Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.688
Filter
1.
Environ Geochem Health ; 46(6): 189, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695970

ABSTRACT

The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.


Subject(s)
Microplastics , Oligochaeta , Soil Pollutants , Animals , Oligochaeta/drug effects , Microplastics/toxicity , Soil Pollutants/toxicity , Composting , Polyethylene/toxicity , Biodegradable Plastics
2.
Artif Cells Nanomed Biotechnol ; 52(1): 291-299, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38733371

ABSTRACT

Haemorrhagic shock is a leading cause of death worldwide. Blood transfusions can be used to treat patients suffering severe blood loss but donated red blood cells (RBCs) have several limitations that limit their availability and use. To solve the problems associated with donated RBCs, several acellular haemoglobin-based oxygen carriers (HBOCs) have been developed to restore the most important function of blood: oxygen transport. One promising HBOC is the naturally extracellular haemoglobin (i.e. erythrocruorin) of Lumbricus terrestris (LtEc). The goal of this study was to maximise the portability of LtEc by lyophilising it and then testing its stability at elevated temperatures. To prevent oxidation, several cryoprotectants were screened to determine the optimum formulation for lyophilisation that could minimise oxidation of the haem iron and maximise recovery. Furthermore, samples were also deoxygenated prior to storage to decrease auto-oxidation, while resuspension in a solution containing ascorbic acid was shown to partially reduce LtEc that had oxidised during storage (e.g. from 42% Fe3+ to 11% Fe3+). Analysis of the oxygen equilibria and size of the resuspended LtEc showed that the lyophilisation, storage, and resuspension processes did not affect the oxygen transport properties or the structure of the LtEc, even after 6 months of storage at 40 °C. Altogether, these efforts have yielded a shelf-stable LtEc powder that can be stored for long periods at high temperatures, but future animal studies will be necessary to prove that the resuspended product is a safe and effective oxygen transporter in vivo.


Subject(s)
Freeze Drying , Hemoglobins , Oligochaeta , Animals , Oligochaeta/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Oxygen/metabolism , Oxygen/chemistry , Oxidation-Reduction , Blood Substitutes/chemistry
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731903

ABSTRACT

To assess the impact of Enchytraeidae (potworms) on the functioning of the decomposer system, knowledge of the feeding preferences of enchytraeid species is required. Different food preferences can be explained by variations in enzymatic activities among different enchytraeid species, as there are no significant differences in the morphology or anatomy of their alimentary tracts. However, it is crucial to distinguish between the contribution of microbial enzymes and the animal's digestive capacity. Here, we computationally analyzed the endogenous digestive enzyme genes in Enchytraeus albidus. The analysis was based on RNA-Seq of COI-monohaplotype culture (PL-A strain) specimens, utilizing transcriptome profiling to determine the trophic position of the species. We also corroborated the results obtained using transcriptomics data from genetically heterogeneous freeze-tolerant strains. Our results revealed that E. albidus expresses a wide range of glycosidases, including GH9 cellulases and a specific digestive SH3b-domain-containing i-type lysozyme, previously described in the earthworm Eisenia andrei. Therefore, E. albidus combines traits of both primary decomposers (primary saprophytophages) and secondary decomposers (sapro-microphytophages/microbivores) and can be defined as an intermediate decomposer. Based on assemblies of publicly available RNA-Seq reads, we found close homologs for these cellulases and i-type lysozymes in various clitellate taxa, including Crassiclitellata and Enchytraeidae.


Subject(s)
Gene Expression Profiling , Oligochaeta , Transcriptome , Animals , Transcriptome/genetics , Gene Expression Profiling/methods , Oligochaeta/genetics , Oligochaeta/enzymology , Digestion/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism
4.
Sci Total Environ ; 931: 172975, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705298

ABSTRACT

Nowadays, animal manure composting constitutes a sustainable alternative for farmers to enhance the level of nutrients within soils and achieve a good productivity. However, pollutants may be present in manures. This study focuses on the detection of environmental microplastics (EMPs) into composts, as well as on the assessment of their potential toxicity on the earthworm Eisenia andrei. To these aims, animals were exposed to two types of compost, namely bovine (cow) and ovine (sheep) manure, besides to their mixture, for 7 and 14 days. The presence and characterization of EMPs was evaluated in all the tested composts, as well as in tissues of the exposed earthworms. The impact of the tested composts was assessed by a multi-biomarker approach including cytotoxic (lysosomal membrane stability, LMS), genotoxic (micronuclei frequency, MNi), biochemical (activity of catalase, CAT, and glutathione-S-transferase, GST; content of malondialdehyde, MDA), and neurotoxic (activity of acetylcholinesterase, AChE) responses in earthworms. Results indicated the presence of high levels of EMPs in all the tested composts, especially in the sheep manure (2273.14 ± 200.89 items/kg) in comparison to the cow manure (1628.82 ± 175.23 items/kg), with the size <1.22 µm as the most abundant EMPs. A time-dependent decrease in LMS and AChE was noted in exposed earthworms, as well as a concomitant increase in DNA damages (MNi) after 7 and 14 days of exposure. Also, a severe oxidative stress was recorded in animals treated with the different types of compost through an increase in CAT and GST activities, and LPO levels, especially after 14 days of exposure. Therefore, it is necessary to carefully consider these findings for agricultural good practices in terms of plastic mitigation in compost usage, in order to prevent any risk for environment health.


Subject(s)
Manure , Microplastics , Oligochaeta , Soil Pollutants , Oligochaeta/physiology , Oligochaeta/drug effects , Animals , Soil Pollutants/toxicity , Microplastics/toxicity , Composting/methods , Toxicity Tests , Cattle , Sheep , Environmental Monitoring/methods
5.
PeerJ ; 12: e17189, 2024.
Article in English | MEDLINE | ID: mdl-38699189

ABSTRACT

Quantifying the diet of endangered species is crucial for conservation, especially for diet specialists, which can be more susceptible to environmental changes. The vulnerable fairy pitta (Pitta nympha) is considered a specialist that primarily feeds its nestlings with earthworms. However, there have been few studies of the nestling diet provisioned by parents, and no assessments of earthworm proportion in the diet of adults. Our study aimed to fill these gaps, shedding light on crucial factors for conservation. Combining new observations with existing literature, we confirmed a consistent dominance of earthworms in the nestling diet, regardless of rainfall, nestling age, and time of day. We extrapolated the total earthworm consumption during a breeding event, accounting for potential variation in the availability of earthworms and their prevalence in the adult diet. We used literature-based earthworm densities in pitta habitats and our estimates of family earthworm consumption to calculate the habitat area that could provide a pitta family with the number of earthworms consumed during a breeding event. The predictions matched observed pitta home range sizes when assumed that the adult diet is comprised of approximately 70% earthworms. The results highlight the importance of earthworm-rich habitats for conservation planning of the fairy pitta. To mitigate the effects of habitat destruction, we discuss conservation practices that may involve enhancing earthworm abundance in natural habitats and providing vegetation cover for foraging pittas in adjacent anthropogenic habitats rich in earthworms. To guide conservation efforts effectively, future studies should investigate whether previously reported breeding in developed plantation habitats is due to high earthworm abundance there. Future studies should also quantify correlations between local earthworm densities, home range size, and the breeding success of the fairy pitta.


Subject(s)
Conservation of Natural Resources , Diet , Endangered Species , Oligochaeta , Animals , Oligochaeta/physiology , Diet/veterinary , Ecosystem , Feeding Behavior/physiology
6.
Bioresour Technol ; 402: 130827, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734258

ABSTRACT

In this study, three distinct bioretention setups incorporating fillers, plants, and earthworms were established to evaluate the operational efficiency under an ecosystem concept across varying time scales. The results revealed that under short-term operating conditions, extending the drying period led to a notable increase in the removal of NO3--N, total phosphorus (TP), and chemical oxygen demand (COD) by 5 %-7%, 4 %-12 %, and 5 %-10 %, respectively. Conversely, under long-time operating conditions, the introduction of plants resulted in a significant boost in COD removal by 10 %-20 %, while the inclusion of earthworms improved NH4+-N and NO3--N removal, especially TP removal by 9 %-16 %. Microbial community analysis further indicated the favorable impact of the bioretention system on biological nitrogen and phosphorus metabolism, particularly with the incorporation of plants and earthworms. This study provides a reference for the operational performance of bioretention systems on different time scales.


Subject(s)
Biodegradation, Environmental , Ecosystem , Nitrogen , Oligochaeta , Phosphorus , Animals , Oligochaeta/metabolism , Biological Oxygen Demand Analysis , Water Pollutants, Chemical , Rain
7.
Environ Sci Pollut Res Int ; 31(24): 34910-34921, 2024 May.
Article in English | MEDLINE | ID: mdl-38713352

ABSTRACT

The co-occurrence of heavy metals and microplastics (MPs) is an emerging issue that has attracted considerable attention. However, the interaction of nickel oxide nanoparticle (nano-NiO) combined with MPs in soil was poorly researched. Here, experiments were conducted to study the influence of nano-NiO (200 mg/kg) and polyethylene (PE) MPs with different concentrations (0.1, 1, and 10%) and sizes (13, 50, and 500 µm) on earthworms for 28 days. Compared to control, the damage was induced by PE and nano-NiO, which was evaluated by biomarker Integrated Biomarker Response index: version 2 (IBRv2) based on six biomarkers including SOD, POD, CAT, MDA, AChE, Na+/K+-ATPase and cellulase. The majority of the chosen biomarkers showed significant but complicated responses with increasing contaminant concentrations after 28 days of exposure. Moreover, the joint effect was assessed as antagonism by the effect addition index (EAI). Overall, this work expands our understanding of the combined toxicity of PE and nano-NiO in soil ecosystems.


Subject(s)
Microplastics , Nickel , Oligochaeta , Oxidative Stress , Polyethylene , Soil Pollutants , Animals , Oligochaeta/drug effects , Microplastics/toxicity , Nickel/toxicity , Oxidative Stress/drug effects , Polyethylene/toxicity , Soil Pollutants/toxicity , Nanoparticles/toxicity , Biomarkers/metabolism
8.
Environ Sci Pollut Res Int ; 31(24): 35470-35482, 2024 May.
Article in English | MEDLINE | ID: mdl-38730216

ABSTRACT

Co-exposure soil studies of pollutants are necessary for an appropriate ecological risk assessment. Here, we examined the effects of two-component mixtures of metal oxide nanoparticles (ZnO NPs or goethite NPs) with the insecticide chlorpyrifos (CPF) under laboratory conditions in short-term artificial soil assays using Eisenia andrei earthworms. We characterized NPs and their mixtures by scanning electron microscopy, atomic force microscopy, dynamic light scattering and zeta potential, and evaluated effects on metal accumulation, oxidative stress enzymes, and neurotoxicity related biomarkers in single and combined toxicity assays. Exposure to ZnO NPs increased Zn levels compared to control in single and combined exposure (ZnO NPs + CPF) at 72 h and 7 days, respectively. In contrast, there was no indication of Fe increase in organisms exposed to goethite NPs. One of the most notable effects on oxidative stress biomarkers was produced by single exposure to goethite NPs, showing that the worms were more sensitive to goethite NPs than to ZnO NPs. Acetylcholinesterase and carboxylesterase activities indicated that ZnO NPs alone were not neurotoxic to earthworms, but similar degrees of inhibition were observed after single CPF and ZnO NPs + CPF exposure. Differences between single and combined exposure were found for catalase and superoxide dismutase (goethite NPs) and for glutathione S-transferase (ZnO NPs) activities, mostly at 72 h. These findings suggest a necessity to evaluate mixtures of NPs with co-existing contaminants in soil, and that the nature of metal oxide NPs and exposure time are relevant factors to be considered when assessing combined toxicity, as it may have an impact on ecotoxicological risk assessment.


Subject(s)
Chlorpyrifos , Metal Nanoparticles , Oligochaeta , Soil Pollutants , Animals , Oligochaeta/drug effects , Chlorpyrifos/toxicity , Metal Nanoparticles/toxicity , Soil Pollutants/toxicity , Oxidative Stress/drug effects , Zinc Oxide/toxicity , Insecticides/toxicity , Oxides/toxicity
9.
Environ Sci Pollut Res Int ; 31(24): 35969-35978, 2024 May.
Article in English | MEDLINE | ID: mdl-38743332

ABSTRACT

Modern agriculture is mainly based on the use of pesticides to protect crops but their efficiency is very low, in fact, most of them reach water or soil ecosystems causing pollution and health hazards to non-target organisms. Fungicide triazoles and strobilurins based are the most widely used and require a specific effort to investigate toxicological effects on non-target species. This study evaluates the toxic effects of four commercial fungicides Prosaro® (tebuconazole and prothioconazole), Amistar®Xtra (azoxystrobin and cyproconazole), Mirador® (azoxystrobin) and Icarus® (Tebuconazole) on Eisenia fetida using several biomarkers: lipid peroxidation (LPO), catalase activity (CAT), glutathione S-transferase (GST), total glutathione (GSHt), DNA fragmentation (comet assay) and lysozyme activity tested for the first time in E. fetida. The exposure to Mirador® and AmistarXtra® caused an imbalance of ROS species, leading to the inhibition of the immune system. AmistarXtra® and Prosaro®, composed of two active ingredients, induced significant DNA alteration, indicating genotoxic effects. This study broadened our knowledge of the effects of pesticide product formulations on earthworms and showed the need for improvement in the evaluation of toxicological risk deriving from the changing of physicochemical and toxicological properties that occur when a commercial formulation contains more than one active ingredient and several unknown co-formulants.


Subject(s)
Oligochaeta , Oxidative Stress , Pesticides , Animals , Oligochaeta/drug effects , Oxidative Stress/drug effects , Pesticides/toxicity , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Catalase/metabolism , DNA/drug effects , DNA Damage , Fungicides, Industrial/toxicity , Strobilurins , Pyrimidines , Triazoles
10.
J Hazard Mater ; 472: 134578, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743971

ABSTRACT

Microplastics (MPs) are widespread in agricultural soil, potentially threatening soil environmental quality and plant growth. However, toxicological research on MPs has mainly been limited to individual components (such as plants, microbes, and animals), without considering their interactions. Here, we examined earthworm-mediated effects on tomato growth and the rhizosphere micro-environment under MPs contamination. Earthworms (Eisenia fetida) mitigated the growth-inhibiting effect of MPs on tomato plant. Particularly, when exposed to environmentally relevant concentrations (ERC, 0.02% w/w) of MPs, the addition of earthworms significantly (p < 0.05) increased shoot and root dry weight by 12-13% and 13-14%, respectively. MPs significantly reduced (p < 0.05) soil ammonium (NH4+-N) (0.55-0.69 mg/kg), nitrate nitrogen (NO3--N) (7.02-8.65 mg/kg) contents, and N cycle related enzyme activities (33.47-42.39 µg/h/g) by 37.7-50.9%, 22.6-37.2%, and 34.2-48.0%, respectively, while earthworms significantly enhanced (p < 0.05) inorganic N mineralization and bioavailability. Furthermore, earthworms increased bacterial network complexity, thereby enhancing the robustness of the bacterial system to resist soil MPs stress. Meanwhile, partial least squares modelling showed that earthworms significantly influenced (p < 0.01) soil nutrients, which in turn significantly affected (p < 0.01) plant growth. Therefore, the comprehensive consideration of soil ecological composition is important for assessing MPs ecological risk.


Subject(s)
Microplastics , Oligochaeta , Rhizosphere , Soil Pollutants , Solanum lycopersicum , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Oligochaeta/drug effects , Animals , Soil Pollutants/toxicity , Microplastics/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Nitrogen/metabolism , Soil Microbiology
11.
J Exp Biol ; 227(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38738313

ABSTRACT

A hydrostatic skeleton allows a soft body to transmit muscular force via internal pressure. A human's tongue, an octopus' arm and a nematode's body illustrate the pervasive presence of hydrostatic skeletons among animals, which has inspired the design of soft engineered actuators. However, there is a need for a theoretical basis for understanding how hydrostatic skeletons apply mechanical work. We therefore modeled the shape change and mechanics of natural and engineered hydrostatic skeletons to determine their mechanical advantage (MA) and displacement advantage (DA). These models apply to a variety of biological structures, but we explicitly consider the tube feet of a sea star and the body segments of an earthworm, and contrast them with a hydraulic press and a McKibben actuator. A helical winding of stiff, elastic fibers around these soft actuators plays a critical role in their mechanics by maintaining a cylindrical shape, distributing forces throughout the structure and storing elastic energy. In contrast to a single-joint lever system, soft hydrostats exhibit variable gearing with changes in MA generated by deformation in the skeleton. We found that this gearing is affected by the transmission efficiency of mechanical work (MA×DA) or, equivalently, the ratio of output to input work. The transmission efficiency changes with the capacity to store elastic energy within helically wrapped fibers or associated musculature. This modeling offers a conceptual basis for understanding the relationship between the morphology of hydrostatic skeletons and their mechanical performance.


Subject(s)
Oligochaeta , Animals , Biomechanical Phenomena , Oligochaeta/physiology , Models, Biological , Scyphozoa/physiology , Scyphozoa/anatomy & histology , Skeleton/physiology
12.
Ecotoxicol Environ Saf ; 277: 116374, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677072

ABSTRACT

Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.


Subject(s)
Chlorpyrifos , HSP70 Heat-Shock Proteins , Nitriles , Oligochaeta , Oxidative Stress , Pyrethrins , Soil Pollutants , Superoxide Dismutase , Animals , Oligochaeta/drug effects , Chlorpyrifos/toxicity , Pyrethrins/toxicity , Nitriles/toxicity , Superoxide Dismutase/metabolism , Soil Pollutants/toxicity , Oxidative Stress/drug effects , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Carboxylesterase/metabolism , Insecticides/toxicity , Caspase 3/metabolism , Caspase 3/genetics , Calreticulin/genetics , Calreticulin/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics
13.
Environ Monit Assess ; 196(5): 445, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607460

ABSTRACT

Periphyton is a complex community composed of diverse prokaryotes and eukaryotes; understanding the characteristics of microbial communities within periphyton becomes crucial for biogeochemical cycles and energy dynamics of aquatic ecosystems. To further elucidate the community characteristics of periphyton across varied aquatic habitats, including unpolluted ecologically restored lakes, aquaculture ponds, and areas adjacent to domestic and industrial wastewater treatment plant outfalls, we explored the composition and diversity of prokaryotic and eukaryotic communities in periphyton by employing Illumina MiSeq sequencing. Our findings indicated that the prokaryotic communities were predominantly composed of Proteobacteria (40.92%), Bacteroidota (21.01%), and Cyanobacteria (10.12%), whereas the eukaryotic communities were primarily characterized by the dominance of Bacillariophyta (24.09%), Chlorophyta (20.83%), and Annelida (15.31%). Notably, Flavobacterium emerged as a widely distributed genus among the prokaryotic community. Unclassified_Tobrilidae exhibited higher abundance in unpolluted ecologically restored lakes. Chaetogaster and Nais were enriched in aquaculture ponds and domestic wastewater treatment plant outfall area, respectively, while Surirella and Gomphonema dominated industrial sewage treatment plant outfall area. The alpha diversity of eukaryotes was higher in unpolluted ecologically restored lakes. pH and nitrogen content ( NO 2 - - N , NO 3 - - N , and TN) significantly explained the variations for prokaryotic and eukaryotic community structures, respectively. Eukaryotic communities exhibited a more pronounced response to habitat variations compared to prokaryotic communities. Moreover, the association networks revealed an intensive positive correlation between dominant Bacillariophyta and Bacteroidota. This study provided useful data for identifying keystone species and understanding their ecological functions.


Subject(s)
Diatoms , Microbiota , Oligochaeta , Periphyton , Animals , Environmental Monitoring , Aquaculture , Bacteroidetes
14.
Environ Pollut ; 350: 123989, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642791

ABSTRACT

The increasing global food demand is threatening the sustainability of agrifood production systems. The intensification of agricultural practices, with inadequate use of pesticides and fertilizers, poses major challenges to the good functioning of agroecosystems and drastically degrades the soil quality. Nanotechnology is expected to optimize the current farming practices and mitigate some associated impacts. Layered double hydroxides (LDHs) are a class of nanomaterials with high potential for use in agricultural productions, mostly due to their sustained release of nutrients. Considering its novelty and lack of studies on the terrestrial ecosystem, it is essential to assess potential long-term harmful consequences to non-target organisms. Our study aimed to evaluate the effect of Zn-Al-NO3 LDH and Mg-Al-NO3 LDH ageing on the survival and reproduction of two soil invertebrate species Enchytraeus crypticus and Folsomia candida. We postulated that the toxicity of nanomaterials to soil invertebrates would change with time, such that the ageing of soil amendments would mediate their impacts on both species. Our results showed that the toxicity of LDHs was species-dependent, with Zn-Al-NO3 LDH being more toxic to E. crypticus, while Mg-Al-NO3 LDH affected more F. candida, especially in the last ageing period, where reproduction was the most sensitive biological parameter. The toxicity of both nanomaterials increased with ageing time, as shown by the decrease of the EC50 values over time. The influence of LDH dissolution and availability of Zn and Mg in the soil pore water was the main factor related to the toxicity, although we cannot rule out the influence of other structural constituents of LDHs (e.g., nitrates and aluminium). This study supports the importance of incorporating ageing in the ecotoxicity testing of nanomaterials, considering their slow release, as effects on soil organisms can change and lead to more severe impacts on the ecosystem functioning.


Subject(s)
Fertilizers , Oligochaeta , Soil Pollutants , Soil , Animals , Fertilizers/toxicity , Soil Pollutants/toxicity , Soil/chemistry , Oligochaeta/drug effects , Nanostructures/toxicity , Reproduction/drug effects , Hydroxides/toxicity , Hydroxides/chemistry , Ecosystem , Invertebrates/drug effects
15.
Bull Environ Contam Toxicol ; 112(4): 58, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594479

ABSTRACT

This study investigated the species, density, biomass and physicochemical factors of benthic macroinvertebrates in Hongze Lake from 2016 to 2020. Redundancy analysis (RDA) was used to analyze the relationship between physicochemical parameters and the community structure of macroinvertebrates. Macroinvertebrate-based indices were used to evaluate the water quality conditions in Hongze Lake. The results showed that a total of 50 benthic species (10 annelids, 21 arthropods and 19 mollusks) were collected. The community structure of benthic macroinvertebrates varied in time and space. The dominant species were Limnodrilus hoffmeisteri (L.hoffmeisteri), Corbicula fluminea (C.fluminea), Nephtys oligobranchia (N.oligobranchia). In 2016, arthropods such as Grandidierella sp. were the dominant species of benthos in Hongze Lake while annelids and mollusks dominated from 2017 to 2020, such as L.hoffmeisteri, N.oligobranchia, C.fluminea. The benthic fauna of Chengzi Lake and Lihewa District were relatively abundant and showed slight variation, while the benthic macroinvertebrates of the Crossing the water area were few and varied greatly. RDA showed that changes in benthic macroinvertebrate structure were significantly correlated with dissolved oxygen (DO), Pondus Hydrogenii (pH) and transparency (SD). The Shannon Wiener, Pielou, and Margalef indices indicate that Hongze Lake is currently in a moderately polluted state. Future studies should focus on the combined effects of various physicochemical indicators and other environmental factors on benthic communities.


Subject(s)
Arthropods , Oligochaeta , Animals , Invertebrates , Lakes , Water Quality , Mollusca , Environmental Monitoring , Ecosystem
16.
Sci Total Environ ; 928: 172587, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38642766

ABSTRACT

This study evaluated the impact of incorporating earthworms (Eisenia fetida) on the drained water quality from a sludge treatment reed bed. The experiment encompassed four setups of treatment beds in two replicates: planted with Arundo donax and addition of earthworms, planted without earthworms, unplanted with earthworms, and treatment bed without plants nor earthworms as control. The units were fed every two weeks with mixed sewage sludge, a blend of primary and secondary sludge over 24 cycles. The mixed sewage sludge had mean dry and volatile solid contents of 24.71 g.DS.L-1 (± 13.67) and 19.14 g.VS.L-1 (± 10.29) resulting a sludge loading rate of 43.59 kg.DS.m-2.year-1 (± 14.49). The inclusion of earthworms in the planted unit reduced release masses of total suspended solids, chemical oxygen demand, nitrate and phosphorous by 43, 45, 75 and 45 % compared to the planted unit. Plant biomass production increased by 43 % with the earthworm presence. The removal efficiency of the units improved after a ramp-up phase (after six months feeding) of which the concentration of TSS, COD and Escherichia coli met limits for water reuse while nitrogen components and phosphorous surpassed the limits. The planted unit with earthworms removed 99 and 99 % of TSS and COD, respectively. Overall, water loss namely through evapotranspiration and earthworm hydration need, positively correlated with pollutant concentration, and earthworm-planted unit had 46 % higher water loss compared to control unit.


Subject(s)
Oligochaeta , Poaceae , Sewage , Waste Disposal, Fluid , Water Quality , Oligochaeta/physiology , Animals , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Mediterranean Region
17.
Environ Sci Pollut Res Int ; 31(20): 29280-29293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570433

ABSTRACT

Due to its fibrous structure and high water holding capacity, rock mineral wool (RMW) has boosted the development of hydroponics. Consequently, the amount of waste RMW has also increased tremendously, which has stimulated the research and development of RMW reuse options. In this study, composting and degradability of RMW from hydroponics (gRMW) were tested in combination with different ratios of biowaste compost, including physical and chemical properties of the starting and final materials, and potential ecological hazards of the final product. gRMW had high water holding capacity and low organic matter content, which was easily degradable. Limits of toxic elements according to EU regulation were not exceeded. Degraded gRMW mixtures with compost did not exhibit toxicity to plants or aquatic bacteria and showed intermediate or limited habitat function for earthworms, which preferred the sole gRMW not mixed with compost. Overall, degraded gRMW exhibited parameters of safe soil amendment.


Subject(s)
Composting , Hydroponics , Soil , Soil/chemistry , Oligochaeta , Animals
18.
Environ Geochem Health ; 46(5): 159, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592645

ABSTRACT

In recent years, low-density polyethylene (LDPE) has emerged as an essential component of the routine tasks that people engage in on a daily basis. However, over use of it resulted in environmental buildup that contaminated aquatic habitats and human health. Biodegradation is the most effective way for controlling pollution caused by synthetic plastic waste in a sustainable manner. In the present study, the LDPE degrading bacterial strain was screened from gut of Earthworms collected from plastic waste dumped area Mettur dam, Salem district, Tamil Nadu, India. The LDPE degrading bacterial strain was screened and identified genotypically. The LDPE degrading Bacillus gaemokensis strain SSR01 was submitted in NCBI. The B. gaemokensis strain SSR01 bacterial isolate degraded LDPE film after 14 days of incubation and demonstrated maximum weight loss of up to 4.98%. The study of deteriorated film using attenuated total reflection-Fourier transform infrared revealed the presence of a degraded product. The degradation of LDPE film by B. gaemokensis strain SSR01 was characterized by field-emission scanning electron microscopy analysis for surface alterations. The energy dispersive X-ray spectroscopy test confirmed that the broken-down LDPE film had basic carbon reduction. The present study of LDPE flim biodegradation by B. gaemokensis strain SSR01 has acted as a suitable candidate and will help in decreasing plastic waste.


Subject(s)
Bacillus , Oligochaeta , Humans , Animals , Polyethylene , India , Biodegradation, Environmental
19.
Sci Total Environ ; 930: 172802, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38679093

ABSTRACT

In situ measurement of the bioavailability of organic pollutants in soil is crucial for understanding their environmental behavior and assessing health risks. Due to the high heterogeneity of soil, microscale determination is crucial for achieving high accuracy, but few methods are available. In this study, microsized probes coated with polydimethylsiloxane (PDMS) were used to measure the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil in situ. The concentrations of PAHs enriched by the PDMS-coated probes correlated well with the results of bioassays using earthworms (R2 = 0.92-0.99) and ryegrass roots (R2 = 0.92-0.99). Compared with other chemical extraction methods, such as n-butanol extraction, the proposed method has advantages such as in situ operation, microvolume analysis, and negligible interference to the soil environment. In the soil rhizosphere zone, PAHs bioavailability decreased in the following order: rhizosphere > near-rhizosphere > far-rhizosphere. The bioavailability of PAHs in soil amended with biochar was also successfully characterized by the proposed method. Thus, this study developed an in situ and microscale method to predict the bioavailability of organic pollutants in contaminated soils and provides new insight into migration and transformation processes in rhizosphere soil.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Rhizosphere , Soil Pollutants , Soil , Solid Phase Microextraction , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Solid Phase Microextraction/methods , Soil/chemistry , Environmental Monitoring/methods , Biological Availability , Animals , Lolium , Oligochaeta
20.
J Hazard Mater ; 471: 134439, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677123

ABSTRACT

Microcystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture. Relative to MC-RR, MC-LR exhibited higher bioaccumulation and the resulting dermal lesions and deformation of longitudinal muscles. While the incorporation of both MCs into soils stimulated pathogenic bacteria and depressed oxidative stress tolerant bacteria, the response among soil nitrification and glutathione metabolism differed between the two congeners. The dissipation kinetics of MCs obeyed the first-order model. Earthworms stimulated soil N-cycling enzyme activities, increased the abundance of MC-degrading bacteria, and promoted bacterial metabolic functions related to glutathione metabolism, xenobiotics biodegradation, and metabolism of amino acids that comprise MCs, which accelerated the dissipation of MC-LR and MC-RR by 227% and 82%, respectively. These results provide evidence of significant congener differences in the terrestrial fate and impact of MCs, which will enable a better understanding of their role in mediating soil functions and ecosystem services.


Subject(s)
Microcystins , Oligochaeta , Soil Microbiology , Soil Pollutants , Animals , Oligochaeta/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Microcystins/metabolism , Microcystins/toxicity , Soil/chemistry , Glutathione/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Bioaccumulation
SELECTION OF CITATIONS
SEARCH DETAIL
...