Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 378: 114625, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31201822

ABSTRACT

Muscle atrophy refers to a decrease in the size of muscles in the body, occurs in certain muscles with inactivity in many diseases and lacks effective therapies up to date. Natural products still play an important role in drug discovery. In the present study, derivatives of a natural product, oleanolic acid, were screened with myoblast differentiation and myotube atrophy assays, respectively. Results revealed that one of the derivatives, HA-19 showed the most potent anti-muscle atrophy activity, and was used for further studies. We demonstrated that HA-19 led to the increase of the protein synthesis by activating mechanistic target of rapamycin complex 1 (mTORC1)/p70 S6K pathways, and also enhanced myoblast proliferation and terminal differentiation via up-regulating of the myogenic transcription factors Pax7, MyoD and Myogenin. The interesting thing was that HA-19 also suppressed protein degradation to prevent myotube atrophy by down-regulating negative growth factors, FoxO1, MuRF1 and Atrogin-1. The results were also supported by puromycin labelling and protein ubiquitination assays. These data revealed that HA-19 possessed a "dual effect" on inhibition of muscle atrophy. In disuse-induced muscle atrophy mice model, HA-19 treatment significantly increased the weights of bilateral tibialis anterior (TA), gastrocnemius (Gastroc.), quadriceps (Quad.), suggesting the effectiveness of HA-19 to remit disuse-induced muscle atrophy. Our finding demonstrated that HA-19 has a great potential as an inhibitor or lead compound for the anti-muscle atrophy drug discovery.


Subject(s)
Muscular Atrophy/drug therapy , Oleanolic Acid/physiology , Protein Biosynthesis/drug effects , Proteolysis/drug effects , Animals , Cell Differentiation/drug effects , Cell Line , Down-Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Myoblasts/drug effects , Ubiquitination/drug effects , Up-Regulation/drug effects
2.
Biochemistry ; 48(15): 3477-82, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19278262

ABSTRACT

Hederacoside C, alpha-hederin, and hederagenin are saponins of dry extracts obtained from the leaves of ivy (Hedera helix L.). Internalization of beta(2)-adrenergic receptor-GFP fusion proteins after stimulation with 1 microM terbutaline was inhibited by preincubation of stably transfected HEK293 cells with 1 microM alpha-hederin for 24 h, whereas neither hederacoside C nor hederagenin (1 microM each) influenced this receptor regulation. After incubation of A549 cells with 5 nM Alexa532-NA, two different diffusion time constants were found for beta(2)AR-Alexa532-NA complexes by fluorescence correlation spectroscopy. Evaluation of the autocorrelation curve revealed diffusion time constants: tau(bound1) = 1.4 +/- 1.1 ms (n = 6) found for receptor-ligand complexes with unrestricted lateral mobility, and tau(bound2) = 34.7 +/- 14.1 ms (n = 6) for receptor-ligand complexes with hindered mobility. The distribution of diffusion time constants was 24.3 +/- 2.5% for tau(bound1) and 8.7 +/- 4.3% for tau(bound2) (n = 6). A549 cells pretreated with 1 microM alpha-hederin for 24 h showed dose-dependent alterations in this distribution with 37.1 +/- 5.5% for tau(bound1) and 4.1 +/- 1.1% for tau(bound2). Simultaneously, the level of Alexa532-NA binding was significantly increased from 33.0 +/- 6.8 to 41.2 +/- 4.6%. In saturation experiments, alpha-hederin did not influence the beta(2)-adrenergic receptor density (B(max)), whereas the K(D) value for Alexa532-NA binding decreased from 36.1 +/- 9.2 to 24.3 +/- 11.1 nM. Pretreatment of HASM cells with alpha-hederin (1 microM, 24 h) revealed an increased intracellular cAMP level of 13.5 +/- 7.0% under stimulating conditions. Remarkably, structure-related saponins like hederacoside C and hederagenin did not influence either the binding behavior of beta(2)AR or the intracellular cAMP level.


Subject(s)
Hedera , Oleanolic Acid/analogs & derivatives , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Saponins/chemistry , Thermodynamics , Cell Line , Cell Line, Tumor , Endocytosis , Humans , Oleanolic Acid/chemistry , Oleanolic Acid/physiology , Protein Binding , Receptors, Adrenergic, beta-2/genetics
3.
Acta Biochim Biophys Sin (Shanghai) ; 39(10): 803-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17928930

ABSTRACT

It has been shown that Fructus Ligustri Lucidi (FLL), a promising traditional Chinese medicine, can inhibit the growth of tumors. However, the effective component and molecular mechanism of FLL act to inhibit tumor proliferation are unclear. In this study, we demonstrated that oleanolic acid (OA), a principal chemical component of FLL, inhibited the proliferation of human leukemia HL60 cells in culture. MTT assay showed that treatment of HL60 cells with FLL crude extracts or OA dramatically blocked the growth of target tumor cell in a time- and dose-dependent manner. Morphological changes of the nuclei and DNA fragmentation showed that apoptotic cell death occurred in the HL60 cells after treating with FLL extracts (20 mg/ml) or OA (3.65 x 10(-2) mg/ml). Furthermore, flow cytometry assay showed that treatment of HL60 cells with FLL or OA caused an increased accumulation of G(1) and sub-G(1) subpopulations. Western blot analysis showed that caspase-9 and caspase-3 were activated, accompanied by the cleavage of poly(ADP-ribose) polymerase (PARP) in the target cells during FLL- or OA-induced apoptosis. These results suggest that OA acts as the effective component of FLL by exerting its cytotoxicity towards target tumor cells through activation of caspases and cleavage of PARP.


Subject(s)
Apoptosis/physiology , Caspases/metabolism , Oleanolic Acid/physiology , Poly(ADP-ribose) Polymerase Inhibitors , Apoptosis/drug effects , Drugs, Chinese Herbal/therapeutic use , Enzyme Activation/physiology , HL-60 Cells , Humans , Hydrolysis , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/enzymology , Leukemia, Myeloid/pathology , Oleanolic Acid/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...