Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.851
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000511

ABSTRACT

The ion channels Piezo 1 and Piezo 2 have been identified as membrane mechano-proteins. Studying mechanosensitive channels in chemosensory organs could help in understanding the mechanisms by which these channels operate, offering new therapeutic targets for various disorders. This study investigates the expression patterns of Piezo proteins in zebrafish chemosensory organs. For the first time, Piezo protein expression in adult zebrafish chemosensory organs is reported. In the olfactory epithelium, Piezo 1 immunolabels kappe neurons, microvillous cells, and crypt neurons, while Calretinin is expressed in ciliated sensory cells. The lack of overlap between Piezo 1 and Calretinin confirms Piezo 1's specificity for kappe neurons, microvillous cells, and crypt neurons. Piezo 2 shows intense immunoreactivity in kappe neurons, one-ciliated sensory cells, and multi-ciliated sensory cells, with overlapping Calretinin expression, indicating its olfactory neuron nature. In taste buds, Piezo 1 immunolabels Merkel-like cells at the bases of cutaneous and pharyngeal taste buds and the light and dark cells of cutaneous and oral taste buds. It also marks the dark cells of pharyngeal taste buds and support cells in oral taste buds. Piezo 2 is found in the light and dark cells of cutaneous and oral taste buds and isolated chemosensory cells. These findings provide new insights into the distribution of Piezo channels in zebrafish chemosensory organs, enhancing our understanding of their sensory processing and potential therapeutic applications.


Subject(s)
Ion Channels , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Ion Channels/metabolism , Ion Channels/genetics , Taste Buds/metabolism , Calbindin 2/metabolism , Olfactory Mucosa/metabolism
2.
Cell Death Dis ; 15(7): 478, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961086

ABSTRACT

A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.


Subject(s)
Neuroglia , Neurons , Humans , Animals , Neuroglia/metabolism , Neuroglia/cytology , Neurons/metabolism , Neurons/cytology , Mice , Adult , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage , Hippocampus/cytology , Hippocampus/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Cells, Cultured
3.
J Otolaryngol Head Neck Surg ; 53: 19160216241258431, 2024.
Article in English | MEDLINE | ID: mdl-38888945

ABSTRACT

IMPORTANCE: Mesenchymal stem cells (MSCs) have the capability of providing ongoing paracrine support to degenerating tissues. Since MSCs can be extracted from a broad range of tissues, their specific surface marker profiles and growth factor secretions can be different. We hypothesized that MSCs derived from different sources might also have different neuroprotective potential. OBJECTIVE: In this study, we extracted MSCs from rodent olfactory mucosa and compared their neuroprotective effects on auditory hair cell survival with MSCs extracted from rodent adipose tissue. METHODS: Organ of Corti explants were dissected from 41 cochlea and incubated with olfactory mesenchymal stem cells (OMSCs) and adipose mesenchymal stem cells (AMSCs). After 72 hours, Corti explants were fixed, stained, and hair cells counted. Growth factor concentrations were determined in the supernatant and cell lysate using Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS: Co-culturing of organ of Corti explants with OMSCs resulted in a significant increase in inner and outer hair cell stereocilia survival, compared to control. Comparisons between both stem cell lines, showed that co-culturing with OMSCs resulted in superior inner and outer hair cell stereocilia survival rates over co-culturing with AMSCs. Assessment of growth factor secretions revealed that the OMSCs secrete significant amounts of insulin-like growth factor 1 (IGF-1). Co-culturing OMSCs with organ of Corti explants resulted in a 10-fold increase in IGF-1 level compared to control, and their secretion was 2 to 3 times higher compared to the AMSCs. CONCLUSIONS: This study has shown that OMSCs may mitigate auditory hair cell stereocilia degeneration. Their neuroprotective effects may, at least partially, be ascribed to their enhanced IGF-1 secretory abilities compared to AMSCs.


Subject(s)
Hair Cells, Auditory , Insulin-Like Growth Factor I , Mesenchymal Stem Cells , Animals , Insulin-Like Growth Factor I/metabolism , Mesenchymal Stem Cells/metabolism , Rats , Hair Cells, Auditory/metabolism , Olfactory Mucosa/cytology , Enzyme-Linked Immunosorbent Assay , Coculture Techniques , Cell Survival , Cells, Cultured , Adipose Tissue/cytology , Mesenchymal Stem Cell Transplantation/methods
4.
Front Neural Circuits ; 18: 1406218, 2024.
Article in English | MEDLINE | ID: mdl-38903957

ABSTRACT

The olfactory epithelium (OE) is directly exposed to environmental agents entering the nasal cavity, leaving OSNs prone to injury and degeneration. The causes of olfactory dysfunction are diverse and include head trauma, neurodegenerative diseases, and aging, but the main causes are chronic rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced airflow due to local inflammation, inflammatory cytokine production, release of degranulated proteins from eosinophils, and cell injury lead to decreased olfactory function. It is well known that injury-induced loss of mature OSNs in the adult OE causes massive regeneration of new OSNs within a few months through the proliferation and differentiation of progenitor basal cells that are subsequently incorporated into olfactory neural circuits. Although normal olfactory function returns after injury in most cases, prolonged olfactory impairment and lack of improvement in olfactory function in some cases poses a major clinical problem. Persistent inflammation or severe injury in the OE results in morphological changes in the OE and respiratory epithelium and decreases the number of mature OSNs, resulting in irreversible loss of olfactory function. In this review, we discuss the histological structure and distribution of the human OE, and the pathogenesis of olfactory dysfunction associated with CRS and viral infection.


Subject(s)
Olfactory Mucosa , Humans , Olfactory Mucosa/pathology , Olfactory Mucosa/metabolism , Olfaction Disorders/etiology , Olfaction Disorders/physiopathology , Olfaction Disorders/pathology , Olfactory Receptor Neurons/physiology , Olfactory Receptor Neurons/metabolism , Sinusitis/pathology , Sinusitis/physiopathology , Rhinitis/pathology , Rhinitis/physiopathology , Rhinitis/metabolism , Animals
5.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892263

ABSTRACT

The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Mice , Olfactory Receptor Neurons/metabolism , Smell/physiology , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Mice, Knockout , Carrier Proteins/metabolism , Carrier Proteins/genetics , Olfactory Mucosa/metabolism , Gene Expression Regulation , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Humans
6.
World J Biol Psychiatry ; 25(6): 317-329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38869228

ABSTRACT

OBJECTIVES: Neural stem/progenitor cells derived from olfactory neuroepithelium (hereafter olfactory neural stem/progenitor cells, ONSPCs) are emerging as a potential tool in the exploration of psychiatric disorders. The present study intended to assess whether ONSPCs could help discern individuals with schizophrenia (SZ) from non-schizophrenic (NS) subjects by exploring specific cellular and molecular features. METHODS: ONSPCs were collected from 19 in-patients diagnosed with SZ and 31 NS individuals and propagated in basal medium. Mitochondrial ATP production, expression of ß-catenin and cell proliferation, which are described to be altered in SZ, were examined in freshly isolated or newly thawed ONSPCs after a few culture passages. RESULTS: SZ-ONSPCs exhibited a lower mitochondrial ATP production and insensitivity to agents capable of positively or negatively affecting ß-catenin expression with respect to NS-ONSPCs. As to proliferation, it declined in SZ-ONSPCs as the number of culture passages increased compared to a steady level of growth shown by NS-ONSPCs. CONCLUSIONS: The ease and safety of sample collection as well as the differences observed between NS- and SZ-ONSPCs, may lay the groundwork for a new approach to obtain biological material from a large number of living individuals and gain a better understanding of the mechanisms underlying SZ pathophysiology.


Subject(s)
Cell Proliferation , Neural Stem Cells , Olfactory Mucosa , Schizophrenia , beta Catenin , Schizophrenia/metabolism , Schizophrenia/pathology , Humans , Adult , Male , Female , beta Catenin/metabolism , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Olfactory Mucosa/pathology , Adenosine Triphosphate/metabolism , Middle Aged , Cells, Cultured , Mitochondria/metabolism , Neuroepithelial Cells/metabolism
7.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38834299

ABSTRACT

Viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use respiratory epithelial cells as an entry point for infection. Within the nasal cavity, the olfactory epithelium (OE) is particularly sensitive to infections which may lead to olfactory dysfunction. In patients suffering from coronavirus disease 2019, deficits in olfaction have been characterized as a distinctive symptom. Here, we used the K18hACE2 mice to study the spread of SARS-CoV-2 infection and inflammation in the olfactory system (OS) after 7 d of infection. In the OE, we found that SARS-CoV-2 selectively targeted the supporting/sustentacular cells (SCs) and macrophages from the lamina propria. In the brain, SARS-CoV-2 infected some microglial cells in the olfactory bulb (OB), and there was a widespread infection of projection neurons in the OB, piriform cortex (PC), and tubular striatum (TuS). Inflammation, indicated by both elevated numbers and morphologically activated IBA1+ cells (monocyte/macrophage lineages), was preferentially increased in the OE septum, while it was homogeneously distributed throughout the layers of the OB, PC, and TuS. Myelinated OS axonal tracts, the lateral olfactory tract, and the anterior commissure, exhibited decreased levels of 2',3'-cyclic-nucleotide 3'-phosphodiesterase, indicative of myelin defects. Collectively, our work supports the hypothesis that SARS-CoV-2 infected SC and macrophages in the OE and, centrally, microglia and subpopulations of OS neurons. The observed inflammation throughout the OS areas and central myelin defects may account for the long-lasting olfactory deficit.


Subject(s)
COVID-19 , Myelin Sheath , Olfactory Bulb , Olfactory Mucosa , SARS-CoV-2 , Animals , COVID-19/pathology , COVID-19/complications , Mice , Olfactory Mucosa/pathology , Olfactory Mucosa/virology , Olfactory Bulb/pathology , Olfactory Bulb/virology , Myelin Sheath/pathology , Myelin Sheath/metabolism , Microglia/pathology , Microglia/metabolism , Microglia/virology , Mice, Transgenic , Angiotensin-Converting Enzyme 2/metabolism , Olfaction Disorders/pathology , Olfaction Disorders/virology , Disease Models, Animal , Male , Inflammation/pathology , Inflammation/virology , Macrophages/pathology , Female
8.
Lifestyle Genom ; 17(1): 42-56, 2024.
Article in English | MEDLINE | ID: mdl-38749402

ABSTRACT

Olfactory dysfunction (OD) is not uncommon following viral infection. Herein, we explore the interplay of host genetics with viral correlates in coronavirus disease 2019 (COVID-19)- and long COVID-related OD, and its diagnosis and treatment that remain challenging. Two genes associated with olfaction, UGT2A1 and UGT2A2, appear to be involved in COVID-19-related anosmia, a hallmark symptom of acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), particularly in the early stages of the pandemic. SARS-CoV-2 infects olfactory support cells, sustentacular and Bowman gland cells, that surround olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) where the initial step of odor detection takes place. Anosmia primarily arises from the infection of support cells of the OE, followed by the deciliation and disruption of OE integrity, typically without OSN infection. Through the projected axons of OSNs, the virus could theoretically reach the olfactory bulb and brain, but current evidence points against this route. Intriguingly, SARS-CoV-2 infection of support cells leads to profound alterations in the nuclear architecture of OSNs, leading to the downregulation of odorant receptor-related genes, e.g., of Adcy3. Viral factors associated with the development of OD include spike protein aminoacidic changes, e.g., D614G, the first substitution that was selected early during SARS-CoV-2 evolution. More recent variants of the Omicron family are less likely to cause OD compared to Delta or Alpha, although OD has been associated with a milder disease course. OD is one of the most prevalent post-acute neurologic symptoms of SARS-CoV-2 infection. The tens of millions of people worldwide who have lingering problems with OD wait eagerly for effective new treatments that will restore their sense of smell which adds value to their quality of life.


Subject(s)
COVID-19 , Olfaction Disorders , SARS-CoV-2 , COVID-19/complications , Humans , Olfaction Disorders/physiopathology , Anosmia/physiopathology , Post-Acute COVID-19 Syndrome , Olfactory Mucosa/virology , Olfactory Mucosa/pathology , Olfactory Receptor Neurons
9.
Cancer Cell ; 42(6): 1086-1105.e13, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38788720

ABSTRACT

The olfactory epithelium undergoes neuronal regeneration from basal stem cells and is susceptible to olfactory neuroblastoma (ONB), a rare tumor of unclear origins. Employing alterations in Rb1/Trp53/Myc (RPM), we establish a genetically engineered mouse model of high-grade metastatic ONB exhibiting a NEUROD1+ immature neuronal phenotype. We demonstrate that globose basal cells (GBCs) are a permissive cell of origin for ONB and that ONBs exhibit cell fate heterogeneity that mimics normal GBC developmental trajectories. ASCL1 loss in RPM ONB leads to emergence of non-neuronal histopathologies, including a POU2F3+ microvillar-like state. Similar to small-cell lung cancer (SCLC), mouse and human ONBs exhibit mutually exclusive NEUROD1 and POU2F3-like states, an immune-cold tumor microenvironment, intratumoral cell fate heterogeneity comprising neuronal and non-neuronal lineages, and cell fate plasticity-evidenced by barcode-based lineage tracing and single-cell transcriptomics. Collectively, our findings highlight conserved similarities between ONB and neuroendocrine tumors with significant implications for ONB classification and treatment.


Subject(s)
Cell Lineage , Esthesioneuroblastoma, Olfactory , Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Mice , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , Humans , Esthesioneuroblastoma, Olfactory/genetics , Esthesioneuroblastoma, Olfactory/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Tumor Microenvironment , Nose Neoplasms/genetics , Nose Neoplasms/pathology , Olfactory Mucosa/pathology , Olfactory Mucosa/metabolism , Disease Models, Animal , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Eur J Neurosci ; 60(1): 3719-3741, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38758670

ABSTRACT

Across vertebrate species, the olfactory epithelium (OE) exhibits the uncommon feature of lifelong neuronal turnover. Epithelial stem cells give rise to new neurons that can adequately replace dying olfactory receptor neurons (ORNs) during developmental and adult phases and after lesions. To relay olfactory information from the environment to the brain, the axons of the renewed ORNs must reconnect with the olfactory bulb (OB). In Xenopus laevis larvae, we have previously shown that this process occurs between 3 and 7 weeks after olfactory nerve (ON) transection. In the present study, we show that after 7 weeks of recovery from ON transection, two functionally and spatially distinct glomerular clusters are reformed in the OB, akin to those found in non-transected larvae. We also show that the same odourant response tuning profiles observed in the OB of non-transected larvae are again present after 7 weeks of recovery. Next, we show that characteristic odour-guided behaviour disappears after ON transection but recovers after 7-9 weeks of recovery. Together, our findings demonstrate that the olfactory system of larval X. laevis regenerates with high accuracy after ON transection, leading to the recovery of odour-guided behaviour.


Subject(s)
Larva , Olfactory Bulb , Xenopus laevis , Animals , Olfactory Bulb/physiology , Nerve Regeneration/physiology , Odorants , Olfactory Nerve Injuries , Olfactory Nerve/physiology , Olfactory Mucosa/cytology , Olfactory Mucosa/physiology , Smell/physiology , Olfactory Receptor Neurons/physiology
11.
Sci Rep ; 14(1): 11779, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783070

ABSTRACT

Most terrestrial mammals have a vomeronasal system to detect specific chemicals. The peripheral organ of this system is a vomeronasal organ (VNO) opening to the incisive duct, and its primary integrative center is an accessory olfactory bulb (AOB). The VNO in seals is thought to be degenerated like whales and manatees, unlike otariids, because of the absence of the AOB. However, olfaction plays pivotal roles in seals, and thus we conducted a detailed morphological evaluation of the vomeronasal system of three harbor seals (Phoca vitulina). The VNO lumen was not found, and the incisive duct did not open into the oral cavity but was recognized as a fossa on the anteroventral side of the nasal cavity. This fossa is rich in mucous glands that secrete acidic mucopolysaccharides, which might originate from the vomeronasal glands. The olfactory bulb consisted only of a main olfactory bulb that received projections from the olfactory mucosa, but an AOB region was not evident. These findings clarified that harbor seals do not have a VNO to detect some chemicals, but the corresponding region is a specialized secretory organ.


Subject(s)
Nasal Cavity , Olfactory Bulb , Phoca , Vomeronasal Organ , Animals , Vomeronasal Organ/metabolism , Vomeronasal Organ/anatomy & histology , Phoca/metabolism , Phoca/anatomy & histology , Nasal Cavity/anatomy & histology , Nasal Cavity/metabolism , Olfactory Bulb/metabolism , Olfactory Bulb/anatomy & histology , Mucus/metabolism , Olfactory Mucosa/metabolism , Olfactory Mucosa/anatomy & histology , Male , Smell/physiology , Female
12.
Phytomedicine ; 129: 155635, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701541

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion (I/R) injury often leads to neuronal death through persistent neuroinflammatory responses. Recent research has unveiled a unique inflammatory programmed cell death mode known as PANoptosis. However, direct evidence for PANoptosis in ischemic stroke-induced neuronal death has not been established. Although it is widely thought that modulating the balance of microglial phenotypic polarization in cerebral I/R could mitigate neuroinflammation-mediated neuronal death, it remains unknown whether microglial polarization influences PANoptotic neuronal death triggered by cerebral I/R. Our prior study demonstrated that curcumin (CUR) preconditioning could boost the neuroprotective properties of olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) in intracerebral hemorrhage. Yet, the potential neuroprotective capacity of curcumin-pretreated OM-MSCs (CUR-OM-MSCs) on reducing PANoptotic neuronal death during cerebral I/R injury through modulating microglial polarization is uncertain. METHODS: To mimic cerebral I/R injury, We established in vivo models of reversible middle cerebral artery occlusion (MCAO) in C57BL/6 mice and in vitro models of oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 neurons and BV2 microglia. RESULTS: Our findings indicated that cerebral I/R injury caused PANoptotic neuronal death and triggered microglia to adopt an M1 (pro-inflammatory) phenotype both in vivo and in vitro. Curcumin pretreatment enhanced the proliferation and anti-inflammatory capacity of OM-MSCs. The CUR-OM-MSCs group experienced a more pronounced reduction in PANoptotic neuronal death and a better recovery of neurological function than the OM-MSCs group. Bioinformatic analysis revealed that microRNA-423-5p (miRNA-423-5p) expression was obviously upregulated in CUR-OM-MSCs compared to OM-MSCs. CUR-OM-MSCs treatment induced the switch to an M2 (anti-inflammatory) phenotype in microglia by releasing miRNA-423-5p, which targeted nucleotide-binding oligomerization domain 2 (NOD2), an upstream regulator of NF-kappaB (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, to attenuate PANoptotic neuronal death resulting from cerebral I/R. CONCLUSION: This results provide the first demonstration of the existence of PANoptotic neuronal death in cerebral I/R conditions. Curcumin preconditioning enhanced the ameliorating effect of OM-MSCs on neuroinflammation mediated by microglia polarization via upregulating the abundance of miRNA-423-5p. This intervention effectively alleviates PANoptotic neuronal death resulting from cerebral I/R. The combination of curcumin with OM-MSCs holds promise as a potentially efficacious treatment for cerebral ischemic stroke in the future.


Subject(s)
Curcumin , Mesenchymal Stem Cells , Mice, Inbred C57BL , Microglia , Neuroprotective Agents , Olfactory Mucosa , Reperfusion Injury , Curcumin/pharmacology , Animals , Reperfusion Injury/drug therapy , Microglia/drug effects , Mice , Mesenchymal Stem Cells/drug effects , Male , Neuroprotective Agents/pharmacology , Olfactory Mucosa/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Neurons/drug effects , Necroptosis/drug effects , Disease Models, Animal
13.
Genesis ; 62(2): e23594, 2024 04.
Article in English | MEDLINE | ID: mdl-38590146

ABSTRACT

During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.


Subject(s)
Olfactory Receptor Neurons , Animals , Mice , Olfactory Receptor Neurons/metabolism , Olfactory Mucosa , Olfactory Bulb , Axons/metabolism , Gene Expression
14.
Open Vet J ; 14(1): 512-524, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633152

ABSTRACT

Background: Catadromous fishes have well-developed elongated olfactory organs with numerous lamellae and different types of receptor neurons related to their breeding migration. Aim: The current study showed how the olfactory system adapted to the catadromous life. Our work declared the need of the migratory fishes for the sense of smell that is exhibited by a higher number of the olfactory lamellae and the receptor neuron verification in the olfactory epithelium. Methods: Ten specimens of fully grown, but pre-matured, silver eels of Anguilla vulgaris were captured at the outlet of Edco Lake, overlooking the Mediterranean Sea, east of Alexandria. Olfactory rosettes were dissected and fixed for scanning electron microscope (SEM) and transmission electron microscope (TEM). Results: Our study gave a morphological description of the olfactory system of A. vulgaris. At the ultrastructural level using SEM and TEM, one olfactory rosette was provided with 90-100 flat radial olfactory lamellae. The nasal configuration allowed water to enter and exit, transferring odorant molecules to olfactory receptor cells which comprise long cylindrical ciliated and microvillous receptors as well as rod-tipped cells. These cells are bipolar neurons with upward dendritic knobs. The olfactory epithelia also include crypt receptor cells. Interestingly, the olfactory neurons are delimited by nonsensory supporting cells, including long motile kinocilia and sustentacular supporting cells beside mucus secretory goblet cells and ionocytes or labyrinth cells that contribute to the olfaction process. Conclusion: Olfaction is crucial in all vertebrates, including fishes as it involves reproduction, parental, feeding, defensive, schooling, and migration behaviors. Here, A. vulgaris is an excellent model for catadromous fishes. It has a well-developed olfactory organ to cope with the dramatic climate change, habitat loss, water pollution, and altered ocean currents effect during their catadromous life for reproduction.


Subject(s)
Anguilla , Animals , Microscopy, Electron, Scanning/veterinary , Olfactory Mucosa/ultrastructure
15.
Genesis ; 62(2): e23596, 2024 04.
Article in English | MEDLINE | ID: mdl-38665067

ABSTRACT

The vomeronasal organ (VNO) is a part of the accessory olfactory system, which detects pheromones and chemical factors that trigger a spectrum of sexual and social behaviors. The vomeronasal epithelium (VNE) shares several features with the epithelium of the main olfactory epithelium (MOE). However, it is a distinct neuroepithelium populated by chemosensory neurons that differ from the olfactory sensory neurons in cellular structure, receptor expression, and connectivity. The vomeronasal organ of rodents comprises a sensory epithelium (SE) and a thin non-sensory epithelium (NSE) that morphologically resembles the respiratory epithelium. Sox2-positive cells have been previously identified as the stem cell population that gives rise to neuronal progenitors in MOE and VNE. In addition, the MOE also comprises p63 positive horizontal basal cells, a second pool of quiescent stem cells that become active in response to injury. Immunolabeling against the transcription factor p63, Keratin-5 (Krt5), Krt14, NrCAM, and Krt5Cre tracing experiments highlighted the existence of horizontal basal cells distributed along the basal lamina of SE of the VNO. Single cell sequencing and genetic lineage tracing suggest that the vomeronasal horizontal basal cells arise from basal progenitors at the boundary between the SE and NSE proximal to the marginal zones. Moreover, our experiments revealed that the NSE of rodents is, like the respiratory epithelium, a stratified epithelium where the p63/Krt5+ basal progenitor cells self-replicate and give rise to the apical columnar cells facing the lumen of the VNO.


Subject(s)
Vomeronasal Organ , Vomeronasal Organ/metabolism , Vomeronasal Organ/cytology , Animals , Mice , Olfactory Mucosa/metabolism , Olfactory Mucosa/cytology , Keratin-15/metabolism , Keratin-15/genetics , Keratin-5/metabolism , Keratin-5/genetics , Keratin-14/metabolism , Keratin-14/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
16.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674011

ABSTRACT

The primary entry point of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nasal mucosa, where viral-induced inflammation occurs. When the immune response fails against SARS-CoV-2, understanding the altered response becomes crucial. This study aimed to compare SARS-CoV-2 immunological responses in the olfactory and respiratory mucosa by focusing on epithelia and nerves. Between 2020 and 2022, we obtained post mortem tissues from the olfactory cleft from 10 patients with histologically intact olfactory epithelia (OE) who died with or from COVID-19, along with four age-matched controls. These tissues were subjected to immunohistochemical reactions using antibodies against T cell antigens CD3, CD8, CD68, and SARS spike protein for viral evidence. Deceased patients with COVID-19 exhibited peripheral lymphopenia accompanied by a local decrease in CD3+ cells in the OE. However, SARS-CoV-2 spike protein was sparsely detectable in the OE. With regard to the involvement of nerve fibers, the present analysis suggested that SARS-CoV-2 did not significantly alter the immune response in olfactory or trigeminal fibers. On the other hand, SARS spike protein was detectable in both nerves. In summary, the post mortem investigation demonstrated a decreased T cell response in patients with COVID-19 and signs of SARS-CoV-2 presence in olfactory and trigeminal fibers.


Subject(s)
COVID-19 , Nasal Mucosa , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Male , Female , SARS-CoV-2/immunology , Aged , Middle Aged , Nasal Mucosa/immunology , Nasal Mucosa/virology , Nasal Mucosa/pathology , Nasal Mucosa/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Aged, 80 and over , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Olfactory Mucosa/immunology , Olfactory Mucosa/virology , Olfactory Mucosa/pathology , Olfactory Mucosa/metabolism , Adult , Autopsy
17.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674045

ABSTRACT

Chronic rhinosinusitis (CRS) is a highly prevalent disease and up to 83% of CRS patients suffer from olfactory dysfunction (OD). Because OD is specifically seen in those CRS patients that present with a type 2 eosinophilic inflammation, it is believed that type 2 inflammatory mediators at the level of the olfactory epithelium are involved in the development of this olfactory loss. However, due to the difficulties in obtaining tissue from the olfactory epithelium, little is known about the true mechanisms of inflammatory OD. Thanks to the COVID-19 pandemic, interest in olfaction has been growing rapidly and several studies have been focusing on disease mechanisms of OD in inflammatory conditions. In this paper, we summarize the most recent data exploring the pathophysiological mechanisms underlying OD in CRS. We also review what is known about the potential capacity of olfactory recovery of the currently available treatments in those patients.


Subject(s)
COVID-19 , Olfaction Disorders , Rhinitis , Sinusitis , Humans , Sinusitis/complications , Sinusitis/metabolism , Sinusitis/pathology , Rhinitis/complications , Olfaction Disorders/etiology , Olfaction Disorders/physiopathology , COVID-19/complications , Chronic Disease , Olfactory Mucosa/metabolism , Olfactory Mucosa/pathology , SARS-CoV-2 , Smell/physiology , Rhinosinusitis
18.
Nat Commun ; 15(1): 3360, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637611

ABSTRACT

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian olfactory receptor that recognizes compounds produced by mouse predators. While wildtype mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Mice , Learning/physiology , Mammals/metabolism , Odorants , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Smell/physiology , Antigens, CD20/metabolism
19.
FEBS J ; 291(10): 2094-2097, 2024 May.
Article in English | MEDLINE | ID: mdl-38680125

ABSTRACT

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a transmembrane protein that, when cleaved by metalloproteases through a process called ectodomain shedding, binds to the EGF receptor (EGFR), activating downstream signaling. The HB-EGF/EGFR pathway is crucial in development and is involved in numerous pathophysiological processes. In this issue of The FEBS Journal, Sireci et al. reveal a previously unexplored function of the HB-EGF/EGFR pathway in promoting neuronal progenitor proliferation and sensory neuron regeneration in the zebrafish olfactory epithelium in response to injury.


Subject(s)
ErbB Receptors , Heparin-binding EGF-like Growth Factor , Signal Transduction , Zebrafish , Heparin-binding EGF-like Growth Factor/metabolism , Heparin-binding EGF-like Growth Factor/genetics , Animals , ErbB Receptors/metabolism , ErbB Receptors/genetics , Zebrafish/metabolism , Humans , Cell Proliferation , Neurons/metabolism , Nerve Regeneration , Olfactory Mucosa/metabolism
20.
Glia ; 72(6): 1183-1200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477581

ABSTRACT

Barrier-forming olfactory glia cells, termed sustentacular cells, play important roles for immune defense of the olfactory mucosa, for example as entry sites for SARS-CoV-2 and subsequent development of inflammation-induced smell loss. Here we demonstrate that sustentacular cells express ACKR3, a chemokine receptor that functions both as a scavenger of the chemokine CXCL12 and as an activator of alternative signaling pathways. Differential gene expression analysis of bulk RNA sequencing data obtained from WT and ACKR3 conditional knockout mice revealed upregulation of genes involved in immune defense. To map the regulated genes to the different cell types of the olfactory mucosa, we employed biocomputational methods utilizing a single-cell reference atlas. Transcriptome analysis, PCR and immunofluorescence identified up-regulation of NF-κB-related genes, known to amplify inflammatory signaling and to facilitate leukocyte transmigration, in the gliogenic lineage. Accordingly, we found a marked increase in leukocyte-expressed genes and confirmed leukocyte infiltration into the olfactory mucosa. In addition, lack of ACKR3 led to enhanced expression and secretion of early mediators of immune defense by Bowman's glands. As a result, the number of apoptotic cells in the epithelium was decreased. In conclusion, our research underlines the importance of sustentacular cells in immune defense of the olfactory mucosa. Moreover, it identifies ACKR3, a druggable G protein-coupled receptor, as a promising target for modulation of inflammation-associated anosmia.


Subject(s)
Inflammation , Olfactory Mucosa , Animals , Mice , Chemokine CXCL12/metabolism , Gene Expression Profiling , Inflammation/metabolism , Neuroglia/metabolism , Olfactory Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...