Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.868
Filter
1.
Nutr J ; 23(1): 61, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862960

ABSTRACT

BACKGROUND: The Mediterranean diet (MedDiet) has demonstrated efficacy in preventing age-related cognitive decline and modulating plasma concentrations of endocannabinoids (eCBs) and N-acylethanolamines (NAEs, or eCB-like compounds), which are lipid mediators involved in multiple neurological disorders and metabolic processes. Hypothesizing that eCBs and NAEs will be biomarkers of a MedDiet intervention and will be related to the cognitive response, we investigated this relationship according to sex and apolipoprotein E (APOE) genotype, which may affect eCBs and cognitive performance. METHODS: This was a prospective cohort study of 102 participants (53.9% women, 18.8% APOE-ɛ4 carriers, aged 65.6 ± 4.5 years) from the PREDIMED-Plus-Cognition substudy, who were recruited at the Hospital del Mar Research Institute (Barcelona). All of them presented metabolic syndrome plus overweight/obesity (inclusion criteria of the PREDIMED-Plus) and normal cognitive performance at baseline (inclusion criteria of this substudy). A comprehensive battery of neuropsychological tests was administered at baseline and after 1 and 3 years. Plasma concentrations of eCBs and NAEs, including 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and N-docosahexaenoylethanolamine (DHEA), were also monitored. Baseline cognition, cognitive changes, and the association between eCBs/NAEs and cognition were evaluated according to gender (crude models), sex (adjusted models), and APOE genotype. RESULTS: At baseline, men had better executive function and global cognition than women (the effect size of gender differences was - 0.49, p = 0.015; and - 0.42, p = 0.036); however, these differences became nonsignificant in models of sex differences. After 3 years of MedDiet intervention, participants exhibited modest improvements in memory and global cognition. However, greater memory changes were observed in men than in women (Cohen's d of 0.40 vs. 0.25; p = 0.017). In men and APOE-ε4 carriers, 2-AG concentrations were inversely associated with baseline cognition and cognitive changes, while in women, cognitive changes were positively linked to changes in DHEA and the DHEA/AEA ratio. In men, changes in the OEA/AEA and OEA/PEA ratios were positively associated with cognitive changes. CONCLUSIONS: The MedDiet improved participants' cognitive performance but the effect size was small and negatively influenced by female sex. Changes in 2-AG, DHEA, the OEA/AEA, the OEA/PEA and the DHEA/AEA ratios were associated with cognitive changes in a sex- and APOE-dependent fashion. These results support the modulation of the endocannabinoid system as a potential therapeutic approach to prevent cognitive decline in at-risk populations. TRIAL REGISTRATION: ISRCTN89898870.


Subject(s)
Cognition , Diet, Mediterranean , Endocannabinoids , Genotype , Metabolic Syndrome , Humans , Endocannabinoids/blood , Female , Male , Diet, Mediterranean/statistics & numerical data , Aged , Metabolic Syndrome/genetics , Cognition/physiology , Prospective Studies , Middle Aged , Arachidonic Acids/blood , Ethanolamines/blood , Polyunsaturated Alkamides/blood , Sex Factors , Glycerides/blood , Apolipoproteins E/genetics , Oleic Acids/blood , Amides , Biomarkers/blood , Palmitic Acids/blood
2.
Food Res Int ; 186: 114355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729701

ABSTRACT

In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.


Subject(s)
Digestion , Fatty Acids , Hordeum , Oleic Acid , Starch , Starch/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Hordeum/chemistry , Oleic Acid/chemistry , Stearic Acids/chemistry , Linoleic Acid/chemistry , alpha-Linolenic Acid/chemistry , Oleic Acids
3.
Front Immunol ; 15: 1374425, 2024.
Article in English | MEDLINE | ID: mdl-38745644

ABSTRACT

Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Receptors, G-Protein-Coupled , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Mice , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Gastrointestinal Microbiome/drug effects , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Mice, Knockout , Cytokines/metabolism , Disease Models, Animal , Dextran Sulfate , Oleic Acids/pharmacology , Lactobacillus plantarum , Colitis/metabolism , Colitis/chemically induced , Colitis/drug therapy , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Male
4.
J Ovarian Res ; 17(1): 111, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778429

ABSTRACT

OBJECTIVE: This clinical trial was designed and conducted due to the anti-inflammatory potential of Oleoylethanolamide (OEA) to examine the effect of OEA supplement on glycemic status, oxidative stress, inflammatory factors, and anti-Mullerian hormone (AMH) in women with polycystic ovary syndrome (PCOS). METHOD: This study was a randomized clinical trial, double-blinded, placebo-controlled that was carried out on 90 women with PCOS. Patients were divided into two groups: receiving an OEA supplement (n = 45) or a placebo (n = 45). The intervention group received 125 mg/day OEA and the placebo group received the wheat flour for 8 weeks. Demographic data were collected through questionnaires. Fasting blood sugar (FBS), insulin resistance (IR), total antioxidant capacity (TAC), malondialdehyde (MDA), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and AMH were measured before and after the study. RESULTS: Data analysis of food recall and physical activity questionnaires, showed no significant differences between the two groups (p > 0.05). Biochemical factors including glycemic status, MDA, inflammatory factors, and AMH decreased significantly (p < 0.05). TAC increased remarkably (p < 0.05) in comparison between the two groups, after the intervention. CONCLUSION: OEA supplement with anti-inflammatory characteristics could be efficient independent of diet changes and physical activity in improving disrupted biochemical factors, so both supplementation or food resources of this fatty acid could be considered as a compensatory remedy in patients with PCOS. TRIAL REGISTRATION: This study was retrospectively (09-01-2022) registered in the Iranian website ( www.irct.ir ) for registration of clinical trials (IRCT20141025019669N20).


Subject(s)
Anti-Mullerian Hormone , Blood Glucose , Dietary Supplements , Endocannabinoids , Inflammation , Oleic Acids , Oxidative Stress , Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/blood , Oxidative Stress/drug effects , Adult , Oleic Acids/therapeutic use , Oleic Acids/pharmacology , Inflammation/drug therapy , Inflammation/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Anti-Mullerian Hormone/blood , Young Adult , Insulin Resistance , Double-Blind Method , Antioxidants/pharmacology , Antioxidants/therapeutic use
5.
Psychiatry Res ; 337: 115967, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796933

ABSTRACT

The role of the endocannabinoid system (ECS) in depression and suicidality has recently emerged. The purpose of the study was to identify changes in plasma endocannabinoid concentrations of several endocannabinoids and correlate them with depressive symptoms and suicidality in patients with severe major depression undergoing electroconvulsive therapy (ECT). The study included 17 patients that were evaluated in four visits at different stages of therapy. At each visit depression, anxiety and suicidality symptoms were assessed and blood samples collected. Several endocannabinoid concentrations increased following six sessions of ECT, as 2-AG (p < 0.05) and LEA (p < 0.01), and following twelve sessions of ECT, as 2-AG (p < 0.05), AEA (p < 0.05), LEA (p < 0.05) and DH-Gly (p < 0.05). Endocannabinoids also correlated with symptoms of depression, anxiety and suicidality at baseline and at the sixth ECT session. Finally, we found one endocannabinoid, l-Gly, that differentiated between remitted and not-remitted patients at the seventh and thirteenth ECT sessions (p < 0.05). Our findings suggest that depression is markedly related to imbalance of the endocannabinoid system, and further regulated by ECT. Plasma endocannabinoids could be promising biomarkers for detection of depression response and remission.


Subject(s)
Depressive Disorder, Major , Electroconvulsive Therapy , Endocannabinoids , Humans , Endocannabinoids/blood , Depressive Disorder, Major/blood , Depressive Disorder, Major/therapy , Female , Male , Middle Aged , Adult , Arachidonic Acids/blood , Aged , Polyunsaturated Alkamides/blood , Glycerides/blood , Oleic Acids/blood , Psychiatric Status Rating Scales , Suicidal Ideation
6.
Drug Alcohol Depend ; 259: 111276, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38676968

ABSTRACT

BACKGROUND: As nicotine dependence represents a longstanding major public health issue, new nicotine cessation pharmacotherapies are needed. Administration of N-oleoyl glycine (OlGly), an endogenous lipid signaling molecule, prevents nicotine-induced conditioned place preference (CPP) through a peroxisome proliferator-activated receptor-alpha (PPARα) dependent mechanism, and also ameliorated withdrawal signs in nicotine-dependent mice. Pharmacological evidence suggests that the methylated analog of OlGly, N-oleoyl alanine (OlAla), has an increased duration of action and may offer translational benefit. Accordingly, OlAla was assessed in nicotine CPP and dependence assays as well as its pharmacokinetics compared to OlGly. METHODS: ICR female and male mice were tested in nicotine-induced CPP with and without the PPARα antagonist GW6471. OlAla was also assessed in nicotine-dependent mice following removal of nicotine minipumps: somatic withdrawal signs, thermal hyper-nociception and altered affective behavior (i.e., light/dark box). Finally, plasma and brain were collected after administration of OlGly or OlAla and analyzed by high-performance liquid chromatography tandem mass spectrometry. RESULTS: OlAla prevented nicotine-induced CPP, but this effect was not blocked by GW6471. OlAla attenuated somatic and affective nicotine withdrawal signs, but not thermal hyper-nociception in nicotine-dependent mice undergoing withdrawal. OlAla and OlGly showed similar time-courses in plasma and brain. CONCLUSIONS: The observation that both molecules showed similar pharmacokinetics argues against the notion that OlAla offers increased metabolic stability. Moreover, while these structurally similar lipids show efficacy in mouse models of reward and dependence, they reduce nicotine reward through distinct mechanisms.


Subject(s)
Mice, Inbred ICR , Nicotine , Reward , Substance Withdrawal Syndrome , Tobacco Use Disorder , Animals , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/drug therapy , Mice , Male , Nicotine/pharmacology , Female , Tobacco Use Disorder/metabolism , PPAR alpha/metabolism , Alanine/pharmacology , Alanine/analogs & derivatives , Oleic Acids/pharmacology , Glycine/pharmacology , Glycine/analogs & derivatives , Aminopyridines/pharmacology , Brain/metabolism , Brain/drug effects , Oxazoles , Tyrosine/analogs & derivatives
7.
Toxicol Appl Pharmacol ; 486: 116939, 2024 May.
Article in English | MEDLINE | ID: mdl-38643951

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κß, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-ß1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Bleomycin , Candida parapsilosis , Mice, Inbred C57BL , MicroRNAs , Pulmonary Fibrosis , Smad3 Protein , Surface-Active Agents , Transforming Growth Factor beta1 , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/prevention & control , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Bleomycin/toxicity , Antioxidants/pharmacology , Transforming Growth Factor beta1/metabolism , Anti-Inflammatory Agents/pharmacology , Smad3 Protein/metabolism , Mice , Candida parapsilosis/drug effects , Surface-Active Agents/pharmacology , MicroRNAs/metabolism , Male , Signal Transduction/drug effects , Bacillus , Lung/drug effects , Lung/pathology , Lung/metabolism , Oxidative Stress/drug effects , Oleic Acids
8.
Molecules ; 29(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611871

ABSTRACT

Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNß. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNß leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNß signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNß-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.


Subject(s)
Amides , Endocannabinoids , Ethanolamines , Neuroblastoma , Oleic Acids , Humans , Neuroblastoma/drug therapy , B7-H1 Antigen , Janus Kinases , PPAR alpha , Poly(ADP-ribose) Polymerase Inhibitors , STAT Transcription Factors , Signal Transduction , Apoptosis , Palmitic Acids/pharmacology
9.
Appl Microbiol Biotechnol ; 108(1): 296, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607413

ABSTRACT

Sophorolipids (SLs) are promising glycolipid biosurfactants as they are easily produced and functional. SLs from microorganisms are comprised of mixtures of multiple derivatives that have different structures and properties, including well-known acidic and lactonic SL (ASLs and LSLs, respectively). In this study, we established a method for analyzing all SL derivatives in the products of Starmerella bombicola, a typical SL-producing yeast. Detailed component analyses of S. bombicola products were carried out using reversed-phase high-performance liquid chromatography and mass spectrometry. Methanol was used as the eluent as it is a good solvent for all SL derivatives. With this approach, it was possible to not only quantify the ratio of the main components of ASL, LSL, and SL glycerides but also confirm trace components such as SL mono-glyceride and bola-form SL (sophorose at both ends); notably, this is the first time these components have been isolated and identified successfully in naturally occurring SLs. In addition, our results revealed a novel SL derivative in which a fatty acid is bonded in series to the ASL, which had not been reported previously. Using the present analysis method, it was possible to easily track compositional changes in the SL components during culture. Our results showed that LSL and ASL are produced initially and that SL glycerides accumulate from the middle stage during the fermentation process. KEY POINTS: • An easy and detailed component analysis method for sophorolipids (SLs) is introduced. • Multiple SL derivatives were identified different from known SLs. • A novel hydrophobic acidic SL was isolated and characterized.


Subject(s)
Oleic Acids , Saccharomycetales , Fatty Acids , Glycerides
10.
Lipids Health Dis ; 23(1): 122, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678208

ABSTRACT

BACKGROUND: Previous studies have demonstrated that trans fatty acids (TFAs) intake was linked to an increased risk of chronic diseases. As a novel systemic inflammatory biomarker, the clinical value and efficacy of the systemic immune-inflammation index (SII) have been widely explored. However, the association between TFAs and SII is still unclear. Therefore, the study aims to investigate the connection between TFAs and SII in US adults. METHODS: The study retrieved data from the National Health and Nutrition Examination Survey (NHANES) for the years 1999-2000 and 2009-2010. Following the exclusion of ineligible participants, the study encompassed a total of 3047 individuals. The research employed a multivariate linear regression model to investigate the connection between circulating TFAs and SII. Furthermore, the restricted cubic spline (RCS) model was utilized to evaluate the potential nonlinear association. Subgroup analysis was also conducted to investigate the latent interactive factors. RESULTS: In this investigation, participants exhibited a mean age of 47.40 years, with 53.91% of them being female. Utilizing a multivariate linear regression model, the independent positive associations between the log2-transformed palmitelaidic acid, the log2 transformed-vaccenic acid, the log2-transformed elaidic acid, the log2-transformed linolelaidic acid, and the log2-transformed-total sum of TFAs with the SII (all P < 0.05) were noted. In the RCS analysis, no nonlinear relationship was observed between the log2-transformed palmitelaidic acid, the log2 transformed-vaccenic acid, the log2-transformed elaidic acid, the log2-transformed linolelaidic acid, the log2-transformed-total sum of TFAs and the SII (all P for nonlinear > 0.05). For the stratified analysis, the relationship between the circulating TFAs and the SII differed by the obesity status and the smoking status. CONCLUSIONS: A positive association was investigated between three types of TFA, the sum of TFAs, and the SII in the US population. Additional rigorously designed studies are needed to verify the results and explore the potential mechanism.


Subject(s)
Inflammation , Trans Fatty Acids , Humans , Trans Fatty Acids/blood , Female , Middle Aged , Male , Cross-Sectional Studies , Adult , Inflammation/blood , Inflammation/immunology , Nutrition Surveys , Oleic Acids , Linear Models , Biomarkers/blood
11.
Environ Sci Pollut Res Int ; 31(19): 28632-28643, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558334

ABSTRACT

Lipases represent versatile biocatalysts extensively employed in transesterification reactions for ester production. Ethyl oleate holds significance in biodiesel production, serving as a sustainable alternative to petroleum-derived diesel. In this study, our goal was to prospect lipase and assess its efficacy as a biocatalyst for ethyl oleate synthesis. For quantitative analysis, a base medium supplemented with Rhodamine B, olive oil, and Tween 80 was used. Solid-state fermentation utilized crambe seeds of varying particle sizes and humidity levels as substrates. In the synthesis of ethyl oleate, molar ratios of 1:3, 1:6, and 1:9, along with a total enzymatic activity of 60 U in n-heptane, were utilized at temperatures of 30 °C, 37 °C, and 44 °C. Reactions were conducted in a shaker at 200 rpm for 60 min. As a result, we first identified Penicillium polonicum and employed the method of solid-state fermentation using crambe seeds as a substrate to produce lipase. Our findings revealed heightened lipolytic activity (22.5 Ug-1) after 96 h of fermentation using crambe cake as the substrate. Optimal results were achieved with crambe seeds at a granulometry of 0.6 mm and a fermentation medium humidity of 60%. Additionally, electron microscopy suggested the immobilization of lipase in the substrate, enabling enzyme reuse for up to 4 cycles with 100% enzymatic activity. Subsequently, we conducted applicability tests of biocatalysts for ethyl oleate synthesis, optimizing parameters such as the acid/alcohol molar ratio, temperature, and reaction time. We attained 100% conversion within 30 min at 37 °C, and our results indicated that the molar ratio proportion did not significantly influence the outcome. These findings provide a methodological alternative for the utilization of biocatalysts in ethyl oleate synthesis.


Subject(s)
Fermentation , Lipase , Oleic Acids , Penicillium , Oleic Acids/biosynthesis , Oleic Acids/metabolism , Penicillium/metabolism , Lipase/metabolism , Esterification , Biocatalysis , Lipolysis
12.
Microbiol Res ; 283: 127689, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493529

ABSTRACT

The replacement of agrochemicals by biomolecules is imperative to mitigate soil contamination and inactivation of its core microbiota. Within this context, this study aimed at the interaction between a biological control agent such as Trichoderma harzianum CCT 2160 (BF-Th) and the biosurfactants (BSs) derived from the native Brazilian yeast Starmerella bombicola UFMG-CM-Y6419. Thereafter, their potential in germination of Oryza sativa L. seeds was tested. Both bioproducts were produced on site and characterized according to their chemical composition by HPLC-MS and GC-MS for BSs and SDS-PAGE gel for BF-Th. The BSs were confirmed to be sophorolipids (SLs) which is a well-studied compound with antimicrobial activity. The biocompatibility was examined by cultivating the fungus with SLs supplementation ranging from 0.1 to 2 g/L in solid and submerged fermentation. In solid state fermentation the supplementation of SLs enhanced spore production, conferring the synergy of both bioproducts. For the germination assays, bioformulations composed of SLs, BF-Th and combined (SLT) were applied in the germination of O. sativa L seeds achieving an improvement of up to 30% in morphological aspects such as root and shoot size as well as the presence of lateral roots. It was hypothesized that SLs were able to regulate phytohormones expression such as auxins and gibberellins during early stage of growth, pointing to their novel plant-growth stimulating properties. Thus, this study has pointed to the potential of hybrid bioformulations composed of biosurfactants and active endophytic fungal spores in order to augment the plant fitness and possibly the control of diseases.


Subject(s)
Hypocreales , Oleic Acids , Trichoderma , Brazil , Yeasts
13.
Se Pu ; 42(3): 234-244, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38503700

ABSTRACT

Ziziphi Spinosae Semen refers to the dried seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou. The seed is composed of a reddish brown coat and a yellow kernel. A comparative study was conducted to investigate differences in the chemical composition and their relative contents between the seed coat and kernel of Ziziphi Spinosae Semen. First, the chemical compounds found in the seed coat and kernel were characterized and identified using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The analytical results tentatively identified 57 chemical compounds based on reference-compound comparison, literature retrieval, and chemical-database (e. g., MassBank) searches; these compounds included 14 triterpenes, 23 flavonoids, 7 alkaloids, 6 carboxylic acids, and 7 other types of compounds. The mass error of the identified compounds was within the mass deviation range of 5×10-6 (5 ppm). Next, two methods of multivariate statistical analysis, namely, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), were used to compare the differential compounds between the two seed parts. A total of 17 differential compounds were screened out via OPLS-DA based on a variable importance in projection (VIP) value of >5. The results revealed that betulinic acid, betulonic acid, alphitolic acid, and jujuboside Ⅰ mainly existed in the seed coat whereas the 13 other compounds, such as spinosin, jujuboside A, and 6‴-feruloylspinosin, mainly existed in the seed kernel. Therefore, these 17 differential compounds can be used to distinguish between the two seed parts. Finally, a semiquantitative method was established using UPLC and a charged aerosol detector (CAD) with inverse gradient compensation in the mobile phase. Six representative compounds with different types were selected to examine the CAD response consistency: magnoflorine (alkaloid), spinosin (flavone), 6‴-feruloylspinosin (flavone), jujuboside A (triterpenoid saponin), jujuboside B (triterpenoid saponin), and betulinic acid (triterpenoid acid). The results showed that the relative standard deviation (RSD) of the average response factors at different levels of these six compounds was 7.04% and that their response intensities were similar. Moreover, each compound in the fingerprint demonstrated good response consistency, and the peak areas obtained directly reflected the contents of each compound. Based on the semiquantitative fingerprints obtained, betulinic acid and oleic acid were considered the main components of the seed coat. The betulinic acid content in the seed coat was approximately 7 times higher than that in the seed kernel. Spinosin, jujuboside A, linoleic acid, betulinic acid, and oleic acid were the main components of the seed kernel. The spinosin content in the seed kernel was 18 times higher than that in the seed coat. In addition, the jujuboside A content in the seed kernel was 24 times higher than that in the seed coat. The proposed method can accurately determine the main components and compare the relative contents of these components in different seed parts. In summary, this study identified the differences in chemical components between the seed coat and kernel of Ziziphi Spinosae Semen and clarified the main components and their relative contents in these parts. The findings can not only provide a basis for the identification of chemical compounds and quality research on different parts of Ziziphi Spinosae Semen but also promote the development and utilization of this traditional Chinese medicine.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Flavones , Saponins , Triterpenes , Ziziphus , Drugs, Chinese Herbal/chemistry , Betulinic Acid , Saponins/chemistry , Oleic Acids , Chromatography, High Pressure Liquid , Ziziphus/chemistry , Seeds
14.
BMC Vet Res ; 20(1): 82, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448902

ABSTRACT

BACKGROUND: Senecavirus A (SVA) causes an emerging vesicular disease (VD) with clinical symptoms indistinguishable from other vesicular diseases, including vesicular stomatitis (VS), foot-and-mouth disease (FMD), and swine vesicular disease (SVD). Currently, SVA outbreaks have been reported in Canada, the U.S.A, Brazil, Thailand, Vietnam, Colombia, and China. Based on the experience of prevention and control of FMDV, vaccines are the best means to prevent SVA transmission. RESULTS: After preparing an SVA inactivated vaccine (CH-GX-01-2019), we evaluated the immunogenicity of the SVA inactivated vaccine mixed with Imject® Alum (SVA + AL) or Montanide ISA 201 (SVA + 201) adjuvant in mice, as well as the immunogenicity of the SVA inactivated vaccine combined with Montanide ISA 201 adjuvant in post-weaned pigs. The results of the mouse experiment showed that the immune effects in the SVA + 201 group were superior to that in the SVA + AL group. Results from pigs immunized with SVA inactivated vaccine combined with Montanide ISA 201 showed that the immune effects were largely consistent between the SVA-H group (200 µg) and SVA-L group (50 µg); the viral load in tissues and blood was significantly reduced and no clinical symptoms occurred in the vaccinated pigs. CONCLUSIONS: Montanide ISA 201 is a better adjuvant choice than the Imject® Alum adjuvant in the SVA inactivated vaccine preparation, and the CH-GX-01-2019 SVA inactivated vaccine can provide effective protection for pigs.


Subject(s)
Adjuvants, Immunologic , Alum Compounds , Mannitol/analogs & derivatives , Mineral Oil , Oleic Acids , Picornaviridae , Animals , Mice , Swine , Vaccines, Inactivated
15.
Cell Metab ; 36(4): 822-838.e8, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38350448

ABSTRACT

Immunomodulatory effects of long-chain fatty acids (LCFAs) and their activating enzyme, acyl-coenzyme A (CoA) synthetase long-chain family (ACSL), in the tumor microenvironment remain largely unknown. Here, we find that ACSL5 functions as an immune-dependent tumor suppressor. ACSL5 expression sensitizes tumors to PD-1 blockade therapy in vivo and the cytotoxicity mediated by CD8+ T cells in vitro via regulation of major histocompatibility complex class I (MHC-I)-mediated antigen presentation. Through screening potential substrates for ACSL5, we further identify that elaidic acid (EA), a trans LCFA that has long been considered harmful to human health, phenocopies to enhance MHC-I expression. EA supplementation can suppress tumor growth and sensitize PD-1 blockade therapy. Clinically, ACSL5 expression is positively associated with improved survival in patients with lung cancer, and plasma EA level is also predictive for immunotherapy efficiency. Our findings provide a foundation for enhancing immunotherapy through either targeting ACSL5 or metabolic reprogramming of antigen presentation via dietary EA supplementation.


Subject(s)
Antigen Presentation , Neoplasms , Oleic Acids , Humans , CD8-Positive T-Lymphocytes/metabolism , Programmed Cell Death 1 Receptor , Dietary Supplements , Tumor Microenvironment , Coenzyme A Ligases/metabolism
16.
Bioprocess Biosyst Eng ; 47(3): 381-392, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38421396

ABSTRACT

Sophorolipid (SL) production by Candida catenulata from sunflower fatty acids was studied in a bubble column reactor (BCR). The specific oxygen uptake rate was 0.021 mg gcell-1 min-1 which indicates the importance of aeration in SL biosynthesis. The measurement of oxygen transfer rate (OTR) in the BCR showed a satisfactory OTR value of about 0.093 min-1 in the system. However, further SL production was stopped after 30 h in the BCR mainly due to the product accumulation in the culture and its inhibitory effects on cell growth and SL synthesis. Since an extensive foam was generated in the BCR under the absence of an antifoam agent, the development of an in situ foam recovery system provided the integration of production and separation of SL to handle the problem. The application of the foam recovery system enhanced biomass and titer SL concentration by 38.5 and 28.2% in comparison with the conventional BCR, respectively. Further studies in the system were performed by monitoring the size of bubbles and their effects on the biomass and SL enrichment in the foam stream at different aeration rates where the SL enrichment varied from 900 to 100% at 12 and 50 h of the fermentation.


Subject(s)
Fatty Acids , Oleic Acids , Fermentation , Oxygen
17.
J Oleo Sci ; 73(2): 169-176, 2024.
Article in English | MEDLINE | ID: mdl-38311407

ABSTRACT

Skin disorders, including acne vulgaris, atopic dermatitis, and rosacea, are characterized by the presence of biofilms, which are communities of microorganisms. The mechanical stability of biofilms is attributed to one of their constituents-polysaccharides-which are secreted by microorganisms. Sophorolipids are biosurfactants with biofilm disruption and removal abilities and are expected to become alternatives for classical petrochemical-based surfactants in cosmetics. In this study, we investigated the influence of sophorolipids on ß-glucan such as dispersion status, interaction mechanism, and configuration change as a model polysaccharide of biofilm in aqueous solution. Dynamic light scattering measurements showed that sophorolipids interfere with the aggregation of ß- glucan in aqueous solutions. In contrast, sodium dodecyl sulfate (SDS), which is used as a typical surfactant reference, promotes the aggregation of ß-glucan. The interaction between sophorolipids and ß-glucan were investigated using surface tension measurements and isothermal titration calorimetry (ITC). Surface tension increased only near critical micelle concentration (CMC) region of sophorolipids in the presence of ß-glucan. This suggests that the interaction occurred in the solution rather than at the air-liquid interface. Moreover, the results of ITC indicate that hydrophobic interactions were involved in this interaction. In addition, the results of optical rotation measurements indicate that sophorolipids did not unfold the triple helical structure of ß-glucan. ß-glucan dispersion was expected to be caused steric hindrance and electrostatic repulsion when sophorolipids interacted with ß-glucan via hydrophobic interactions owing to the unique molecular structure of sophorolipids attributed by a bulky sugar moiety and a carboxyl functional group. These results demonstrated unique performances of sophorolipids on ß-glucan and provided more insights on the efficacy of sophorolipids as good anti-biofilms.


Subject(s)
Oleic Acids , Surface-Active Agents , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Polysaccharides , Solutions
18.
Poult Sci ; 103(3): 103408, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320393

ABSTRACT

High oleic (HO) soybeans may serve as a value-added feed ingredient; providing amino acids and estimating their dietary energy value for broilers is essential. In this study, we determined the apparent metabolizable energy (AME), AME corrected for zero nitrogen retention (AMEn), digestibility, and nitrogen (N) retention of HO full-fat (HO-FF) soybean as compared to solvent-extracted soybean meal (SE-SBM), normal oleic full-fat (NO-FF) and extruded expeller (NO-EE) soybean. A total of 240 Ross-708 male broilers were selected, with 8 replicates per treatment and 6 chicks per cage. The AME and AMEn were estimated using the difference method with a 30% inclusion of test ingredients using a corn-soy reference diet with partial and total excreta collection. The index method with partial excreta collection used titanium dioxide as an inert marker. The same starter diet was provided for all birds for 14 d, followed by the reference and assay diets for the next 6 adaptation days. Total excreta were collected twice a day for 3 d. The AME and AMEn values determined for the HO-FF and NO-FF were higher (P < 0.001) than the NO-EE and SE-SBM. The AME of SE-SBM and NO-EE were similar with both methods, but the AMEn of SE-SBM was lower than the NO-EE only with the partial collection method. The agreement between AME and AMEn values determined by partial and total excreta collection analysis was 98%. Data from the total excreta collection method yielded higher AME and AMEn values (P < 0.001) than those from the partial collection method. In summary, HO-FF and NO-FF soybean meals had similar AME and AMEn values. The HO-FF soybean had 39 and 24% higher AME and AMEn than SE-SBM. Hence, high oleic full-fat soybean meal could serve as a valuable alternative feed ingredient to conventional SE-SBM meals in broiler diets, providing additional energy while providing amino acids and more oleic acid to enrich poultry meat products.


Subject(s)
Chickens , Glycine max , Animals , Male , Chickens/metabolism , Flour , Nitrogen/metabolism , Animal Feed/analysis , Energy Metabolism , Animal Nutritional Physiological Phenomena , Amino Acids/metabolism , Oleic Acids/metabolism
19.
J Chem Ecol ; 50(3-4): 100-109, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38270733

ABSTRACT

Insect exocrine gland products can be involved in sexual communication, defense, territory labelling, aggregation and alarm. In the vinegar fly Drosophila melanogaster the ejaculatory bulb synthesizes and releases 11-cis-Vaccenyl acetate (cVa). This pheromone, transferred to the female during copulation, affects aggregation, courtship and male-male aggressive behaviors. To determine the ability of male flies to replenish their cVa levels, males of a control laboratory strain and from the desat1 pheromone-defective mutant strain were allowed to mate successively with several females. We measured mating frequency, duration and latency, the amount of cVa transferred to mated females and the residual cVa in tested males. Mating duration remained constant with multiple matings, but we found that the amount of cVa transferred to females declined with multiple matings, indicating that, over short, biologically-relevant periods, replenishment of the pheromone does not keep up with mating frequency, resulting in the transfer of varying quantities of cVa. Adult responses to cVa are affected by early developmental exposure to this pheromone; our revelation of quantitative variation in the amount of cVa transferred to females in the event of multiple matings by a male suggests variable responses to cVa shown by adults produced by such matings. This implies that the natural role of this compound may be richer than suggested by laboratory experiments that study only one mating event and its immediate behavioral or neurobiological consequences.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Fatty Acid Desaturases , Sex Attractants , Sexual Behavior, Animal , Animals , Male , Female , Drosophila melanogaster/physiology , Drosophila melanogaster/drug effects , Sexual Behavior, Animal/drug effects , Sex Attractants/metabolism , Sex Attractants/pharmacology , Oleic Acids/metabolism , Pheromones/metabolism
20.
Colloids Surf B Biointerfaces ; 234: 113749, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38241893

ABSTRACT

Exploring the natural, safe, and effective antimicrobial is one of the preferable ways to control foodborne bacteria. In this work, novel oil-in-water nanoemulsions were formulated with sophorolipids and eugenol without any co-surfactant using a self-assembling strategy. These nanoemulsions showed high stability with sizes less than 200 nm when exposure to low concentrations of salt ions, various pH values (5.0, 7.0, 10.0), storage temperature and time. The synergistic antibacterial effects against both Gram-negative Escherichia coli and Gram-positive Bacillus cereus were determined with a minimum inhibitory concentration (MIC) value of 0.5 mg/mL and 0.125 mg/mL, respectively. Further microscopy (SEM, TEM, LCSM) examination and ATP/Na+-K+-ATPase assay results showed that the morphological changes, intensive cell membrane permeability, leakage of ATP, and decreased Na+-K+-ATPase contributed to the antibacterial effects. Moreover, the bonding mechanism between nanoemulsions and cell membranes were further evaluated by FTIR and ITC using a DPPC vesicle model, which demonstrated that the nanoemulsions adsorbed on the surface of bilayer, interacted with the hydrophobic chains of DPPC membrane mainly through the hydrophobic interaction, and altered the structural integrity of the lipid bilayer. These results not only provide a facile green strategy for fabricating stable nanoemulsions, but also highlight a new perspective for stabilizing essential oils for their widely application in food industry.


Subject(s)
Eugenol , Oils, Volatile , Oleic Acids , Eugenol/pharmacology , Eugenol/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Oils, Volatile/chemistry , Adenosine Triphosphatases , Adenosine Triphosphate , Emulsions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...