Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.369
Filter
1.
Acta Neuropathol Commun ; 12(1): 75, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745295

ABSTRACT

In Parkinson's disease and other synucleinopathies, fibrillar forms of α-synuclein (aSyn) are hypothesized to structurally convert and pathologize endogenous aSyn, which then propagates through the neural connections, forming Lewy pathologies and ultimately causing neurodegeneration. Inoculation of mouse-derived aSyn preformed fibrils (PFFs) into the unilateral striatum of wild-type mice causes widespread aSyn pathologies in the brain through the neural network. Here, we used the local injection of antisense oligonucleotides (ASOs) against Snca mRNA to confine the area of endogenous aSyn protein reduction and not to affect the PFFs properties in this model. We then varied the timing and location of ASOs injection to examine their impact on the initiation and propagation of aSyn pathologies in the whole brain and the therapeutic effect using abnormally-phosphorylated aSyn (pSyn) as an indicator. By injecting ASOs before or 0-14 days after the PFFs were inoculated into the same site in the left striatum, the reduction in endogenous aSyn in the striatum leads to the prevention and inhibition of the regional spread of pSyn pathologies to the whole brain including the contralateral right hemisphere. ASO post-injection inhibited extension from neuritic pathologies to somatic ones. Moreover, injection of ASOs into the right striatum prevented the remote regional spread of pSyn pathologies from the left striatum where PFFs were inoculated and no ASO treatment was conducted. This indicated that the reduction in endogenous aSyn protein levels at the propagation destination site can attenuate pSyn pathologies, even if those at the propagation initiation site are not inhibited, which is consistent with the original concept of prion-like propagation that endogenous aSyn is indispensable for this regional spread. Our results demonstrate the importance of recruiting endogenous aSyn in this neural network propagation model and indicate a possible potential for ASO treatment in synucleinopathies.


Subject(s)
Mice, Inbred C57BL , Nerve Net , Oligonucleotides, Antisense , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/administration & dosage , Mice , Nerve Net/metabolism , Nerve Net/drug effects , Nerve Net/pathology , Male , Corpus Striatum/metabolism , Corpus Striatum/pathology , Corpus Striatum/drug effects , Disease Models, Animal , Brain/metabolism , Brain/pathology , Brain/drug effects , RNA, Messenger/metabolism
2.
Biomed Pharmacother ; 175: 116737, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749176

ABSTRACT

Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.


Subject(s)
Apolipoproteins E , Blood-Brain Barrier , Mice, Transgenic , Oligonucleotides, Antisense , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/pharmacokinetics , Humans , Apolipoproteins E/metabolism , Mice , Morpholinos/administration & dosage , Morpholinos/pharmacokinetics , Morpholinos/pharmacology , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Muscular Atrophy, Spinal/drug therapy , Drug Delivery Systems/methods , Fibroblasts/metabolism , Fibroblasts/drug effects , Brain/metabolism , Brain/drug effects , Peptides/administration & dosage , Peptides/pharmacology , Peptides/chemistry , Peptides/pharmacokinetics , Cell-Penetrating Peptides/chemistry
3.
Bioconjug Chem ; 35(5): 623-632, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38659333

ABSTRACT

Nanodiamonds (NDs) are considered promising delivery platforms, but inaccurate and uncontrolled release of drugs at target sites is the biggest challenge of NDs in precision medicine. This study presents the development of phototriggerable ND-based drug delivery systems, utilizing ortho-nitrobenzyl (o-NB) molecules as photocleavable linkers between drugs and nanocarriers. UV irradiation specifically cleaved o-NB molecules and then was followed by releasing antisense oligonucleotides from ND-based carriers in both buffer and cellular environments. This ND system carried cell nonpermeable therapeutic agents for bypassing lysosomal trapping and degradation. The presence of fluorescent nitrogen-vacancy centers also allowed NDs to serve as biological probes for tracing in cells. We successfully demonstrated phototriggered release of antisense oligonucleotides from ND-based nanocarriers, reactivating their antisense functions. This highlights the potential of NDs, photocleavable linkers, and light stimuli to create advanced drug delivery systems for controlled drug release in disease therapy, opening possibilities for targeted and personalized treatments.


Subject(s)
Drug Delivery Systems , Nanodiamonds , Oligonucleotides, Antisense , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/administration & dosage , Humans , Nanodiamonds/chemistry , Drug Delivery Systems/methods , Drug Liberation , Drug Carriers/chemistry , Ultraviolet Rays , Light
4.
Lakartidningen ; 1212024 Apr 26.
Article in Swedish | MEDLINE | ID: mdl-38666665

ABSTRACT

We present a patient with familial amyotrophic lateral sclerosis caused by an aggressive A4S mutation in the SOD1 gene. In 2020, the patient was enrolled in the VALOR SOD1 gene therapy phase-3 trial. At screening, the ALSFRS-R score was 41 (48 is normal) and the level of CSF-neurofilament L (an indicator of ongoing neuronal damage) was 11 000 ng/L (ref <650 ng/L). In the four years following enrollment, the patient received monthly intrathecal treatment with tofersen, an antisense oligonucleotide compound that inhibits SOD1 protein expression and hence lowers the synthesis of toxic SOD1 protein species. Side effects have been minimal and mostly attributed to the spinal taps. The patient remains ambulatory with an active social lifestyle. The ALSFRS-R score has in the past 18 months stabilized around 35-37, CSF-NfL is 1 290 ng/L and plasma-NfL is 12 (reference <13). This is the first documented arresting intervention in a patient with ALS in Sweden.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Progression , Genetic Therapy , Superoxide Dismutase-1 , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/therapy , Superoxide Dismutase-1/genetics , Male , Middle Aged , Mutation , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides/therapeutic use , Oligonucleotides/administration & dosage
5.
Br J Clin Pharmacol ; 90(6): 1503-1513, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38504437

ABSTRACT

AIMS: The aim of this study was to characterize the population pharmacokinetics of AZD8233, an antisense oligonucleotide (ASO) that targets the PCSK9 transcript to reduce hepatocyte PCSK9 protein production and plasma levels. AZD8233 utilizes generation 2.5 S-constrained ethyl motif (cET) chemistry and is conjugated to a triantennary N-acetylgalactosamine (GalNAc3) ligand for targeted hepatocyte uptake. METHODS: A non-linear mixed-effect modelling approach utilizing NONMEM software was applied to AZD8233 concentration-time data from 3416 samples in 219 participants from four phase 1-2 studies, one in healthy volunteers (NCT03593785) and three in patients with dyslipidaemia (NCT04155645, NCT04641299 and NCT04823611). RESULTS: The final model described the AZD8233 plasma concentration-time profile from four phase 1-2 studies in healthy volunteers or participants with dyslipidaemia, covering a dose range of 4 to 120 mg. The pharmacokinetics of AZD8233 were adequately described by a two-compartment model with first-order absorption. The supra-proportional increase in maximum plasma concentration (Cmax) across the observed dose range was described by non-linear Michaelis-Menten elimination (maximum elimination rate, 9.9 mg/h [12% relative standard error]; concentration yielding half-maximal elimination rate, 4.8 mg/L [18% relative standard error]). Body weight, sex, estimated glomerular filtration rate and disease status (healthy participant vs. patient with dyslipidaemia) were identified as factors affecting exposure to AZD8233. CONCLUSIONS: Covariate analysis showed body weight to be the main factor affecting exposure to AZD8233, which largely explained the higher Cmax observed in the Asian population relative to non-Asians.


Subject(s)
Dyslipidemias , Oligonucleotides, Antisense , Proprotein Convertase 9 , Humans , Male , Female , Middle Aged , Adult , Dyslipidemias/drug therapy , Dyslipidemias/genetics , Dyslipidemias/blood , Oligonucleotides, Antisense/pharmacokinetics , Oligonucleotides, Antisense/administration & dosage , Proprotein Convertase 9/genetics , Young Adult , Healthy Volunteers , Models, Biological , Aged , Dose-Response Relationship, Drug , Adolescent
6.
Eur J Heart Fail ; 26(3): 674-682, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38269451

ABSTRACT

AIM: Inhibition of microRNA (miR)-132 effectively prevents and reverses adverse cardiac remodelling, making it an attractive heart failure (HF) target. CDR132L, a synthetic antisense oligonucleotide selectively blocking pathologically elevated miR-132, demonstrated beneficial effects on left ventricular (LV) structure and function in relevant preclinical models, and was safe and well tolerated in a Phase 1b study in stable chronic HF patients. Patients with acute myocardial infarction (MI) and subsequent LV dysfunction and remodelling have limited therapeutic options, and may profit from early CDR132L treatment. METHODS: The HF-REVERT (Phase 2, multicenter, randomized, parallel, 3-arm, placebo-controlled Study to Assess Efficacy and Safety of CDR132L in Patients with Reduced Left Ventricular Ejection Fraction after Myocardial Infarction) evaluates the efficacy and safety of CDR132L in HF patients post-acute MI (n = 280), comparing the effect of 5 and 10 mg/kg CDR132L, administered as three single intravenous doses 28 days apart, in addition to standard of care. Key inclusion criteria are the diagnosis of acute MI, the development of systolic dysfunction (LV ejection fraction ≤45%) and elevated N-terminal pro-B-type natriuretic peptide. The study consists of a 6-month double-blinded treatment period with the primary endpoint LV end-systolic volume index and relevant secondary endpoints, followed by a 6-month open-label observation period. CONCLUSION: The HF-REVERT trial may underpin the concept of miR-132 inhibition to prevent or reverse cardiac remodelling in post-MI HF. The results will inform the design of subsequent outcome trials to test CDR132L in HF.


Subject(s)
Myocardial Infarction , Stroke Volume , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/physiopathology , Myocardial Infarction/complications , Stroke Volume/physiology , Male , Female , Heart Failure/drug therapy , Heart Failure/physiopathology , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/etiology , Treatment Outcome , MicroRNAs , Ventricular Remodeling/drug effects , Middle Aged , Aged , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/administration & dosage , Double-Blind Method , Ventricular Function, Left/physiology , Ventricular Function, Left/drug effects
7.
Nucleic Acids Res ; 51(14): 7109-7124, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37188501

ABSTRACT

Antisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the central nervous system (CNS). By modulating RNA, they hold the promise of targeting root molecular causes of disease and hold potential to treat myriad CNS disorders. Realization of this potential requires that ASOs must be active in the disease-relevant cells, and ideally, that monitorable biomarkers also reflect ASO activity in these cells. The biodistribution and activity of such centrally delivered ASOs have been deeply characterized in rodent and non-human primate (NHP) models, but usually only in bulk tissue, limiting our understanding of the distribution of ASO activity across individual cells and across diverse CNS cell types. Moreover, in human clinical trials, target engagement is usually monitorable only in a single compartment, CSF. We sought a deeper understanding of how individual cells and cell types contribute to bulk tissue signal in the CNS, and how these are linked to CSF biomarker outcomes. We employed single nucleus transcriptomics on tissue from mice treated with RNase H1 ASOs against Prnp and Malat1 and NHPs treated with an ASO against PRNP. Pharmacologic activity was observed in every cell type, though sometimes with substantial differences in magnitude. Single cell RNA count distributions implied target RNA suppression in every single sequenced cell, rather than intense knockdown in only some cells. Duration of action up to 12 weeks post-dose differed across cell types, being shorter in microglia than in neurons. Suppression in neurons was generally similar to, or more robust than, the bulk tissue. In macaques, PrP in CSF was lowered 40% in conjunction with PRNP knockdown across all cell types including neurons, arguing that a CSF biomarker readout is likely to reflect ASO pharmacodynamic effect in disease-relevant cells in a neuronal disorder. Our results provide a reference dataset for ASO activity distribution in the CNS and establish single nucleus sequencing as a method for evaluating cell type specificity of oligonucleotide therapeutics and other modalities.


Antisense oligonucleotide (ASO) drugs are a type of chemically modified DNA that can be injected into cerebrospinal fluid in order to enter brain cells and reduce the amount of RNA from a specific gene. The brain is a complex mixture of hundreds of billions of cells. When an ASO lowers a target gene's RNA by 50%, is that a 50% reduction in 100% of cells, or a 100% reduction in 50% of cells? Are the many different cell types of the brain affected equally? This new study uses single cell RNA sequencing to answer these questions, finding that ASOs are broadly active across cell types and individual cells, and linking reduction of target protein in cerebrospinal fluid to disease-relevant cells.


Subject(s)
Brain , Oligonucleotides, Antisense , Animals , Mice , Brain/drug effects , Brain/metabolism , Oligonucleotides/metabolism , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/analysis , RNA/metabolism , Tissue Distribution , Transcription Factors/metabolism , Cerebrospinal Fluid/chemistry , Central Nervous System Diseases/therapy
8.
N Engl J Med ; 387(21): 1957-1968, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36346079

ABSTRACT

BACKGROUND: Bepirovirsen is an antisense oligonucleotide that targets all hepatitis B virus (HBV) messenger RNAs and acts to decrease levels of viral proteins. METHODS: We conducted a phase 2b, randomized, investigator-unblinded trial involving participants with chronic HBV infection who were receiving or not receiving nucleoside or nucleotide analogue (NA) therapy. Participants were randomly assigned (in a 3:3:3:1 ratio) to receive weekly subcutaneous injections of bepirovirsen at a dose of 300 mg for 24 weeks (group 1), bepirovirsen at a dose of 300 mg for 12 weeks then 150 mg for 12 weeks (group 2), bepirovirsen at a dose of 300 mg for 12 weeks then placebo for 12 weeks (group 3), or placebo for 12 weeks then bepirovirsen at a dose of 300 mg for 12 weeks (group 4). Groups 1, 2, and 3 received loading doses of bepirovirsen. The composite primary outcome was a hepatitis B surface antigen (HBsAg) level below the limit of detection and an HBV DNA level below the limit of quantification maintained for 24 weeks after the planned end of bepirovirsen treatment, without newly initiated antiviral medication. RESULTS: The intention-to-treat population comprised 457 participants (227 receiving NA therapy and 230 not receiving NA therapy). Among those receiving NA therapy, a primary-outcome event occurred in 6 participants (9%; 95% credible interval, 0 to 31) in group 1, in 6 (9%; 95% credible interval, 0 to 43) in group 2, in 2 (3%; 95% credible interval, 0 to 16) in group 3, and 0 (0%; post hoc credible interval, 0 to 8) in group 4. Among participants not receiving NA therapy, a primary-outcome event occurred in 7 participants (10%; 95% credible interval, 0 to 38), 4 (6%; 95% credible interval, 0 to 25), 1 (1%; post hoc credible interval, 0 to 6), and 0 (0%; post hoc credible interval, 0 to 8), respectively. During weeks 1 through 12, adverse events, including injection-site reactions, pyrexia, fatigue, and increased alanine aminotransferase levels, were more common with bepirovirsen (groups 1, 2, and 3) than with placebo (group 4). CONCLUSIONS: In this phase 2b trial, bepirovirsen at a dose of 300 mg per week for 24 weeks resulted in sustained HBsAg and HBV DNA loss in 9 to 10% of participants with chronic HBV infection. Larger and longer trials are required to assess the efficacy and safety of bepirovirsen. (Funded by GSK; B-Clear ClinicalTrials.gov number, NCT04449029.).


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Oligonucleotides, Antisense , RNA, Viral , Humans , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , DNA, Viral/blood , Hepatitis B e Antigens/blood , Hepatitis B Surface Antigens/blood , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/adverse effects , Oligonucleotides, Antisense/therapeutic use , Treatment Outcome , RNA, Viral/drug effects , RNA, Messenger/drug effects , Injections, Subcutaneous
9.
N Engl J Med ; 387(12): 1099-1110, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36129998

ABSTRACT

BACKGROUND: The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS). METHODS: In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort). RESULTS: A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was -6.98 with tofersen and -8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], -3.2 to 5.5; P = 0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was -6.0 in the early-start cohort and -9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non-multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture-related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients. CONCLUSIONS: In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699 and NCT03070119; EudraCT numbers, 2015-004098-33 and 2016-003225-41.).


Subject(s)
Amyotrophic Lateral Sclerosis , Oligonucleotides, Antisense , Superoxide Dismutase-1 , Adult , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Double-Blind Method , Humans , Injections, Spinal , Neurofilament Proteins/blood , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Recovery of Function/drug effects , Superoxide Dismutase-1/cerebrospinal fluid , Superoxide Dismutase-1/genetics
10.
Nucleic Acids Res ; 50(15): 8418-8430, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35920332

ABSTRACT

The lung is a complex organ with various cell types having distinct roles. Antisense oligonucleotides (ASOs) have been studied in the lung, but it has been challenging to determine their effectiveness in each cell type due to the lack of appropriate analytical methods. We employed three distinct approaches to study silencing efficacy within different cell types. First, we used lineage markers to identify cell types in flow cytometry, and simultaneously measured ASO-induced silencing of cell-surface proteins CD47 or CD98. Second, we applied single-cell RNA sequencing (scRNA-seq) to measure silencing efficacy in distinct cell types; to the best of our knowledge, this is the first time scRNA-seq has been applied to measure the efficacy of oligonucleotide therapeutics. In both approaches, fibroblasts were the most susceptible to locally delivered ASOs, with significant silencing also in endothelial cells. Third, we confirmed that the robust silencing in fibroblasts is broadly applicable by silencing two targets expressed mainly in fibroblasts, Mfap4 and Adam33. Across independent approaches, we demonstrate that intratracheally administered LNA gapmer ASOs robustly induce gene silencing in lung fibroblasts. ASO-induced gene silencing in fibroblasts was durable, lasting 4-8 weeks after a single dose. Thus, lung fibroblasts are well aligned with ASOs as therapeutics.


Subject(s)
Endothelial Cells , Fibroblasts/drug effects , Lung/cytology , Oligonucleotides, Antisense/administration & dosage , Animals , Fibroblasts/metabolism , Gene Silencing , Lung/drug effects , Mice , Oligonucleotides/administration & dosage , Trachea/metabolism
11.
Int J Mol Sci ; 23(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35269571

ABSTRACT

Inherited cardiomyopathy caused by the p.(Arg14del) pathogenic variant of the phospholamban (PLN) gene is characterized by intracardiomyocyte PLN aggregation and can lead to severe dilated cardiomyopathy. We recently reported that pre-emptive depletion of PLN attenuated heart failure (HF) in several cardiomyopathy models. Here, we investigated if administration of a Pln-targeting antisense oligonucleotide (ASO) could halt or reverse disease progression in mice with advanced PLN-R14del cardiomyopathy. To this aim, homozygous PLN-R14del (PLN-R14 Δ/Δ) mice received PLN-ASO injections starting at 5 or 6 weeks of age, in the presence of moderate or severe HF, respectively. Mice were monitored for another 4 months with echocardiographic analyses at several timepoints, after which cardiac tissues were examined for pathological remodeling. We found that vehicle-treated PLN-R14 Δ/Δ mice continued to develop severe HF, and reached a humane endpoint at 8.1 ± 0.5 weeks of age. Both early and late PLN-ASO administration halted further cardiac remodeling and dysfunction shortly after treatment start, resulting in a life span extension to at least 22 weeks of age. Earlier treatment initiation halted disease development sooner, resulting in better heart function and less remodeling at the study endpoint. PLN-ASO treatment almost completely eliminated PLN aggregates, and normalized levels of autophagic proteins. In conclusion, these findings indicate that PLN-ASO therapy may have beneficial outcomes in PLN-R14del cardiomyopathy when administered after disease onset. Although existing tissue damage was not reversed, further cardiomyopathy progression was stopped, and PLN aggregates were resolved.


Subject(s)
Calcium-Binding Proteins/genetics , Cardiomyopathies/drug therapy , Oligonucleotides, Antisense/administration & dosage , Amino Acid Substitution , Animals , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/chemistry , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Disease Models, Animal , Female , Heart Function Tests/drug effects , Humans , Male , Mice , Oligonucleotides, Antisense/pharmacology , Protein Aggregates/drug effects , Treatment Outcome
12.
Genes (Basel) ; 13(1)2022 01 05.
Article in English | MEDLINE | ID: mdl-35052449

ABSTRACT

The recent advances in nucleic acid therapeutics demonstrate the potential to treat hereditary neurological disorders by targeting their causative genes. Spinal and bulbar muscular atrophy (SBMA) is an X-linked and adult-onset neurodegenerative disorder caused by the expansion of trinucleotide cytosine-adenine-guanine repeats, which encodes a polyglutamine tract in the androgen receptor gene. SBMA belongs to the family of polyglutamine diseases, in which the use of nucleic acids for silencing a disease-causing gene, such as antisense oligonucleotides and small interfering RNAs, has been intensively studied in animal models and clinical trials. A unique feature of SBMA is that both motor neuron and skeletal muscle pathology contribute to disease manifestations, including progressive muscle weakness and atrophy. As both motor neurons and skeletal muscles can be therapeutic targets in SBMA, nucleic acid-based approaches for other motor neuron diseases and myopathies may further lead to the development of a treatment for SBMA. Here, we review studies of nucleic acid-based therapeutic approaches in SBMA and related neurological disorders and discuss current limitations and perspectives to apply these approaches to patients with SBMA.


Subject(s)
Bulbo-Spinal Atrophy, X-Linked/therapy , Nervous System Diseases/therapy , Oligonucleotides, Antisense/administration & dosage , RNA, Small Interfering/administration & dosage , Animals , Bulbo-Spinal Atrophy, X-Linked/genetics , Bulbo-Spinal Atrophy, X-Linked/pathology , Humans , Nervous System Diseases/genetics , Nervous System Diseases/pathology
13.
BMC Cancer ; 22(1): 79, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35042456

ABSTRACT

BACKGROUND: Long non-coding RNA (LncRNA) HOTAIR was amplified and overexpressed in many human carcinomas, which could serve as a useful target for cancer early detection and treatment. The 99mTc radiolabeled antisense oligonucleotides (ASON) could visualize the expression of HOTAIR and provide a diagnostic value for malignant tumors. The aim of this study was to evaluate whether liposome-coated antisense oligonucleotide probe 99mTc-HYNIC-ASON targeting HOTAIR can be used in in vivo imaging of HOTAIR in malignant glioma xenografts. METHODS: The ASON targeting LncRNA HOTAIR as well as mismatched ASON (ASONM) were designed and modified. The radiolabeling of 99mTc with two probes were via the conjugation of bifunctional chelator HYNIC. Then probes were purified by Sephadex G25 and tested for their radiolabeling efficiency and purity, as well as stability by ITLC (Instant thin-layer chromatography) and gel electrophoresis. Then the radiolabeled probes were transfected with lipofectamine 2000 for cellular uptake test and the next experimental use. Furthermore, biodistribution study and SPECT imaging were performed at different times after liposome-coated 99mTc-HYNIC-ASON/ASONM were intravenously injected in glioma tumor-bearing mice models. All data were analyzed by statistical software. RESULTS: The labeling efficiencies of 99mTc-HYNIC-ASON and 99mTc-HYNIC-ASONM measured by ITLC were (91 ± 1.5) % and (90 ± 0.6) %, respectively, and both radiochemical purities were more than 89%. Two probes showed good stability within 12 h. Gel electrophoresis confirmed that the oligomers were successfully radiolabeled no significant degradation were found. Biodistribution study demonstrated that liposome-coated antisense probes were excreted mainly through the kidney and bladder and has higher uptake in the tumor. Meanwhile, the tumor was clearly shown after injection of liposome coated 99mTc-HYNIC-ASON, and its T/M ratio was higher than that in the non-transfection group and mismatched group. No tumor was seen in mismatched and blocking group. CONCLUSION: The liposome encapsulated 99mTc-HYNIC-ASON probe can be used in the in vivo, real-time imaging of LncRNA HOTAIR expression in malignant glioma.


Subject(s)
Glioma/diagnostic imaging , Oligonucleotides, Antisense/administration & dosage , Organotechnetium Compounds/administration & dosage , RNA, Long Noncoding/analysis , Radiopharmaceuticals/administration & dosage , Animals , Disease Models, Animal , Heterografts/metabolism , Liposomes , Mice , Tissue Distribution
14.
CNS Drugs ; 36(2): 181-190, 2022 02.
Article in English | MEDLINE | ID: mdl-35080757

ABSTRACT

BACKGROUND: Nusinersen is approved for the treatment of spinal muscular atrophy. The most common approved dosing regimen is four intrathecal loading doses of nusinersen 12 mg; the first three are administered at 14-day intervals followed by a fourth dose 30 days later, and then 12-mg maintenance doses are administered every 4 months thereafter. Interruption of nusinersen treatment in the maintenance dosing phase might occur for a number of clinical reasons. OBJECTIVE: The objective of this report is to describe dosing regimens that allow for the most rapid restoration of steady-state concentrations of nusinersen in the cerebrospinal fluid (CSF) following a treatment interruption during maintenance dosing. METHODS: Population pharmacokinetic models using integrated pharmacokinetic data from ten nusinersen clinical trials that included a broad range of participants with spinal muscular atrophy treated with intrathecal nusinersen were used to investigate different durations of treatment interruptions during maintenance treatment. Potential dosing regimens for re-initiation of nusinersen were evaluated, with the goal of achieving the quickest restoration of steady-state nusinersen CSF concentrations without exceeding maximal CSF exposures observed during the initial loading period. RESULTS: Our pharmacokinetic modeling indicates the following regimen will lead to optimal restoration of nusinersen CSF levels after treatment interruption: two doses of nusinersen should be administered at 14-day intervals following treatment interruptions of ≥ 8 to < 16 months since the last dose, and three doses of nusinersen at 14-day intervals for treatment interruptions of ≥ 16 to < 40 months since the last maintenance dose, with subsequent maintenance dosing every 4 months in both instances. After treatment interruptions of ≥ 40 months, the full loading regimen will rapidly restore nusinersen CSF levels. CONCLUSIONS: Prolonged treatment interruptions lead to suboptimal CSF levels of nusinersen. The optimal regimen to restore nusinersen CSF levels depends on the interval since the last maintenance dose was administered.


Nusinersen is a drug used to treat people of all ages who have spinal muscular atrophy. Nusinersen is injected with a thin needle into the lower back, a procedure known as a lumbar puncture. People initially receive three doses of nusinersen 12 mg each 14 days apart. They receive a fourth dose 1 month later, and then injections every 4 months (known as maintenance dosing). This treatment plan allows nusinersen to build up to effective levels in the fluid surrounding the spinal cord and brain. Some people may miss dose(s) or may stop nusinersen treatment at some point during maintenance dosing and then may want to continue treatment. This study used information from ten clinical trials to find out the best way to restart treatment to build up nusinersen to effective levels. People with a treatment break of ≥ 8 to < 16 months since the last dose need two doses of nusinersen at 14-day intervals before receiving maintenance dosing. People with a treatment break of ≥ 16 to < 40 months since the last dose need three doses of nusinersen at 14-day intervals before receiving maintenance dosing. If people stopped treatment for ≥ 40 months, they would need four doses before starting maintenance treatment. Results from this study showed that the number of doses that people needed before starting maintenance treatment depended on how long the treatment break was.


Subject(s)
Dose-Response Relationship, Drug , Drug Monitoring/methods , Maintenance Chemotherapy/methods , Muscular Atrophy, Spinal , Oligonucleotides , Drug Administration Schedule , Duration of Therapy , Humans , Injections, Spinal/methods , Models, Biological , Muscular Atrophy, Spinal/cerebrospinal fluid , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides/administration & dosage , Oligonucleotides/cerebrospinal fluid , Oligonucleotides/pharmacokinetics , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/cerebrospinal fluid , Oligonucleotides, Antisense/pharmacokinetics , Treatment Outcome
15.
FASEB J ; 35(12): e22053, 2021 12.
Article in English | MEDLINE | ID: mdl-34820911

ABSTRACT

Mutations in KCNC3, the gene that encodes the Kv3.3 voltage dependent potassium channel, cause Spinocerebellar Ataxia type 13 (SCA13), a disease associated with disrupted motor behaviors, progressive cerebellar degeneration, and abnormal auditory processing. The Kv3.3 channel directly binds Hax-1, a cell survival protein. A disease-causing mutation, Kv3.3-G592R, causes overstimulation of Tank Binding Kinase 1 (Tbk1) in the cerebellum, resulting in the degradation of Hax-1 by promoting its trafficking into multivesicular bodies and then to lysosomes. We have now tested the effects of antisense oligonucleotides (ASOs) directed against the Kv3.3 channel on both wild type mice and those bearing the Kv3.3-G592R-encoding mutation. Intracerebroventricular infusion of the Kcnc3-specific ASO suppressed both mRNA and protein levels of the Kv3.3 channel. In wild-type animals, this produced no change in levels of activated Tbk1, Hax-1 or Cd63, a tetraspanin marker for late endosomes/multivesicular bodies. In contrast, in mice homozygous for the Kv3.3-G592R-encoding mutation, the same ASO reduced Tbk1 activation and levels of Cd63, while restoring the expression of Hax-1 in the cerebellum. The motor behavior of the mice was tested using a rotarod assay. Surprisingly, the active ASO had no effects on the motor behavior of wild type mice but restored the behavior of the mutant mice to those of age-matched wild type animals. Our findings indicate that, in mature intact animals, suppression of Kv3.3 expression can reverse the deleterious effects of a SCA13 mutation while having little effect on wild type animals. Thus, targeting Kv3.3 expression may prove a viable therapeutic approach for SCA13.


Subject(s)
Motor Disorders/prevention & control , Mutation , Oligonucleotides, Antisense/administration & dosage , Protein Serine-Threonine Kinases/metabolism , Shaw Potassium Channels/antagonists & inhibitors , Spinocerebellar Ataxias/complications , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Disorders/etiology , Motor Disorders/metabolism , Motor Disorders/pathology , Protein Serine-Threonine Kinases/genetics , Shaw Potassium Channels/genetics , Shaw Potassium Channels/metabolism
16.
Nat Med ; 27(10): 1725-1734, 2021 10.
Article in English | MEDLINE | ID: mdl-34642494

ABSTRACT

Chronic infection with hepatitis B virus (HBV) leads to an increased risk of death from cirrhosis and hepatocellular carcinoma. Functional cure rates are low with current treatment options (nucleos(t)ide analogs (NAs) and pegylated interferons). Bepirovirsen is an antisense oligonucleotide targeting all HBV messenger RNAs; in cell culture and animal models, bepirovirsen leads to reductions in HBV-derived RNAs, HBV DNA and viral proteins. This phase 2 double-blinded, randomized, placebo-controlled trial is the first evaluation of the safety and activity of an antisense oligonucleotide targeting HBV RNA in both treatment-naïve and virally suppressed individuals with chronic HBV infection. The primary objective was to assess the safety and tolerability of bepirovirsen in individuals with chronic hepatitis B (CHB) (NCT02981602). The secondary objective was to assess antiviral activity, including the change from baseline to day 29 in serum hepatitis B surface antigen (HBsAg) concentration. Participants with CHB infection ≥6 months and serum HBsAg ≥50 IU ml-1 were enrolled from seven centers across Hong Kong and the Republic of Korea and randomized (3:1 within each dose cohort) to receive bepirovirsen or placebo via subcutaneous injection twice weekly during weeks 1 and 2 (days 1, 4, 8 and 11) and once weekly during weeks 3 and 4 (days 15 and 22). Participants were then followed for 26 weeks. Twenty-four participants were treatment-naïve and seven were receiving stable NA therapy. Treatment-emergent adverse events were mostly mild/moderate (most commonly injection site reactions). Eleven (61.1%) and three (50.0%) treatment-naïve participants experienced one or more treatment-emergent adverse event in the bepirovirsen and placebo groups, respectively. In participants receiving NA therapy, the corresponding numbers were three (60.0%) and one (50.0%). Transient, self-resolving alanine aminotransferase flares (≥2× upper limit of normal) were observed in eight treatment-naïve participants and three participants on stable NA regimens in the bepirovirsen treatment arms. HBsAg reductions were observed and were significant versus placebo for treatment-naïve participants receiving bepirovirsen 300 mg (P = 0.001), but not for the bepirovirsen 150 mg group (P = 0.245) or participants receiving stable NA therapy (P = 0.762). Two participants in each of the 300 mg dose groups achieved HBsAg levels below the lower limit of quantitation by day 29 (n = 3) or day 36 (n = 1). Bepirovirsen had a favorable safety profile. These preliminary observations warrant further investigation of the safety and activity of bepirovirsen in a larger CHB patient population.


Subject(s)
Antiviral Agents/administration & dosage , Hepatitis B virus/drug effects , Hepatitis B, Chronic/drug therapy , Oligonucleotides, Antisense/administration & dosage , Adolescent , Adult , Antiviral Agents/adverse effects , Drug Therapy, Combination , Female , Hepatitis B Surface Antigens/blood , Hepatitis B virus/pathogenicity , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/virology , Humans , Male , Middle Aged , Oligonucleotides, Antisense/adverse effects , Placebos , Polyethylene Glycols/chemistry , Republic of Korea/epidemiology , Young Adult
17.
Curr Issues Mol Biol ; 43(3): 1267-1281, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34698059

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by out-of-frame or nonsense mutation in the dystrophin gene. It begins with a loss of ambulation between 9 and 14 years of age, followed by various other symptoms including cardiac dysfunction. Exon skipping of patients' DMD pre-mRNA induced by antisense oligonucleotides (AOs) is expected to produce shorter but partly functional dystrophin proteins, such as those possessed by patients with the less severe Becker muscular dystrophy. We are working on developing modified nucleotides, such as 2'-O,4'-C-ethylene-bridged nucleic acids (ENAs), possessing high nuclease resistance and high affinity for complementary RNA strands. Here, we demonstrate the preclinical characteristics (exon-skipping activity in vivo, stability in blood, pharmacokinetics, and tissue distribution) of renadirsen, a novel AO modified with 2'-O-methyl RNA/ENA chimera phosphorothioate designed for dystrophin exon 45 skipping and currently under clinical trials. Notably, systemic delivery of renadirsen sodium promoted dystrophin exon skipping in cardiac muscle, skeletal muscle, and diaphragm, compared with AOs with the same sequence as renadirsen but conventionally modified by PMO and 2'OMePS. These findings suggest the promise of renadirsen sodium as a therapeutic agent that improves not only skeletal muscle symptoms but also other symptoms in DMD patients, such as cardiac dysfunction.


Subject(s)
Alternative Splicing , Dystrophin/genetics , Oligonucleotides, Antisense/genetics , Animals , Chromatography, Liquid , Male , Mice , Mice, Inbred mdx , Molecular Structure , Muscle, Skeletal/metabolism , Myocardium/metabolism , Oligodeoxyribonucleotides/chemistry , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/chemical synthesis , Oligonucleotides, Antisense/chemistry , Oligoribonucleotides/chemistry , Tandem Mass Spectrometry , Tissue Distribution
18.
Adv Drug Deliv Rev ; 178: 113834, 2021 11.
Article in English | MEDLINE | ID: mdl-34492233

ABSTRACT

Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.


Subject(s)
Drug Delivery Systems/trends , Gene Transfer Techniques/trends , Nucleic Acids/administration & dosage , Nucleic Acids/genetics , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/therapy , Clinical Trials as Topic/methods , Drug Approval , Drug Delivery Systems/methods , Hepatitis/genetics , Hepatitis/metabolism , Hepatitis/therapy , Humans , MicroRNAs/administration & dosage , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Nucleic Acids/metabolism , Oligonucleotides, Antisense/metabolism , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
19.
Muscle Nerve ; 64(4): 404-412, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34231920

ABSTRACT

Spinal muscular atrophy (SMA) is an inherited lower motor neuron disease. SMA occurs secondary to alterations in the survival motor neuron 1 gene (SMN1), which is the main driver of SMN protein production. The severity of the disease is determined by the number of copies of the SMN2 gene, which is a homolog to SMN1 but not as efficient in protein production. Three medications have recently been approved for the treatment of SMA. Nusinersen is an intrathecal antisense oligonucleotide that alters SMN2 pre-mRNA, onasemnogene abeparvovec-xioi is an intravenous SMN1 gene replacement therapy, and risdiplam is an oral small molecule splicing modifier of SMN2. No head-to-head studies have been conducted comparing these medications, so selection of one of these medications for an individual with SMA can be challenging. In this article we outline the efficacy, safety, and other pertinent factors to consider when selecting a therapy for an individual with SMA. The age of the individual and comorbidities, such as liver or kidney disease, help guide treatment choices. All three of these medications are efficacious, and early initiation is critical for obtaining the best outcomes.


Subject(s)
Muscular Atrophy, Spinal/drug therapy , Neuromuscular Agents/administration & dosage , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides/administration & dosage , Animals , Azo Compounds/administration & dosage , Azo Compounds/immunology , Biological Products/administration & dosage , Biological Products/immunology , Humans , Muscular Atrophy, Spinal/epidemiology , Muscular Atrophy, Spinal/immunology , Neuromuscular Agents/immunology , Oligonucleotides/immunology , Oligonucleotides, Antisense/immunology , Pyrimidines/administration & dosage , Pyrimidines/immunology , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , Treatment Outcome
20.
Hepatology ; 74(6): 3127-3145, 2021 12.
Article in English | MEDLINE | ID: mdl-34331779

ABSTRACT

BACKGROUND AND AIMS: The hepatic mitogen-activated protein kinase (MAPK) cascade leading to c-Jun N-terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome. APPROACH AND RESULTS: In mice fed high-fat, high-calorie, high-fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control-antisense oligonucleotide (control-ASO) developed steatohepatitis and fibrosis, which was prevented by Sab-ASO treatment. Phosphorylated JNK (p-JNK) and phosphorylated ATF2 (p-ATF2) were markedly attenuated by Sab-ASO treatment. After 52 weeks of HFHC feeding, control N-acetylgalactosamine antisense oligonucleotide (GalNAc-Ctl-ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc-Sab-ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p-ATF2, and p-JNK to chow-fed levels. CONCLUSIONS: Hepatic SAB expression increases in HFHC diet-fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte-targeted GalNAc-Sab-ASO treatment reversed steatohepatitis and fibrosis.


Subject(s)
Liver Cirrhosis/pathology , Membrane Proteins/metabolism , Metabolic Syndrome/pathology , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Disease Models, Animal , Gene Knockdown Techniques , Hepatocytes/pathology , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , MAP Kinase Signaling System , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Metabolic Syndrome/drug therapy , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Mice , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Oligonucleotides, Antisense/administration & dosage , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL
...