Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.059
Filter
1.
Sci Rep ; 14(1): 15407, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965251

ABSTRACT

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.


Subject(s)
Autocrine Communication , Blood Pressure , Cyclic AMP , Oligopeptides , Signal Transduction , Animals , Humans , Mice , Cyclic AMP/metabolism , Oligopeptides/pharmacology , Oligopeptides/metabolism , Receptors, Neuropeptide/metabolism , Kidney Tubules, Proximal/metabolism , Male , Kidney/metabolism , Mice, Inbred C57BL , Receptors, Dopamine D1/metabolism
2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38959853

ABSTRACT

Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.


Subject(s)
Bacterial Proteins , Lysobacter , Pseudomonas , Type IV Secretion Systems , Pseudomonas/genetics , Pseudomonas/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lysobacter/genetics , Lysobacter/metabolism , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Gene Expression Regulation, Bacterial , Oligopeptides/metabolism , Oligopeptides/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism
3.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928286

ABSTRACT

Integrin αIIbß3 mediates platelet aggregation by binding the Arginyl-Glycyl-Aspartic acid (RGD) sequence of fibrinogen. RGD binding occurs at a site topographically proximal to the αIIb and ß3 subunits, promoting the conformational activation of the receptor from bent to extended states. While several experimental approaches have characterized RGD binding to αIIbß3 integrin, applying computational methods has been significantly more challenging due to limited sampling and the need for a priori information regarding the interactions between the RGD peptide and integrin. In this study, we employed all-atom simulations using funnel metadynamics (FM) to evaluate the interactions of an RGD peptide with the αIIb and ß3 subunits of integrin. FM incorporates an external history-dependent potential on selected degrees of freedom while applying a funnel-shaped restraint potential to limit RGD exploration of the unbound state. Furthermore, it does not require a priori information about the interactions, enhancing the sampling at a low computational cost. Our FM simulations reveal significant molecular changes in the ß3 subunit of integrin upon RGD binding and provide a free-energy landscape with a low-energy binding mode surrounded by higher-energy prebinding states. The strong agreement between previous experimental and computational data and our results highlights the reliability of FM as a method for studying dynamic interactions of complex systems such as integrin.


Subject(s)
Molecular Dynamics Simulation , Oligopeptides , Platelet Glycoprotein GPIIb-IIIa Complex , Protein Binding , Oligopeptides/chemistry , Oligopeptides/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Humans , Blood Platelets/metabolism , Binding Sites , Integrin beta3/metabolism , Integrin beta3/chemistry
4.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928339

ABSTRACT

Receptors of cytokines are major regulators of the immune response. In this work, we have discovered two new ligands that can activate the TNFR1 (tumor necrosis factor receptor 1) receptor. Earlier, we found that the peptide of the Tag (PGLYRP1) protein designated 17.1 can interact with the TNFR1 receptor. Here, we have found that the Mts1 (S100A4) protein interacts with this peptide with a high affinity (Kd = 1.28 × 10-8 M), and that this complex is cytotoxic to cancer cells that have the TNFR1 receptor on their surface. This complex induces both apoptosis and necroptosis in cancer cells with the involvement of mitochondria and lysosomes in cell death signal transduction. Moreover, we have succeeded in locating the Mts1 fragment that is responsible for protein-peptide interaction, which highly specifically interacts with the Tag7 protein (Kd = 2.96 nM). The isolated Mts1 peptide M7 also forms a complex with 17.1, and this peptide-peptide complex also induces the TNFR1 receptor-dependent cell death. Molecular docking and molecular dynamics experiments show the amino acids involved in peptide binding and that may be used for peptidomimetics' development. Thus, two new cytotoxic complexes were created that were able to induce the death of tumor cells via the TNFR1 receptor. These results may be used in therapy for both cancer and autoimmune diseases.


Subject(s)
Apoptosis , Receptors, Tumor Necrosis Factor, Type I , Humans , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/chemistry , Apoptosis/drug effects , Protein Binding , Molecular Docking Simulation , Cell Line, Tumor , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Molecular Dynamics Simulation , Signal Transduction/drug effects , Necroptosis/drug effects , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/metabolism , Cytokines
5.
PLoS Pathog ; 20(6): e1011883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838057

ABSTRACT

ATP-binding cassette (ABC) transport systems are crucial for bacteria to ensure sufficient uptake of nutrients that are not produced de novo or improve the energy balance. The cell surface of the pathobiont Streptococcus pneumoniae (pneumococcus) is decorated with a substantial array of ABC transporters, critically influencing nasopharyngeal colonization and invasive infections. Given the auxotrophic nature of pneumococci for certain amino acids, the Ami ABC transporter system, orchestrating oligopeptide uptake, becomes indispensable in host compartments lacking amino acids. The system comprises five exposed Oligopeptide Binding Proteins (OBPs) and four proteins building the ABC transporter channel. Here, we present a structural analysis of all the OBPs in this system. Multiple crystallographic structures, capturing both open and closed conformations along with complexes involving chemically synthesized peptides, have been solved at high resolution providing insights into the molecular basis of their diverse peptide specificities. Mass spectrometry analysis of oligopeptides demonstrates the unexpected remarkable promiscuity of some of these proteins when expressed in Escherichia coli, displaying affinity for a wide range of peptides. Finally, a model is proposed for the complete Ami transport system in complex with its various OBPs. We further disclosed, through in silico modelling, some essential structural changes facilitating oligopeptide transport into the cellular cytoplasm. Thus, the structural analysis of the Ami system provides valuable insights into the mechanism and specificity of oligopeptide binding by the different OBPs, shedding light on the intricacies of the uptake mechanism and the in vivo implications for this human pathogen.


Subject(s)
ATP-Binding Cassette Transporters , Bacterial Proteins , Oligopeptides , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Oligopeptides/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Crystallography, X-Ray , Models, Molecular , Lipoproteins
6.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892200

ABSTRACT

The pyoverdine siderophore is produced by Pseudomonas aeruginosa to access iron. Its synthesis involves the complex coordination of four nonribosomal peptide synthetases (NRPSs), which are responsible for assembling the pyoverdine peptide backbone. The precise cellular organization of these NRPSs and their mechanisms of interaction remain unclear. Here, we used a combination of several single-molecule microscopy techniques to elucidate the spatial arrangement of NRPSs within pyoverdine-producing cells. Our findings reveal that PvdL differs from the three other NRPSs in terms of localization and mobility patterns. PvdL is predominantly located in the inner membrane, while the others also explore the cytoplasmic compartment. Leveraging the power of multicolor single-molecule localization, we further reveal co-localization between PvdL and the other NRPSs, suggesting a pivotal role for PvdL in orchestrating the intricate biosynthetic pathway. Our observations strongly indicates that PvdL serves as a central orchestrator in the assembly of NRPSs involved in pyoverdine biosynthesis, assuming a critical regulatory function.


Subject(s)
Oligopeptides , Peptide Synthases , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/enzymology , Oligopeptides/biosynthesis , Oligopeptides/metabolism , Peptide Synthases/metabolism , Peptide Synthases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Siderophores/biosynthesis , Siderophores/metabolism
7.
J Biol Chem ; 300(6): 107360, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735477

ABSTRACT

The nascent polypeptide chains passing through the ribosome tunnel not only serve as an intermediate of protein synthesis but also, in some cases, act as dynamic genetic information, controlling translation through interaction with the ribosome. One notable example is Escherichia coli SecM, in which translation of the ribosome arresting peptide (RAP) sequence in SecM leads to robust elongation arrest. Translation regulations, including the SecM-induced translation arrest, play regulatory roles such as gene expression control. Recent investigations have indicated that the insertion of a peptide sequence, SKIK (or MSKIK), into the adjacent N-terminus of the RAP sequence of SecM behaves as an "arrest canceler". As the study did not provide a direct assessment of the strength of translation arrest, we conducted detailed biochemical analyses. The results revealed that the effect of SKIK insertion on weakening SecM-induced translation arrest was not specific to the SKIK sequence, that is, other tetrapeptide sequences inserted just before the RAP sequence also attenuated the arrest. Our data suggest that SKIK or other tetrapeptide insertions disrupt the context of the RAP sequence rather than canceling or preventing the translation arrest.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Protein Biosynthesis , Ribosomes , Ribosomes/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Protein Biosynthesis/drug effects , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Amino Acid Sequence , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/metabolism , Transcription Factors
8.
J Nucl Med ; 65(7): 1107-1112, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38724280

ABSTRACT

Angiogenesis is an essential part of the cardiac repair process after myocardial infarction, but its spatiotemporal dynamics remain to be fully deciphered.68Ga-NODAGA-Arg-Gly-Asp (RGD) is a PET tracer targeting αvß3 integrin expression, which is a marker of angiogenesis. Methods: In this prospective single-center trial, we aimed to monitor angiogenesis through myocardial integrin αvß3 expression in 20 patients with ST-segment elevation myocardial infarction (STEMI). In addition, the correlations between the expression levels of myocardial αvß3 integrin and the subsequent changes in 82Rb PET/CT parameters, including rest and stress myocardial blood flow (MBF), myocardial flow reserve (MFR), and wall motion abnormalities, were assessed. The patients underwent 68Ga-NODAGA-RGD PET/CT and rest and stress 82Rb-PET/CT at 1 wk, 1 mo, and 3 mo after STEMI. To assess 68Ga-NODAGA-RGD uptake, the summed rest 82Rb and 68Ga-NODAGA-RGD images were coregistered, and segmental SUVs were calculated (RGD SUV). Results: At 1 wk after STEMI, 19 participants (95%) presented increased 68Ga-NODAGA-RGD uptake in the infarcted myocardium. Seventeen participants completed the full imaging series. The values of the RGD SUV in the infarcted myocardium were stable 1 mo after STEMI (1 wk vs. 1 mo, 1.47 g/mL [interquartile range (IQR), 1.37-1.64 g/mL] vs. 1.47 g/mL [IQR, 1.30-1.66 g/mL]; P = 0.9), followed by a significant partial decrease at 3 mo (1.32 g/mL [IQR, 1.12-1.71 g/mL]; P = 0.011 vs. 1 wk and 0.018 vs. 1 mo). In segment-based analysis, positive correlations were found between RGD SUV at 1 wk and the subsequent changes in stress MBF (Spearman ρ: r = 0.17, P = 0.0033) and MFR (Spearman ρ: r = 0.31, P < 0.0001) at 1 mo. A negative correlation was found between RGD SUV at 1 wk and the subsequent changes in wall motion abnormalities at 3 mo (Spearman ρ: r = -0.12, P = 0.035). Conclusion: The present study found that αvß3 integrin expression is significantly increased in the infarcted myocardium 1 wk after STEMI. This expression remains stable after 1 mo and partially decreases after 3 mo. Initial αvß3 integrin expression at 1 wk is significantly weakly correlated with subsequent improvements in stress MBF, MFR, and wall motion analysis.


Subject(s)
Coronary Circulation , Integrin alphaVbeta3 , Myocardial Infarction , Myocardium , Positron Emission Tomography Computed Tomography , Humans , Integrin alphaVbeta3/metabolism , Male , Female , Middle Aged , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/metabolism , Aged , Heterocyclic Compounds, 1-Ring , Prospective Studies , Oligopeptides/metabolism , Rubidium Radioisotopes , Acetates
9.
J Phys Chem B ; 128(23): 5545-5556, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38815985

ABSTRACT

Spontaneous deamidation of amino acids is a physiologically important process, particularly for protein aging and diseases. Despite its widespread occurrence, the mechanism of glutamine deamidation particularly within proteins remains poorly understood. We have used a multiscale computational approach to investigate glutamine deamidation in the tripeptide Glycine-Glutamine-Glycine (Gly-Gln-Gly) and γS-Crystallin protein. Specifically, both the 5- and 6-membered water-assisted deamidation pathways in the tripeptide have been elucidated and compared. Both are found to occur in three stages: iminol formation, cyclization, and deamination. The rate-limiting step in each mechanism is nucleophilic attack of the backbone iminol nitrogen, formed in the first stage, at the glutamine's side-chain carbonyl carbon. For the 6- and 5-membered mechanisms, this occurs with a free energy cost of 136.4 and 179.5 kJ mol-1, respectively. Thus, overall, in the Gly-Gln-Gly tripeptide, the 6-membered pathway is preferred. Furthermore, the free energies for forming cyclic intermediates and products at selected Gln residues (based on experimentally reported % deamidation) in γS-Crystallin have been obtained. It is found that the 5-membered product complex is exergonic at -25.3 kJ mol-1, while the 6-membered product complex is calculated to be endergonic at 90.7 kJ mol-1. Thus, the deamidation pathway in folded and constrained proteins may not exclusively follow the 6-membered route. Molecular dynamics (MD) simulations of γS-Crystallin indicate that deamidation is more likely to occur when two or more water molecules are in the proximity of the glutamine residue. Consequently, significant conformational changes are found to accompany Gln120 deamidation in γS-Crystallin. This in turn can influence water availability at the other Gln residues considered and hence potentially their deamidation. Collectively, these results provide comprehensive insights into spontaneous water-assisted deamidation of glutamine residues in peptides and into the role and impact of Gln deamidation in proteins.


Subject(s)
Glutamine , Glutamine/chemistry , Glutamine/metabolism , Molecular Dynamics Simulation , Amides/chemistry , Amides/metabolism , Thermodynamics , gamma-Crystallins/chemistry , gamma-Crystallins/metabolism , Oligopeptides/chemistry , Oligopeptides/metabolism , Water/chemistry , Water/metabolism
10.
Food Funct ; 15(12): 6274-6288, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38787733

ABSTRACT

Bioactive oligopeptides have gained increasing attention due to their diverse physiological functions, and these can be transported into the vasculature via transcellular and paracellular pathways. Among these, paracellular transport through the intercellular space is a passive diffusion process without energy consumption. It is currently the most frequently reported absorption route for food-derived bioactive oligopeptides. Previous work has demonstrated that paracellular pathways are mainly controlled by tight junctions, but the mechanism by which they regulate paracellular absorption of bioactive oligopeptides remains unclear. In this review, we summarized the composition of paracellular pathways across the intercellular space and elaborated on the paracellular transport mechanism of bioactive oligopeptides in terms of the interaction between oligopeptides and tight junction proteins, the protein expression level of tight junctions, the signaling pathways regulating intestinal permeability, and the properties of oligopeptides themselves. These findings contribute to a more profound understanding of the paracellular absorption of bioactive oligopeptides.


Subject(s)
Intestinal Absorption , Oligopeptides , Tight Junctions , Oligopeptides/metabolism , Oligopeptides/pharmacology , Oligopeptides/pharmacokinetics , Humans , Tight Junctions/metabolism , Animals , Biological Transport , Intestinal Mucosa/metabolism , Tight Junction Proteins/metabolism
11.
Food Funct ; 15(10): 5527-5538, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38700280

ABSTRACT

The salty oligopeptides from Stropharia rugosoannulata have been proven to be potential ACE inhibitors. To investigate the ACE receptor binding properties and interaction mechanisms of salty oligopeptides, the molecular interaction, dynamics simulation, and antihypertensive evaluation cross-validation strategy were employed to reveal the oligopeptides' binding reactions and modes with the ACE receptor. Single oligopeptide (ESPERPFL, KSWDDFFTR) had exothermic and specific binding reactions with the ACE receptor, driven by hydrogen bonds and van der Waals forces. The coexistence of the multiple oligopeptide molecules did not produce the apparent ACE receptor competition binding reactions. The molecular dynamics simulation verified that the two oligopeptides disturbed the ACE receptor's different residue regions. Both oligopeptides could form stable complexes with the ACE receptor. Based on the classification of 50 oligopeptides' binding modes, ESPERPFL and KSWDDFFTR belonged to different classes, and their receptor binding modes and sites complemented, resulting in a potential synergistic effect on ACE inhibition. The antihypertensive effect of KSWDDFFTR and its distribution in the body were evaluated using SHR rats orally and ICR mice by tail vein injection, and KSWDDFFTR had antihypertensive effects within 8 h. The study provides a theoretical basis for understanding salty oligopeptides' ACE receptor binding mechanism and their antihypertensive effects.


Subject(s)
Antihypertensive Agents , Molecular Dynamics Simulation , Oligopeptides , Animals , Oligopeptides/pharmacology , Oligopeptides/chemistry , Oligopeptides/metabolism , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Rats , Male , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry , Agaricales/chemistry , Agaricales/metabolism , Mice , Hypertension/drug therapy , Hypertension/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Protein Binding , Blood Pressure/drug effects , Rats, Inbred SHR
12.
Sci Total Environ ; 934: 173046, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38735326

ABSTRACT

Although marine environments represent huge reservoirs of the potent greenhouse gas methane, they currently contribute little to global net methane emissions. Most of the methane is oxidized by methanotrophs, minimizing escape to the atmosphere. Aerobic methanotrophs oxidize methane mostly via the copper (Cu)-bearing enzyme particulate methane monooxygenase (pMMO). Therefore, aerobic methane oxidation depends on sufficient Cu acquisition by methanotrophs. Because they require both oxygen and methane, aerobic methanotrophs reside at oxic-anoxic interfaces, often close to sulphidic zones where Cu bioavailability can be limited by poorly soluble Cu sulphide mineral phases. Under Cu-limiting conditions, certain aerobic methanotrophs exude Cu-binding ligands termed chalkophores, such as methanobactin (mb) exuded by Methylosinus trichosporium OB3b. Our main objective was to establish whether chalkophores can mobilise Cu from Cu sulphide-bearing marine sediments to enhance Cu bioavailability. Through a series of kinetic batch experiments, we investigated Cu mobilisation by mb from a set of well-characterized sulphidic marine sediments differing in sediment properties, including Cu content and phase distribution. Characterization of solid-phase Cu speciation included X-ray absorption spectroscopy and a targeted sequential extraction. Furthermore, in batch experiments, we investigated to what extent adsorption of metal-free mb and Cu-mb complexes to marine sediments constrains Cu mobilisation. Our results are the first to show that both solid phase Cu speciation and chalkophore adsorption can constrain methanotrophic Cu acquisition from marine sediments. Only for certain sediments did mb addition enhance dissolved Cu concentrations. Cu mobilisation by mb was not correlated to the total Cu content of the sediment, but was controlled by solid-phase Cu speciation. Cu was only mobilised from sediments containing a mono-Cu-sulphide (CuSx) phase. We also show that mb adsorption to sediments limits Cu acquisition by mb to less compact (surface) sediments. Therefore, in sulphidic sediments, mb-mediated Cu acquisition is presumably constrained to surface-sediment interfaces containing mono-Cu-sulphide phases.


Subject(s)
Copper , Geologic Sediments , Imidazoles , Methylosinus trichosporium , Oligopeptides , Copper/metabolism , Geologic Sediments/chemistry , Oligopeptides/metabolism , Imidazoles/metabolism , Imidazoles/chemistry , Methylosinus trichosporium/metabolism , Oxidation-Reduction , Methane/metabolism , Oxygenases/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis
13.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791363

ABSTRACT

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.


Subject(s)
Computational Biology , Peptide Library , Humans , Computational Biology/methods , Substrate Specificity , Farnesyltranstransferase/metabolism , Farnesyltranstransferase/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Protein Binding
14.
Biochem Biophys Res Commun ; 717: 149992, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38714013

ABSTRACT

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Subject(s)
Insect Hormones , Ixodes , Neuropeptides , Oligopeptides , Pyrrolidonecarboxylic Acid , Receptors, G-Protein-Coupled , Animals , Neuropeptides/metabolism , Neuropeptides/genetics , Insect Hormones/metabolism , Insect Hormones/genetics , Ixodes/metabolism , Ixodes/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Oligopeptides/metabolism , Oligopeptides/genetics , Oligopeptides/chemistry , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Phylogeny , Amino Acid Sequence , Cricetulus , CHO Cells , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics
15.
Gene ; 920: 148506, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38670390

ABSTRACT

The acquisition of nutrients from host plants by phytopathogenic fungi is critically important for their invasion success. Melampsora larici-populina, an obligate biotrophic pathogenic fungus, causes the poplar leaf rust disease and can severely damage host poplar plants. Previously, we found that oligopeptide transporters (OPTs) have undergone a convergent expansion, which might reflect adaptation to a phytoparasitic lifestyle. Here, we used various methods to evaluate this hypothesis, including conserved motif identification, positive selection signal mining, expression pattern clustering analysis, and neutral selection tests. The motif composition of the five clades in the OPT family differed, and positive selection was observed during clade differentiation. This suggests that OPTs in these five clades may be functionally differentiated, which would increase the range of transported substrates and promote the absorption of more types of nitrogen compounds from the hosts. According to clustering analysis of gene expression patterns, the expression of most genes from the two expanded clades (clade 2 and 4) was up-regulated during the infection of poplar trees, indicating that the expansion of OPTs likely occurred to promote the uptake of oligopeptides from host poplar plants. The MellpOPT4g gene was determined to be under significant balancing selection based on the neutral selection tests, suggesting that it plays a role in the pathogenic process. In conclusion, these three observations provide preliminary evidence supporting our hypothesis, as they indicate that the expansion of OPTs in M. larici-populina has aided the ability of this pathogen to acquire nutrients from host plants.


Subject(s)
Basidiomycota , Fungal Proteins , Oligopeptides , Plant Diseases , Populus , Populus/genetics , Populus/parasitology , Populus/microbiology , Oligopeptides/metabolism , Oligopeptides/genetics , Basidiomycota/genetics , Basidiomycota/pathogenicity , Basidiomycota/metabolism , Plant Diseases/parasitology , Plant Diseases/microbiology , Plant Diseases/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Phylogeny , Adaptation, Physiological/genetics , Gene Expression Regulation, Fungal , Selection, Genetic
16.
Soft Matter ; 20(16): 3508-3519, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38595302

ABSTRACT

The decellularized tilapia skin (dTS) has gained significant attention as a promising material for tissue regeneration due to its ability to provide unique structural and functional components that support cell growth, adhesion, and proliferation. However, the clinical application of dTS is limited by its low mechanical strength and rapid biodegradability. Herein, we prepare a novel RGD (arginine-glycine-aspartic acid) functionalized dTS scaffold (dTS/RGD) by using transglutaminase (TGase) crosslinking. The developed dTS/RGD scaffold possesses excellent properties, including a medium porosity of ∼59.2%, a suitable degradation rate of approximately 80% over a period of two weeks, and appropriate mechanical strength with a maximum tensile stress of ∼46.36 MPa which is much higher than that of dTS (∼32.23 MPa). These properties make the dTS/RGD scaffold ideal for promoting cell adhesion and proliferation, thereby accelerating skin wound healing in a full-thickness skin defect model. Such an enzymatic cross-linking strategy provides a favorable microenvironment for wound healing and holds great potential for application in skin regeneration engineering.


Subject(s)
Oligopeptides , Regeneration , Skin , Tilapia , Tissue Scaffolds , Transglutaminases , Animals , Tissue Scaffolds/chemistry , Tilapia/metabolism , Transglutaminases/metabolism , Transglutaminases/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Wound Healing , Cell Proliferation , Tissue Engineering , Porosity , Mice , Cell Adhesion , Humans
17.
Biomolecules ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672503

ABSTRACT

The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.


Subject(s)
Anti-Bacterial Agents , Gallium , Iron , Organometallic Compounds , Phenols , Pseudomonas aeruginosa , Siderophores , Gallium/chemistry , Gallium/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Siderophores/chemistry , Siderophores/metabolism , Iron/metabolism , Iron/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/pharmacology , Computer Simulation , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/metabolism , Pyrones/chemistry , Pyrones/metabolism , Pyrones/pharmacology
18.
Cell Rep ; 43(4): 114106, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625795

ABSTRACT

Heterogeneity in gene expression is common among clonal cells in bacteria, although the sources and functions of variation often remain unknown. Here, we track cellular heterogeneity in the bacterium Pseudomonas aeruginosa during colony growth by focusing on siderophore gene expression (pyoverdine versus pyochelin) important for iron nutrition. We find that the spatial position of cells within colonies and non-genetic yet heritable differences between cell lineages are significant sources of cellular heterogeneity, while cell pole age and lifespan have no effect. Regarding functions, our results indicate that cells adjust their siderophore investment strategies along a gradient from the colony center to its edge. Moreover, cell lineages with below-average siderophore investment benefit from lineages with above-average siderophore investment, presumably due to siderophore sharing. Our study highlights that single-cell experiments with dual gene expression reporters can identify sources of gene expression variation of interlinked traits and offer explanations for adaptive benefits in bacteria.


Subject(s)
Gene Expression Regulation, Bacterial , Phenols , Pseudomonas aeruginosa , Siderophores , Siderophores/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Oligopeptides/metabolism , Oligopeptides/genetics , Iron/metabolism , Thiazoles/metabolism
19.
J Agric Food Chem ; 72(17): 9828-9841, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639269

ABSTRACT

Understanding the transport mechanism of the peptide Asn-Cys-Trp (NCW) is crucial to improving its intestinal absorption and bioavailability. This study investigated the absorption of NCW through Caco-2 cell monolayers and its interaction with the DPPC bilayers. Results revealed that after a 3 h incubation, the Papp (AP-BL) and Papp (BL-AP) values of NCW at a concentration of 5 mmol/L were (22.24 ± 4.52) × 10-7 and (6.63 ± 2.31) × 10-7 cm/s, respectively, with the transport rates of 1.59 ± 0.32 and 0.62 ± 0.20%, indicating its moderate absorption. NCW was found to be transported via PepT1 and paracellular transport pathways, as evidenced by the significant impact of Gly-Pro and cytochalasin D on the Papp values. Moreover, NCW upregulated ZO-1 mRNA expression. Further investigation of the ZO-1-mediated interaction between NCW and tight junction proteins will contribute to a better understanding of the paracellular transport mechanism of NCW. The interaction between NCW and the DPPC bilayers was predominantly driven by entropy. NCW permeated the bilayers through electrostatic, hydrogen bonding, and hydrophobic interactions, resulting in increased fluidity, flexibility, and disorder as well as phase transition and phase separation of the bilayers.


Subject(s)
Antihypertensive Agents , Humans , Caco-2 Cells , Biological Transport , Antihypertensive Agents/chemistry , Antihypertensive Agents/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Diffusion , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Oligopeptides/chemistry , Oligopeptides/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism
20.
J Chem Inf Model ; 64(8): 3477-3487, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38605537

ABSTRACT

Allostery is an essential biological phenomenon in which perturbation at one site in a biomolecule elicits a functional response at a distal location(s). It is integral to biological processes, such as cellular signaling, metabolism, and transcription regulation. Understanding allostery is also crucial for rational drug discovery. In this work, we focus on an allosteric S100B protein that belongs to the S100 class of EF-hand Ca2+-binding proteins. The Ca2+-binding affinity of S100B is modulated allosterically by TRTK-12 peptide binding 25 Å away from the Ca2+-binding site. We investigated S100B allostery by carrying out nuclear magnetic resonance (NMR) measurements along with microsecond-long molecular dynamics (MD) simulations on S100B/Ca2+ with/without TRTK-12 at different NaCl salt concentrations. NMR HSQC results show that TRTK-12 reorganizes how S100B/Ca2+ responds to different salt concentrations at both orthosteric and allosteric sites. The MD data suggest that TRTK-12 breaks the dynamic aromatic and hydrogen-bond interactions (not observed in X-ray crystallographic structures) between the hinge/helix and Ca2+-binding EF-hand loop of the two subunits in the homodimeric protein. This triggers rearrangement in the protein network architectures and leads to allosteric communication. Finally, computational studies of S100B at distinct ionic strengths suggest that ligand-bound species are more robust to the changing environment relative to the S100B/Ca2+ complex.


Subject(s)
CapZ Actin Capping Protein , Molecular Dynamics Simulation , S100 Calcium Binding Protein beta Subunit , Allosteric Regulation , S100 Calcium Binding Protein beta Subunit/chemistry , S100 Calcium Binding Protein beta Subunit/metabolism , Calcium/metabolism , Humans , Signal Transduction , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Oligopeptides/chemistry , Oligopeptides/metabolism , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...