher levels than females. In comparison, female caterpillars expressed higher levels of cytochrome P450 6B7-like (LOC113492289). Bioinformatic tools predict that cytochrome P450s could catalyze the oxygenation of hederagenin which would increase the hydrophilicity of the compound. Expression of a Major Facilitator Subfamily (MFS) transporter (LOC113492899) showed a hederagenin dose-dependent increase in gene expression suggesting that this transporter may be involved in sapogenin efflux. These sex-related differences in feeding and detoxification should be taken into consideration in insecticide evaluations to minimize pesticide resistance.


Subject(s)
Moths , Oleanolic Acid , Oleanolic Acid/analogs & derivatives , Saponins , Transcriptome , Animals , Female , Male , Saponins/metabolism , Saponins/chemistry , Oleanolic Acid/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/chemistry , Moths/drug effects , Moths/physiology , Moths/genetics , Transcriptome/drug effects , Larva/drug effects , Larva/genetics , Sex Characteristics
20.
Int Immunopharmacol ; 130: 111749, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38430804

ABSTRACT

AIMS: Saikosaponin F (SsF) is one of the major active ingredients of Radix Bupleuri, an herb widely used in the treatment of depression. Studies have shown that dry eye disease often occurs together with depression. The aim of this study is to investigate whether SsF can improve depression-associated dry eye disease and explore the underlying mechanism. METHODS: Behavioral test was used to verify the effect of SsF on CUMS-induced depression-like behaviors in mice. Corneal fluorescein staining, phenol red cotton thread test and periodic acid-Schiff (PAS) staining were used to observe the effect of SsF on depression-associated dry eye disease. Western blot (WB) was performed to observe the expression of TAK1 protein and key proteins of NF-κB and MAPK (P38) inflammatory pathways in the hippocampus and cornea. Immunohistochemical staining was used to observe the expression of microglia, and immunoprecipitation was used to observe K63-linked TAK1 ubiquitination. Subsequently, we constructed a viral vector sh-TAK1 to silence TAK1 protein to verify whether SsF exerted its therapeutic effect based on TAK1. The expression of inflammatory factors such as IL-1ß, TNF-α and IL-18 in hippocampus and cornea were detected by ELISA. Overexpression of TRIM8 (OE-TRIM8) by viral vector was used to verify whether SsF improved depression-associated dry eye disease based on TRIM8. RESULTS: SsF treatment significantly improved the depression-like behavior, increased tear production and restored corneal injury in depression-related dry eye model mice. SsF treatment downregulated TAK1 expression and TRIM8-induced K63-linked TAK1 polyubiquitination, while inhibiting the activation of NF-κB and MAPK (P38) inflammatory pathways and microglial expression. In addition, selective inhibition of TAK1 expression ameliorated depression-associated dry eye disease, while overexpression of TRIM8 attenuated the therapeutic effect of SsF on depression-associated dry eye disease. CONCLUSION: SsF inhibited the polyubiquitination of TAK1 by acting on TRIM8, resulting in the downregulation of TAK1 expression, inhibition of inflammatory response, and improvement of CUMS-induced depression-associated dry eye disease.


Subject(s)
Antidepressive Agents , Depression , Dry Eye Syndromes , MAP Kinase Kinase Kinases , NF-kappa B , Oleanolic Acid , Saponins , Ubiquitin-Protein Ligases , Animals , Male , Mice , Depression/complications , Depression/drug therapy , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/etiology , Inflammation/drug therapy , MAP Kinase Kinase Kinases/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins , NF-kappa B/metabolism , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Saponins/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...