Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Evol Biol ; 15: 245, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26555542

ABSTRACT

BACKGROUND: Whole genome duplications (WGDs) have been proposed to have made a significant impact on vertebrate evolution. Two rounds of WGD (1R and 2R) occurred in the common ancestor of Gnathostomata and Cyclostomata, followed by the third-round WGD (3R) in a common ancestor of all modern teleosts. The 3R-derived paralogs are good models for understanding the evolution of genes after WGD, which have the potential to facilitate phenotypic diversification. However, the recent studies of 3R-derived paralogs tend to be based on in silico analyses. Here we analyzed the paralogs encoding teleost olfactory marker protein (OMP), which was shown to be specifically expressed in mature olfactory sensory neurons and is expected to be involved in olfactory transduction. RESULTS: Our genome database search identified two OMPs (OMP1 and OMP2) in teleosts, whereas only one was present in other vertebrates. Phylogenetic and synteny analyses suggested that OMP1 and 2 were derived from 3R. Both OMPs showed distinct expression patterns in zebrafish; OMP1 was expressed in the deep layer of the olfactory epithelium (OE), which is consistent with previous studies of mice and zebrafish, whereas OMP2 was sporadically expressed in the superficial layer. Interestingly, OMP2 was expressed in a very restricted region of the retina as well as in the OE. In addition, the analysis of transcriptome data of spotted gar, a non-teleost fish, revealed that single OMP gene was expressed in the eyes. CONCLUSION: We found distinct expression patterns of zebrafish OMP1 and 2 at the tissue and cellular level. These differences in expression patterns may be explained by subfunctionalization as the model of molecular evolution. Namely, single OMP gene was speculated to be originally expressed in the OE and the eyes in the common ancestor of all Osteichthyes (bony fish including tetrapods). Then, two OMP gene paralogs derived from 3R-WGD reduced and specialized the expression patterns. This study provides a good example for analyzing a functional subdivision of the teleost OE and eyes as revealed by 3R-derived paralogs of OMPs.


Subject(s)
Evolution, Molecular , Fishes/genetics , Gene Duplication , Olfactory Marker Protein/genetics , Amino Acid Sequence , Animals , Fishes/classification , Genome , Humans , Mice , Molecular Sequence Data , Olfactory Marker Protein/chemistry , Olfactory Marker Protein/metabolism , Phylogeny , Retina/metabolism , Sequence Alignment , Synteny , Transcriptome , Zebrafish/genetics
2.
Eur J Histochem ; 55(4): e35, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-22297441

ABSTRACT

The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.


Subject(s)
Neuroanatomy , Olfactory Marker Protein/chemistry , Olfactory Pathways/physiology , Animals , Humans , Models, Biological , Neurogenesis , Olfactory Marker Protein/physiology
3.
J Biomol NMR ; 40(2): 121-33, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18085411

ABSTRACT

Finding the dynamics of an entire macromolecule is a complex problem as the model-free parameter values are intricately linked to the Brownian rotational diffusion of the molecule, mathematically through the autocorrelation function of the motion and statistically through model selection. The solution to this problem was formulated using set theory as an element of the universal set [formula: see text]-the union of all model-free spaces (d'Auvergne EJ and Gooley PR (2007) Mol BioSyst 3(7), 483-494). The current procedure commonly used to find the universal solution is to initially estimate the diffusion tensor parameters, to optimise the model-free parameters of numerous models, and then to choose the best model via model selection. The global model is then optimised and the procedure repeated until convergence. In this paper a new methodology is presented which takes a different approach to this diffusion seeded model-free paradigm. Rather than starting with the diffusion tensor this iterative protocol begins by optimising the model-free parameters in the absence of any global model parameters, selecting between all the model-free models, and finally optimising the diffusion tensor. The new model-free optimisation protocol will be validated using synthetic data from Schurr JM et al. (1994) J Magn Reson B 105(3), 211-224 and the relaxation data of the bacteriorhodopsin (1-36)BR fragment from Orekhov VY (1999) J Biomol NMR 14(4), 345-356. To demonstrate the importance of this new procedure the NMR relaxation data of the Olfactory Marker Protein (OMP) of Gitti R et al. (2005) Biochem 44(28), 9673-9679 is reanalysed. The result is that the dynamics for certain secondary structural elements is very different from those originally reported.


Subject(s)
Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Rotation , Algorithms , Amides/chemistry , Bacteriorhodopsins/chemistry , Crystallography, X-Ray , Diffusion , Olfactory Marker Protein/chemistry , Peptide Fragments/chemistry , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...