Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.592
Filter
1.
Plant Signal Behav ; 19(1): 2363126, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38832593

ABSTRACT

Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.


Subject(s)
Stress, Physiological , Bacteria/metabolism , Animals , Zea mays/microbiology , Zea mays/metabolism , Oligochaeta/metabolism , Oligochaeta/microbiology
2.
Artif Cells Nanomed Biotechnol ; 52(1): 291-299, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38733371

ABSTRACT

Haemorrhagic shock is a leading cause of death worldwide. Blood transfusions can be used to treat patients suffering severe blood loss but donated red blood cells (RBCs) have several limitations that limit their availability and use. To solve the problems associated with donated RBCs, several acellular haemoglobin-based oxygen carriers (HBOCs) have been developed to restore the most important function of blood: oxygen transport. One promising HBOC is the naturally extracellular haemoglobin (i.e. erythrocruorin) of Lumbricus terrestris (LtEc). The goal of this study was to maximise the portability of LtEc by lyophilising it and then testing its stability at elevated temperatures. To prevent oxidation, several cryoprotectants were screened to determine the optimum formulation for lyophilisation that could minimise oxidation of the haem iron and maximise recovery. Furthermore, samples were also deoxygenated prior to storage to decrease auto-oxidation, while resuspension in a solution containing ascorbic acid was shown to partially reduce LtEc that had oxidised during storage (e.g. from 42% Fe3+ to 11% Fe3+). Analysis of the oxygen equilibria and size of the resuspended LtEc showed that the lyophilisation, storage, and resuspension processes did not affect the oxygen transport properties or the structure of the LtEc, even after 6 months of storage at 40 °C. Altogether, these efforts have yielded a shelf-stable LtEc powder that can be stored for long periods at high temperatures, but future animal studies will be necessary to prove that the resuspended product is a safe and effective oxygen transporter in vivo.


Subject(s)
Freeze Drying , Hemoglobins , Oligochaeta , Animals , Oligochaeta/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Oxygen/metabolism , Oxygen/chemistry , Oxidation-Reduction , Blood Substitutes/chemistry
3.
Bioresour Technol ; 402: 130827, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734258

ABSTRACT

In this study, three distinct bioretention setups incorporating fillers, plants, and earthworms were established to evaluate the operational efficiency under an ecosystem concept across varying time scales. The results revealed that under short-term operating conditions, extending the drying period led to a notable increase in the removal of NO3--N, total phosphorus (TP), and chemical oxygen demand (COD) by 5 %-7%, 4 %-12 %, and 5 %-10 %, respectively. Conversely, under long-time operating conditions, the introduction of plants resulted in a significant boost in COD removal by 10 %-20 %, while the inclusion of earthworms improved NH4+-N and NO3--N removal, especially TP removal by 9 %-16 %. Microbial community analysis further indicated the favorable impact of the bioretention system on biological nitrogen and phosphorus metabolism, particularly with the incorporation of plants and earthworms. This study provides a reference for the operational performance of bioretention systems on different time scales.


Subject(s)
Biodegradation, Environmental , Ecosystem , Nitrogen , Oligochaeta , Phosphorus , Animals , Oligochaeta/metabolism , Biological Oxygen Demand Analysis , Water Pollutants, Chemical , Rain
4.
Sci Rep ; 14(1): 12575, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822086

ABSTRACT

This study investigated batch-fed vermicomposting of cow manure, with a specific focus on assessing the effects of tylosin on the weight of earthworms and the overall quality of the resulting manure. Five reactors, including three concentrations of tylosin (50, 100, and 150 mg/kg) and two control reactors, were employed. Residual tylosin concentrations were measured using high-performance liquid chromatography (HPLC). Quality parameters such as pH, temperature, volatile solids (VS), organic carbon content (OCC), electrical conductivity (EC), ash content, C/N ratio, total Kjeldahl nitrogen (TKN), and microbial content were evaluated. The toxicity and maturity of vermicompost were assessed by determining the germination index (GI). The study also monitored variations in the earthworm's weight. The results demonstrated a decreasing trend in VS, OCC, C/N, and fecal coliforms, along with increased pH, EC, ash content, and TKN during the vermicomposting process. Furthermore, investigations revealed significant reductions in the reactors with tylosin concentrations of 50, 100, and 150 mg/kg, resulting in the removal of 98%, 90.48%, and 89.38% of the initial tylosin, respectively. This result confirms the faster removal of tylosin in reactors with lower concentrations. Degradation of tylosin also conforms to first-order kinetics. The findings showed a significant influence of tylosin on the weight of Eisenia fetida earthworms and the lowest antibiotic concentration led to the highest weight gain. Finally, the high percentage of germination index (90-100%) showed that the quality and maturity of vermicompost is by national and international standards.


Subject(s)
Composting , Manure , Oligochaeta , Tylosin , Animals , Tylosin/pharmacology , Manure/analysis , Oligochaeta/drug effects , Oligochaeta/metabolism , Cattle , Composting/methods , Soil/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogen-Ion Concentration
5.
Sci Total Environ ; 934: 173169, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38735339

ABSTRACT

Soil cadmium (Cd) contamination is an urgent environmental problem, which endangers human health through the food chain. Bioremediation attracted extensive attention around the world due to the high cost-efficiency. However, the remediation efficiency of different plant and earthworm species of soil Cd pollution is still unclear, it is thus of great significance to explore the combined effects of different remediation plants and earthworm species to improve the bioremediation capacity. In the present study, we consequently selected three species of Cd hyperaccumulator plants (vetiver, P. vittata and S. emarginatum) and three species of earthworms (E. fetida P1, E. fetida P2, and P. guillelmi) to compare the differences in Cd accumulation among various earthworm-plant combinations. Results indicated that the changes of soil pH and SOM in plant-animal combined application induced the higher soil Cd removal efficiency. The Cd removal efficiency showed highest in combination groups P. vittata-E. fetida P2 and P. vittata-P. guillelmi. Meanwhile, the improvements of biomass of plants and animals also were consistent with the increasing of Cd concentration in both plants and earthworms after combined application. It showed that the Cd concentrations in P. vittata were the highest while the TFs of Cd in S. emarginatum displays significantly more than that in others. In conclusion, the recommended combined system of earthworm-plant (P. vittata-E. fetida P2 and P. vittata-P. guillelmi) to provide reference for soil Cd bioremediation system in practice.


Subject(s)
Biodegradation, Environmental , Cadmium , Oligochaeta , Soil Pollutants , Oligochaeta/metabolism , Soil Pollutants/metabolism , Cadmium/metabolism , Animals , Soil/chemistry , Environmental Restoration and Remediation/methods
6.
Environ Int ; 186: 108625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593690

ABSTRACT

The potential of microplastics to act as a vector for anthropogenic contaminants is of rising concern. However, directly quantitatively determining the vector effects of microplastics has been rarely studied. Here, we present a dual-dosing method that simulates the chemical bioaccumulation from soil and microplastics simultaneously, wherein unlabeled hydrophobic organic contaminants (HOCs) were spiked in the soil and their respective isotope-labeled reference compounds were spiked on the polyethylene microplastics. The comparison of the bioavailability, i.e., the freely dissolved concentration in soil porewater and bioaccumulation by earthworm, between the unlabeled and isotope-labeled HOCs was carried out. Relatively higher level of bioavailability of the isotope-labeled HOCs was observed compared to the unlabeled HOCs, which may be attributed to the irreversible desorption of HOCs from soil particles. The average relative fractions of bioaccumulated isotope-labeled HOCs in the soil treated with 1 % microplastics ranged from 6.9 % to 46.4 %, which were higher than those in the soil treated with 0.1 % microplastics. Treatments with the smallest microplastic particles were observed to have the highest relative fractions of bioaccumulated isotope-labeled HOCs, with the exception of phenanthrene, suggesting greater vector effects of smaller microplastic particles. Biodynamic model analysis indicated that the contribution of dermal uptake to the bioaccumulation of isotope-labeled HOCs was higher than that for unlabeled HOCs. This proposed method can be used as a tool to assess the prospective vector effects of microplastics in complex environmental conditions and would enhance the comprehensive understanding of the microplastic vector effects for HOC bioaccumulation.


Subject(s)
Bioaccumulation , Hydrophobic and Hydrophilic Interactions , Microplastics , Oligochaeta , Soil Pollutants , Oligochaeta/metabolism , Animals , Soil Pollutants/metabolism , Soil/chemistry
7.
J Hazard Mater ; 471: 134439, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677123

ABSTRACT

Microcystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture. Relative to MC-RR, MC-LR exhibited higher bioaccumulation and the resulting dermal lesions and deformation of longitudinal muscles. While the incorporation of both MCs into soils stimulated pathogenic bacteria and depressed oxidative stress tolerant bacteria, the response among soil nitrification and glutathione metabolism differed between the two congeners. The dissipation kinetics of MCs obeyed the first-order model. Earthworms stimulated soil N-cycling enzyme activities, increased the abundance of MC-degrading bacteria, and promoted bacterial metabolic functions related to glutathione metabolism, xenobiotics biodegradation, and metabolism of amino acids that comprise MCs, which accelerated the dissipation of MC-LR and MC-RR by 227% and 82%, respectively. These results provide evidence of significant congener differences in the terrestrial fate and impact of MCs, which will enable a better understanding of their role in mediating soil functions and ecosystem services.


Subject(s)
Microcystins , Oligochaeta , Soil Microbiology , Soil Pollutants , Animals , Oligochaeta/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Microcystins/metabolism , Microcystins/toxicity , Soil/chemistry , Glutathione/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Bioaccumulation
8.
Environ Pollut ; 349: 123953, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608857

ABSTRACT

The harmless and high-value conversion of organic waste are the core problems to be solved by composting technology. This study introduced an innovative method of promoting targeted humification and nitrogen retention in composting by adding p-benzoquinone (PBQ), the composting without any additives was set as control group (CK). The results indicated that the addition of exogenous quinones led to a 30.1% increase in humic acid (HA) content during the heating and thermophilic phases of composting. Spectroscopic analyses confirmed that exogenous quinones form the core skeleton structure of amino-quinones in HA through composting biochemical reactions. This accelerated the transformation of quinones into recalcitrant HA in the early stages of composting, and reduced CO2 and NH3 by 8% and 78%, respectively. Redundancy analysis (RDA) revealed that the decrease in carbon and nitrogen losses primarily correlated with quinones enhancing HA formation and greater nitrogen incorporation into HA (P < 0.05). Furthermore, the compost treated with quinones demonstrated a decrease in phytotoxicity and earthworm mortality, alongside a significant increase in the relative abundance of actinobacteria, which are associated with the humification process. This research establishes and proposes that co-composting with quinones-containing waste is an effective approach for the sustainable recycling of hazardous solid waste.


Subject(s)
Composting , Humic Substances , Nitrogen , Quinones , Composting/methods , Quinones/metabolism , Quinones/chemistry , Animals , Soil/chemistry , Oligochaeta/metabolism , Food , Refuse Disposal/methods , Food Loss and Waste
9.
Environ Res ; 252(Pt 2): 118910, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604487

ABSTRACT

Earthworms can resist high levels of soil copper (Cu) contamination and play an essential role in absorbing them effectively. However, the molecular mechanisms underlying Cu tolerance in earthworms are poorly understood. To address this research gap, we studied alterations of Eisenia fetida in antioxidant enzymes, gut microbiota, metabolites, and genes under varying levels of Cu exposure soils (0, 67.58, 168.96, 337.92 mg/kg). Our results revealed a reduction in antioxidant enzyme activities across all treatment groups, indicating an adaptive response to alleviate Cu-induced oxidative stress. Analysis of gut microbiota revealed a significant increase in the abundance of bacteria associated with nutrient uptake and Cu2+ excretion under Cu stress. Furthermore, metabolomic analysis discovered an increase in certain metabolites associated with energy metabolism, such as pyruvic acid, L-malic acid, and fumaric acid, as Cu concentration escalated. These results suggested that enhanced energy supply contributes to the elevated tolerance of E. fetida towards Cu. Additionally, transcriptome analysis not only identified crucial detoxification genes (Hsp70, CTSL, GST, CHAC, and GCLC), but also confirmed the critical role of glutathione metabolism as a key pathway in E. fetida Cu detoxification processes. These findings provide a new perspective on the molecular mechanisms of Cu tolerance in earthworms.


Subject(s)
Copper , Oligochaeta , Soil Pollutants , Oligochaeta/metabolism , Oligochaeta/drug effects , Animals , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Copper/toxicity , Copper/metabolism , Gastrointestinal Microbiome/drug effects , Metabolomics , Oxidative Stress/drug effects , Multiomics
10.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542353

ABSTRACT

A toxicogenomic approach was used for toxicity evaluation of arsenic in the aquatic environment, and differential gene expression was investigated from 24 h and 96 h water-only acute toxicity tests with the aquatic oligochaete, Tubifex tubifex (Annelida, Clitellata). Several toxicological endpoints (survival and autotomy) of the oligochaete and tissue residues were measured, and dose-response modelling of gene expression data was studied. A reference transcriptome of the aquatic oligochaete, T. tubifex, was reconstructed for the first time, and genes related to cell stress response (Hsc70, Hsp10, Hsp60, and Hsp83), energy metabolism (COX1), oxidative stress (Cat, GSR, and MnSOD), and the genes involved in the homeostasis of organisms (CaM, RpS13, and UBE2) were identified and characterised. The potential use of the genes identified for risk assessment in freshwater ecosystems as early biomarkers of arsenic toxicity is discussed.


Subject(s)
Arsenic , Oligochaeta , Water Pollutants, Chemical , Animals , Arsenic/toxicity , Arsenic/metabolism , Ecosystem , Water/metabolism , Toxicogenetics , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Oligochaeta/genetics , Oligochaeta/metabolism , Fresh Water
11.
Environ Sci Pollut Res Int ; 31(17): 25202-25215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38466381

ABSTRACT

Laccase immobilized and cross-linked on Fe3S4/earthworm-like mesoporous SiO2 (Fe3S4/EW-mSiO2) was used to degrade methoxychlor (MXC) in aqueous environments. The effects of various parameters on the degradation of MXC were determined using free and immobilized laccase. Immobilization improved the thermal stability and reuse of laccase significantly. Under the conditions of pH 4.5, temperature 40 °C, and reaction time 8 h, the degradation rate of MXC by immobilized laccase reached a maximum value of 40.99% and remained at 1/3 of the original after six cycles. The excellent degradation performance of Fe3S4/EW-mSiO2 was attributable to the pyrite (FeS2) impurity in Fe3S4, which could act as an electron donor in reductive dehalogenation. Sulfide groups and Fe2+ reduced the activation energy of the system resulting in pyrite-assisted degradation of MXC. The degradation mechanism of MXC in aqueous environments by laccase immobilized on Fe3S4/EW-mSiO2 was determined via mass spectroscopy of the degradation products. This study is a new attempt to use pyrite to support immobilized laccase degradation.


Subject(s)
Iron , Methoxychlor , Oligochaeta , Animals , Methoxychlor/chemistry , Enzymes, Immobilized/chemistry , Laccase/metabolism , Silicon Dioxide/chemistry , Oligochaeta/metabolism , Sulfides
12.
Sci Total Environ ; 927: 171840, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38522544

ABSTRACT

Molybdenum (Mo) is a critical micronutrient for nitrogen (N) metabolism in legumes, yet the impact of Mo on legume N metabolism in the context of natural coexistence with soil microorganisms remains poorly understood. This study investigated the dose-dependent effect of Mo on soil N biogeochemical cycling, N accumulation, and assimilation in alfalfa under conditions simulating the coexistence of arbuscular mycorrhizal fungi (AMF) and earthworms. The findings indicated that Mo exerted a hormetic effect on alfalfa N accumulation, facilitating it at low concentrations (below 29.98 mg/kg) and inhibiting it at higher levels. This inhibition was attributed to Mo-induced constraints on C supply for nitrogen fixation. Concurrently, AMF colonization enhanced C assimilation in Mo-treated alfalfas by promoting nutrients uptake, particularly Mg, which is crucial for chlorophyll synthesis. This effect was further amplified by earthworms, which improved AMF colonization (p < 0.05). In the soil N cycle, these organisms exerted opposing effects: AMF enhanced soil nitrification and earthworms reduced soil nitrate (NO3--N) reduction to jointly increase soil phyto-available N content (p < 0.05). Their combined action improved alfalfa N assimilation by restoring the protein synthesis pathway that is compromised by high Mo concentrations, specifically the activity of glutamine synthetase. These findings underscored the potential for soil microorganisms to mitigate N metabolic stress in legumes exposed to elevated Mo levels.


Subject(s)
Medicago sativa , Molybdenum , Mycorrhizae , Nitrogen , Oligochaeta , Mycorrhizae/physiology , Oligochaeta/metabolism , Animals , Nitrogen/metabolism , Molybdenum/metabolism , Medicago sativa/metabolism , Medicago sativa/microbiology , Soil Microbiology , Fabaceae , Soil/chemistry , Nitrogen Fixation
13.
Biochem Biophys Res Commun ; 708: 149787, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38537527

ABSTRACT

We recently identified the deazaflavin cofactor as a light emitter in novel bioluminescence (BL) system from Siberian earthworms Henlea sp. (Petushkov et al., 2023, Org. Biomol. Chem. 21:415-427). In the present communication we compared in vitro BL spectra in the absence and in the presence of the cofactor and found a wavelength shift from 420 to 476 nm. This violet-blue BRET to deazaflavin cofactor (acceptor of photonless transfer) masks the actual oxyluciferin as an emitter (BRET donor) in the novel BL system. The best candidate for that masked chromophore is tryptophan 2-carboxylate (T2C) found previously as a building block in some natural products isolated from Henlea sp. (Dubinnyi et al., 2020, ChemSelect 5:13155-13159). We synthesized T2C and acetyl-T2C, verified their presence in earthworms by nanoflow-HRMS, explored spectral properties of excitation and emission spectra and found a chain of excitation/emission maxima with a perfect potential for BRET: 300 nm (excitation of T2C) - 420 nm (emission of T2C) - 420 nm (excitation of deazaflavin) - 476 nm (emission of deazaflavin, BL). An array of natural products with T2C chromophore are present in BL earthworms as candidates for novel oxyluciferin. We demonstrated for the Henlea BL that the energy of the excited state of the T2C chromophore is transferred by the Förster mechanism and then emitted by deazaflavin (BRET), similarly to known examples: aequorin-GFP in Aequorea victoria and antenna proteins in bacterial BL systems (lumazine from Photobacterium and yellow fluorescent protein from Vibrio fischeri strain Y1).


Subject(s)
Biological Products , Oligochaeta , Animals , Luminescent Proteins/metabolism , Oligochaeta/metabolism , Tryptophan , Bacterial Proteins/metabolism
14.
Environ Pollut ; 347: 123719, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458525

ABSTRACT

Neonicotinoid insecticides (NNIs) are a new class of widely used insecticides with certain risks to non-target organisms, like earthworms. The gray correlation method was used to calculate the comprehensive risk effect value of acute toxicity (LC50) and bioaccumulation (logKow) of NNIs on earthworms. A comprehensive effects three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed, using NNIs molecular structures and the comprehensive effect value as the independent and dependent variables, respectively. One of the representatives guadipyr (GUA) was selected as the template molecule for the molecular design and modification. A total of 63 NNIs alternatives were designed with a reduced comprehensive value higher than 10%, and as high as 42%. After screening, 15 NNIs alternatives were screened with decreased acute toxicity to earthworms, bioaccumulation effects and improved functional property. The calculated primary acute risk quotient of earthworms shows that the designed NNIs alternatives have lower earthworm risks (reduction of 70.48-99.99%). Results also found that the electronic, geometric and topological parameters of NNIs are the key descriptors that affect NNIs alternatives' toxicity. The number of hydrophobic interaction amino acid residues in NNIs molecules also contributes to the acute toxicity and the bioaccumulation of NNIs alternatives on earthworms. This study aims to design and screen functionally improved and environmentally friendly NNIs alternatives that have low risk to earthworms and provide theoretical methods and new ideas for the risk control and development of pesticides represented by NNIs.


Subject(s)
Insecticides , Oligochaeta , Pesticides , Animals , Neonicotinoids/chemistry , Insecticides/metabolism , Pesticides/metabolism , Oligochaeta/metabolism , Quantitative Structure-Activity Relationship
15.
In Vitro Cell Dev Biol Anim ; 60(3): 222-235, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38504086

ABSTRACT

Regeneration is a multifaceted biological phenomenon that necessitates the intricate orchestration of apoptosis, stem cells, and immune responses, culminating in the regulation of apoptosis-induced compensatory proliferation (AICP). The AICP context of research is observed in many animal models like in Hydra, Xenopus, newt, Drosophila, and mouse but so far not reported in earthworm. The earthworm Perionyx excavatus is used in the present study to understand the relationship between AICP-related protein expression and regeneration success in different conditions (normal regeneration and abnormal multiple bud formation). Initially, the worms are amputated into five equal portions and it is revealed that regeneration in P. excavatus is clitellum independent and it gives more preference for anterior regeneration (regrowth of head portion) than for posterior regeneration (regrowth of tail portion). The posterior segments of the worm possess enormous regeneration ability but this is lacking in anterior segments. Alkaline phosphate, a stem cell marker, shows strong signals throughout all the posterior segments but it decreases in the initial 1st to 15th anterior segments which lack the regeneration ability. While regenerating normally, it was suggested that the worm follow AICP principles. This is because there was increased expression of apoptosis signals throughout the regeneration process along with constant expression of stem cell proliferation response together with cellular proliferation. In amputated posterior segments maintained in vitro, the apoptosis signals were extensively detected on the 1st day. However, on the 4th and 6th days, caspase-3 and H2AX expression are significantly suppressed, which may eventually alter the Wnt3a and histone H3 patterns that impair the AICP and result in multiple bud formation. Our results suggest that AICP-related protein expression pattern is crucial for initiating proper regeneration.


Subject(s)
Oligochaeta , Animals , Mice , Oligochaeta/genetics , Oligochaeta/metabolism , Apoptosis/genetics , Cell Proliferation
16.
J Environ Manage ; 354: 120320, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377754

ABSTRACT

Bioremediation of hazardous bauxite residues, red mud (RM), through vermicomposting has yet to be attempted. Therefore, the valorization potential of Eisenia fetida in various RM and cow dung (CD) mixtures was compared to aerobic composting. Earthworm fecundity and biomass growth were hindered in RM + CD (1:1) feedstock but enhanced in RM + CD (1:3). The pH of highly alkaline RM-feedstocks sharply reduced (>17%) due to vermicomposting. N, P, and K availability increased dramatically with Ca and Na reduction under vermicomposting. Additionally, ∼40-60% bioavailable metal fractions were transformed to obstinate (organic matter and residual bound) forms upon vermicomposting. Consequently, the total metal concentrations were significantly reduced with considerably high earthworm bioaccumulation. Microbial growth and enzyme activity were more significant under vermicomposting than composting. Correlation statistics revealed that microbial augmentation significantly facilitated a metal reduction in RM-vermibeds. Eventually, RM-vermicompost stimulated sesame growth and improved soil health with the least heavy metal contamination to soil and crop.


Subject(s)
Composting , Metals, Heavy , Oligochaeta , Cattle , Animals , Female , Soil/chemistry , Oligochaeta/metabolism , Metals, Heavy/analysis , Agriculture , Manure
17.
Sci Total Environ ; 922: 171214, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38408672

ABSTRACT

In this work, an accurate analytical method was developed for the simultaneous analysis of twenty-seven antimicrobials (AMs) in earthworms using liquid chromatography coupled to a triple quadrupole mass spectrometry detector (UHPLC-MS/MS). Adequate apparent recoveries (80-120 %) and limits of quantification (LOQ) (1 µg·kg-1 - 10 µg·kg-1) were obtained, with the exception of norfloxacin (34 µg·kg-1). The method was applied to evaluate the accumulation of sulfamethazine (SMZ) and tetracycline (TC) in earthworms after performing OECD-207 toxicity test, in which Eisenia fetida (E. fetida) organisms were exposed to soils spiked with 10 mg·kg-1, 100 mg·kg-1 or 1000 mg·kg-1 of SMZ and TC, individually. The results confirmed the bioaccumulation of both AMs in the organisms, showing a greater tendency to accumulate SMZ since higher bioconcentration factor values were obtained for this compound at the exposure concentrations tested. In addition, the degradation of both AMs in both matrices, soils and earthworms was studied using liquid chromatography coupled to a q-Orbitrap high resolution mass spectrometry detector. Thirteen transformation products (TPs) were successfully identified, eight of them being identified for the first time in soil/earthworm (such as 4-Amino-3-chloro-n-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide or 4-(dimethylamino)-1,11,12a-trihydroxy-6,6-dimethyl-3,7,10,12-tetraoxo-3,4,4a,5,5a,6,7,10,12,12a-decahydrotetracene-2-carboxamide, among others) and their formation/degradation trend over time was also studied. Regarding the biological effects, only SMZ caused changes in earthworm growth, evidenced by weight loss in earthworms exposed to concentrations of 100 mg·kg-1 and 1000 mg·kg-1. Riboflavin decreased at all concentrations of SMZ, as well as at the highest concentration of TC. This indicates that these antibiotics can potentially alter the immune system of E. fetida. This research represents a significant advance in improving our knowledge about the contamination of soil by AM over time. It investigates the various ways in which earthworms are exposed to AMs, either by skin contact or ingestion. Furthermore, it explores how these substances accumulate in earthworms, the processes by which earthworms break them down or metabolise them, as well as the resulting TPs. Finally, it examines the potential effects of these substances on the environment.


Subject(s)
Anti-Infective Agents , Oligochaeta , Soil Pollutants , Animals , Oligochaeta/metabolism , Tandem Mass Spectrometry , Soil Pollutants/analysis , Anti-Infective Agents/toxicity , Anti-Infective Agents/metabolism , Sulfamethazine/analysis , Anti-Bacterial Agents/pharmacology , Soil/chemistry , Tetracycline/analysis
18.
Ecotoxicol Environ Saf ; 273: 116148, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38422791

ABSTRACT

The chiral pesticide hexythiazox was extensively employed in agricultural activities and has garnered growing concern for its harmful impact on the ecosystem. This study investigates the toxicodynamic earthworm at the enantiomeric level of hexythiazox. Earthworms exhibited notable enantioselectivity during the accumulation stage. Furthermore, the presence of earthworms can impact the rate of degradation and enantioselectivity of hexythiazox in soil. The accumulation of the two hexythiazox enantiomers in the earthworm adhered to the one-compartment model, whereas the elimination phase was governed by the first-order kinetics equation. Furthermore, it was discovered that there was no notable enantioselectivity observed during the elimination phase.


Subject(s)
Oligochaeta , Pesticides , Soil Pollutants , Thiazolidines , Animals , Soil , Pesticides/toxicity , Pesticides/metabolism , Oligochaeta/metabolism , Soil Pollutants/analysis , Bioaccumulation , Ecosystem , Stereoisomerism
19.
Environ Sci Process Impacts ; 26(5): 814-823, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38345076

ABSTRACT

Marine mesoscale studies with sandworms (Alitta virens) were conducted to isolate important processes governing the exposure and bioaccumulation of polychlorinated biphenyls (PCBs) at contaminated sediment sites. Ex situ equilibrium sampling with silicone-coated jars, and in situ passive sampling with low-density polyethylene (LDPE) were used to determine the performance of an activated carbon (AC) amendment remedy applied to the bed sediment. A quantitative thermodynamic exposure assessment ('QTEA') was performed, showing that PCB concentrations in polymers at equilibrium with the surficial sediment were suited to measure and assess the remedy effectiveness with regard to PCB bioaccumulation in worms. In practice, monitoring the performance of sediment remedies should utilize a consistent and predictive form of polymeric sampling of the sediment. The present study found that ex situ equilibrium sampling of the surficial sediment was the most useful for understanding changes in bioaccumulation potential as a result of the applied remedy, during bioturbation and ongoing sediment and contaminant influx processes. The ultrathin silicone coatings of the ex situ sampling provided fast equilibration of PCBs between the sediment interstitial water and the polymer, and the multiple coating thicknesses were applied to confirm equilibrium and the absence of surface sorption artifacts. Overall, ex situ equilibrium sampling of surficial sediment could fit into existing frameworks as a robust and cost-effective tool for contaminated sediment site assessment.


Subject(s)
Charcoal , Geologic Sediments , Polychlorinated Biphenyls , Water Pollutants, Chemical , Polychlorinated Biphenyls/analysis , Geologic Sediments/chemistry , Animals , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Thermodynamics , Environmental Monitoring/methods , Oligochaeta/metabolism , Environmental Restoration and Remediation/methods
20.
Nature ; 627(8002): 116-122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355803

ABSTRACT

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Subject(s)
Biodiversity , Energy Metabolism , Food Chain , Rainforest , Animals , Arthropods/metabolism , Bacteria/metabolism , Birds/metabolism , Carbon Sequestration , Feces , Fungi/metabolism , Indonesia , Oligochaeta/metabolism , Organic Chemicals/metabolism , Palm Oil , Rubber , Soil/chemistry , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...