Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.663
Filter
1.
Cell Mol Biol Lett ; 29(1): 84, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822246

ABSTRACT

BACKGROUND: Canine mammary tumors (CMTs) in intact female dogs provide a natural model for investigating metastatic human cancers. Our prior research identified elevated expression of Anterior Gradient 2 (AGR2), a protein disulfide isomerase (PDI) primarily found in the endoplasmic reticulum (ER), in CMT tissues, highly associated with CMT progression. We further demonstrated that increased AGR2 expression actively influences the extracellular microenvironment, promoting chemotaxis in CMT cells. Unraveling the underlying mechanisms is crucial for assessing the potential of therapeutically targeting AGR2 as a strategy to inhibit a pro-metastatic microenvironment and impede tumor metastasis. METHODS: To identify the AGR2-modulated secretome, we employed proteomics analysis of the conditioned media (CM) from two CMT cell lines ectopically expressing AGR2, compared with corresponding vector-expressing controls. AGR2-regulated release of 14-3-3ε (gene: YWHAE) and α-actinin 4 (gene: ACTN4) was validated through ectopic expression, knockdown, and knockout of the AGR2 gene in CMT cells. Extracellular vesicles derived from CMT cells were isolated using either differential ultracentrifugation or size exclusion chromatography. The roles of 14-3-3ε and α-actinin 4 in the chemotaxis driven by the AGR2-modulated CM were investigated through gene knockdown, antibody-mediated interference, and recombinant protein supplement. Furthermore, the clinical relevance of the release of 14-3-3ε and α-actinin 4 was assessed using CMT tissue-immersed saline and sera from CMT-afflicted dogs. RESULTS: Proteomics analysis of the AGR2-modulated secretome revealed increased abundance in 14-3-3ε and α-actinin 4. Ectopic expression of AGR2 significantly increased the release of 14-3-3ε and α-actinin 4 in the CM. Conversely, knockdown or knockout of AGR2 expression remarkably reduced their release. Silencing 14-3-3ε or α-actinin 4 expression diminished the chemotaxis driven by AGR2-modulated CM. Furthermore, AGR2 controls the release of 14-3-3ε and α-actinin 4 primarily via non-vesicular routes, responding to the endoplasmic reticulum (ER) stress and autophagy activation. Knockout of AGR2 resulted in increased α-actinin 4 accumulation and impaired 14-3-3ε translocation in autophagosomes. Depletion of extracellular 14-3-3ε or α-actinin 4 reduced the chemotaxis driven by AGR2-modulated CM, whereas supplement with recombinant 14-3-3ε in the CM enhanced the CM-driven chemotaxis. Notably, elevated levels of 14-3-3ε or α-actinin 4 were observed in CMT tissue-immersed saline compared with paired non-tumor samples and in the sera of CMT dogs compared with healthy dogs. CONCLUSION: This study elucidates AGR2's pivotal role in orchestrating unconventional secretion of 14-3-3ε and α-actinin 4 from CMT cells, thereby contributing to paracrine-mediated chemotaxis. The insight into the intricate interplay between AGR2-involved ER stress, autophagy, and unconventional secretion provides a foundation for refining strategies aimed at impeding metastasis in both canine mammary tumors and potentially human cancers.


Subject(s)
14-3-3 Proteins , Actinin , Autophagy , Chemotaxis , Endoplasmic Reticulum Stress , Mammary Neoplasms, Animal , Mucoproteins , Animals , Dogs , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Female , Actinin/metabolism , Actinin/genetics , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Cell Line, Tumor , Chemotaxis/genetics , Autophagy/genetics , Endoplasmic Reticulum Stress/genetics , Mucoproteins/genetics , Mucoproteins/metabolism , Oncogene Proteins/metabolism , Oncogene Proteins/genetics
2.
Viruses ; 16(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38793657

ABSTRACT

NUT (nuclear-protein-in-testis) carcinoma (NC) is a highly aggressive tumor disease. Given that current treatment regimens offer a median survival of six months only, it is likely that this type of tumor requires an extended multimodal treatment approach to improve prognosis. In an earlier case report, we could show that an oncolytic herpes simplex virus (T-VEC) is functional in NC patients. To identify further combination partners for T-VEC, we have investigated the anti-tumoral effects of T-VEC and five different small molecule inhibitors (SMIs) alone and in combination in human NC cell lines. Dual combinations were found to result in higher rates of tumor cell reductions when compared to the respective monotherapy as demonstrated by viability assays and real-time tumor cell growth monitoring. Interestingly, we found that the combination of T-VEC with SMIs resulted in both stronger and earlier reductions in the expression of c-Myc, a main driver of NC cell proliferation, when compared to T-VEC monotherapy. These results indicate the great potential of combinatorial therapies using oncolytic viruses and SMIs to control the highly aggressive behavior of NC cancers and probably will pave the way for innovative multimodal clinical studies in the near future.


Subject(s)
Biological Products , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/physiology , Oncolytic Viruses/genetics , Oncolytic Virotherapy/methods , Cell Line, Tumor , Combined Modality Therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Proliferation/drug effects , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Carcinoma/therapy , Cell Survival/drug effects , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasm Proteins , Herpesvirus 1, Human
3.
Cancer Res Commun ; 4(6): 1399-1409, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38717153

ABSTRACT

Cyclin E overexpression as a result of CCNE1 amplification is a critical driver of genomic instability in gastric cancer, but its clinical implication is largely unknown. Thus, we integrated genomic, transcriptomic, and immune profiling analysis of 7,083 esophagogastric tumors and investigated the impact of CCNE1 amplification on molecular features and treatment outcomes. We identified CCNE1 amplification in 6.2% of esophageal adenocarcinoma samples, 7.0% of esophagogastric junction carcinoma, 4.2% of gastric adenocarcinoma samples, and 0.8% of esophageal squamous cell carcinoma. Metastatic sites such as lymph node and liver showed an increased frequency of CCNE1 amplification relative to primary tumors. Consistent with a chromosomal instability phenotype, CCNE1 amplification was associated with decreased CDH1 mutation and increased TP53 mutation and ERBB2 amplification. We observed no differences in immune biomarkers such as PD-L1 expression and tumor mutational burden comparing CCNE1-amplified and nonamplified tumors, although CCNE1 amplification was associated with changes in immune populations such as decreased B cells and increased M1 macrophages from transcriptional analysis. Real-world survival analysis demonstrated that patients with CCNE1-amplified gastric cancer had worse survival after trastuzumab for HER2-positive tumors, but better survival after immunotherapy. These data suggest that CCNE1-amplified gastric cancer has a distinct molecular and immune profile with important therapeutic implications, and therefore further investigation of CCNE1 amplification as a predictive biomarker is warranted. SIGNIFICANCE: Advanced gastric cancer has a relatively dismal outcome with a 5-year overall survival of less than 10%. Furthermore, while comprehensive molecular analyses have established molecular subtypes within gastric cancers, biomarkers of clinical relevance in this cancer type are lacking. Overall, this study demonstrates that CCNE1 amplification is associated with a distinct molecular profile in gastric cancer and may impact response to therapy, including targeted therapy and/or immunotherapy.


Subject(s)
Cyclin E , Esophageal Neoplasms , Gene Amplification , Oncogene Proteins , Stomach Neoplasms , Humans , Cyclin E/genetics , Oncogene Proteins/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/mortality , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Receptor, ErbB-2/genetics , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Biomarkers, Tumor/genetics , Mutation , Male , Esophagogastric Junction/pathology , Female , Trastuzumab/therapeutic use , Tumor Suppressor Protein p53/genetics , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/mortality , Antigens, CD/genetics , Cadherins
4.
Aging (Albany NY) ; 16(9): 8019-8030, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38713155

ABSTRACT

Aurora kinase B (AURKB) initiates the phosphorylation of serine 10 on histone H3 (pH3S10), a crucial process for chromosome condensation and cytokinesis in mammalian mitosis. Nonetheless, the precise mechanisms through which AURKB regulates the cell cycle and contributes to tumorigenesis as an oncogenic factor in colorectal cancer (CRC) remain unclear. Here, we report that AURKB was highly expressed and positively correlated with Ki-67 expression in CRC. The abundant expression of AURKB promotes the growth of CRC cells and xenograft tumors in animal model. AURKB knockdown substantially suppressed CRC proliferation and triggered cell cycle arrest in G2/M phase. Interestingly, cyclin E1 (CCNE1) was discovered as a direct downstream target of AURKB and functioned synergistically with AURKB to promote CRC cell proliferation. Mechanically, AURKB activated CCNE1 expression by triggering pH3S10 in the promoter region of CCNE1. Furthermore, it was showed that the inhibitor specific for AURKB (AZD1152) can suppress CCNE1 expression in CRC cells and inhibit tumor cell growth. To conclude, this research demonstrates that AURKB accelerated the tumorigenesis of CRC through its potential to epigenetically activate CCNE1 expression, suggesting AURKB as a promising therapeutic target in CRC.


Subject(s)
Aurora Kinase B , Cell Proliferation , Colorectal Neoplasms , Cyclin E , Histones , Oncogene Proteins , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cyclin E/metabolism , Cyclin E/genetics , Histones/metabolism , Aurora Kinase B/metabolism , Aurora Kinase B/genetics , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Phosphorylation , Animals , Cell Proliferation/genetics , Mice , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Serine/metabolism , Disease Progression , Male , Mice, Nude , Female
5.
Exp Dermatol ; 33(4): e15071, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566477

ABSTRACT

Circular RNAs (circRNAs) play important roles in cancer occurrence and progression. To explore and elucidate the clinical significance of specific circular RNA in melanoma and its potential molecular mechanism. CircROR1 expression in melanoma cells and tissues was confirmed by qRT-PCR and ISH. qRT-PCR and Western blotting were performed to measure the levels of CCNE1, KAT2A, MMP9 and TIMP2. MTT, Transwell and wound healing assays were performed to evaluate cell proliferation, invasion and metastasis. A xenograft mouse model was established to further verify the CircROR1/CCNE1 axis in vivo. RNA pull-down and RIP assays were performed to detect the direct interaction KAT2A and CircROR1. A ChIP assay was used to investigate the enrichment of H3K9ac acetylation in the CCNE1 promoter. CircROR1 was significantly upregulated in metastatic melanoma cells and tissues, promoting proliferation, invasion and metastasis in vitro and tumour growth in vivo. CircROR1 overexpression increased CCNE1 and MMP9 protein expression and decreased TIMP2 protein expression. Functional rescue assays demonstrated that CircROR1 played a role in promoting malignant progression through CCNE1. CircROR1 specifically bound to the KAT2A protein without affecting its expression. CircROR1 overexpression increased the level of H3K9ac modification in the CCNE1 promoter region by recruiting KAT2A, thus upregulating CCNE1 expression. CircROR1 upregulates CCNE1 expression through KAT2A-mediated histone acetylation. Our research confirms the critical role of CircROR1 in melanoma invasion and metastasis, and CircROR1 could serve as a potential therapeutic target for melanoma treatment.


Subject(s)
Melanoma , MicroRNAs , Humans , Animals , Mice , MicroRNAs/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Melanoma/metabolism , Cell Line, Tumor , RNA, Circular/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Cyclin E/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
6.
Cell Rep ; 43(4): 114116, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625790

ABSTRACT

Overexpression of Cyclin E1 perturbs DNA replication, resulting in DNA lesions and genomic instability. Consequently, Cyclin E1-overexpressing cancer cells increasingly rely on DNA repair, including RAD52-mediated break-induced replication during interphase. We show that not all DNA lesions induced by Cyclin E1 overexpression are resolved during interphase. While DNA lesions upon Cyclin E1 overexpression are induced in S phase, a significant fraction of these lesions is transmitted into mitosis. Cyclin E1 overexpression triggers mitotic DNA synthesis (MiDAS) in a RAD52-dependent fashion. Chemical or genetic inactivation of MiDAS enhances mitotic aberrations and persistent DNA damage. Mitosis-specific degradation of RAD52 prevents Cyclin E1-induced MiDAS and reduces the viability of Cyclin E1-overexpressing cells, underscoring the relevance of RAD52 during mitosis to maintain genomic integrity. Finally, analysis of breast cancer samples reveals a positive correlation between Cyclin E1 amplification and RAD52 expression. These findings demonstrate the importance of suppressing mitotic defects in Cyclin E1-overexpressing cells through RAD52.


Subject(s)
Cyclin E , Genomic Instability , Mitosis , Oncogene Proteins , Rad52 DNA Repair and Recombination Protein , Humans , Cyclin E/metabolism , Cyclin E/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Oncogene Proteins/metabolism , Oncogene Proteins/genetics , DNA Replication , Cell Line, Tumor , DNA Damage , DNA/metabolism , DNA/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology
7.
J Cell Mol Med ; 28(7): e18182, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38498903

ABSTRACT

Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Animals , Mice , Humans , Thyroid Carcinoma, Anaplastic/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Mice, Nude , Zebrafish/metabolism , Chromosomal Instability , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Cell Line, Tumor , Oncogene Proteins/genetics , Kinesins/genetics
8.
Biochem Biophys Res Commun ; 709: 149818, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38555840

ABSTRACT

Oncoprotein SE translocation (SET) is frequently overexpressed in different types of tumors and correlated with poor prognosis of cancer patients. Targeting SET has been considered a promising strategy for cancer intervention. However, the mechanisms by which SET is regulated under cellular conditions are largely unknown. Here, by performing a tandem affinity purification-mass spectrometry (TAP-MS), we identify that the ubiquitin-specific protease 7 (USP7) forms a stable protein complex with SET in cancer cells. Further analyses reveal that the acidic domain of SET directly binds USP7 while both catalytic domain and ubiquitin-like (UBL) domains of USP7 are required for SET binding. Knockdown of USP7 has no effect on the mRNA level of SET. However, we surprisingly find that USP7 depletion leads to a dramatic elevation of SET protein levels, suggesting that USP7 plays a key role in destabilizing oncoprotein SET, possibly through an indirect mechanism. To our knowledge, our data report the first deubiquitinase (DUB) that physically associates with oncoprotein SET and imply an unexpected regulatory effect of USP7 on SET stability.


Subject(s)
Oncogene Proteins , Ubiquitin-Specific Peptidase 7 , Humans , Catalytic Domain , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Ubiquitin/chemistry , Ubiquitin-Specific Peptidase 7/genetics
9.
J Biol Chem ; 300(4): 107153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462163

ABSTRACT

The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.


Subject(s)
Gene Expression Regulation , Immunity, Innate , Membrane Proteins , NF-kappa B , Oncogene Proteins , RNA-Binding Proteins , Animals , Humans , CRISPR-Cas Systems , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , HEK293 Cells , Immunity, Innate/genetics , Influenza A virus/immunology , Influenza, Human/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , NF-kappa B/genetics , NF-kappa B/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Signal Transduction , Oncogene Proteins/genetics , Oncogene Proteins/immunology
10.
J Med Virol ; 96(3): e29534, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38501356

ABSTRACT

Human endogenous retrovirus sequences (HERVs) constitute up to 8% of the human genome, yet not all HERVs remain silent passengers within our genomes. Some HERVs, especially the HERV type K (HERV-K), have been found to be frequently transactivated in a variety of inflammatory diseases and human cancers. Np9, a 9-kDa HERV-K encoded protein, has been reported as an oncoprotein and found present in a variety of tumors and transformed cells. In the current study, we for the first time reported that ectopic expression of Np9 protein was able to induce DNA damage response from host cells especially through upregulation of γH2AX. Furthermore, we found that direct knockdown of Np9 by RNAi in Kaposi's Sarcoma-associated herpesvirus (KSHV) infected cells effectively reduced LANA expression, the viral major latent oncoprotein in vitro and in vivo, which may represent a novel strategy against virus-associated malignancies.


Subject(s)
Endogenous Retroviruses , Herpesvirus 8, Human , Neoplasms , Humans , Endogenous Retroviruses/genetics , Herpesvirus 8, Human/physiology , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , DNA Repair
11.
Histopathology ; 84(6): 1061-1067, 2024 May.
Article in English | MEDLINE | ID: mdl-38409827

ABSTRACT

AIMS: The histological subtype of intrahepatic cholangiocarcinoma (iCCA) is associated with different mutational characteristics that impact clinical management. So far, data are lacking on the presence of small duct iCCA (SD-iCCA) and large duct iCCA (LD-iCCA) in a single patient. The aim of the current study was to determine the presence and degree of intratumoural heterogeneity of SD- and LD-iCCA features in different tumour regions. METHODS AND RESULTS: All patients treated with surgically resected iCCA at Frankfurt University Hospital between December 2005 and March 2023 were retrospectively analysed. Histomorphological features of SD- and LD-iCCA were evaluated by an expert hepatobiliary pathologist. Tissue samples suspicious for subtype heterogeneity were further investigated. Immunohistochemistry for N-cadherin, S100P, MUC5AC, MUC6, TFF1 and AGR2 and mutational profiling with the Illumina TruSight Oncology 500 (TSO500) assay were performed separately for the SD- and LD-iCCA regions. Of 129 patients with surgically resected iCCA, features of either SD- or LD-iCCA were present in 67.4% (n = 87) and 24.8% of the patients (n = 32), respectively; 7.8% (n = 10) had histomorphological features of both SD- and LD-iCCA, seven patients (5.4%) of which had sufficient formalin-fixed, paraffin-embedded tissue for further analysis. Heterogeneity of both subtypes could be confirmed with immunohistochemistry. In five of seven (71.4%) patients, molecular profiling revealed intratumoural differences in genetic alterations between the SD- and LD-iCCA region. In one patient, a BRAF mutation (p.V600E) was found in the SD-iCCA but not in the LD-iCCA region of the tumour. CONCLUSIONS: A marked portion of patients with iCCA exhibits both SD- and LD-iCCA in different tumour regions. In case of the presence of histopathological heterogeneity, mutational profiling should be considered to avoid missing therapeutically relevant genetic alterations.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Retrospective Studies , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Mutation , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Mucoproteins/genetics , Oncogene Proteins/genetics
14.
Br J Cancer ; 130(4): 513-516, 2024 03.
Article in English | MEDLINE | ID: mdl-38316994

ABSTRACT

The "undruggable" MYC oncoproteins are deregulated in 70% human cancers. The approval of DFMO, an irreversible inhibitor of ornithine oxidase (ODC1) that is a direct transcriptional target of MYC, demonstrates that patients can benefit from targeting MYC activity via an indirect approach. However, the mechanism of action of DFMO needs further studies to understand how it works in post-immunotherapy neuroblastomas. Efforts to develop a more potent and safer drug to block MYC function will continue despite challenges.


Subject(s)
Neuroblastoma , Humans , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism , Oncogene Proteins/genetics , Gene Expression Regulation, Neoplastic , Eflornithine/metabolism , Eflornithine/pharmacology , Eflornithine/therapeutic use
15.
Biomed Pharmacother ; 171: 116165, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237348

ABSTRACT

Cancer development is a complex process that primarily results from the combination of genetic alterations and the dysregulation of major signalling pathways due to interference with the epigenetic machinery. As major epigenetic regulators, miRNAs are central players in the control of many key tumour development factors. These miRNAs have been classified as oncogenic miRNAs (oncomiRs) when they target tumour suppressor genes and tumour suppressor miRNAs (TS miRNAs) when they inhibit oncogene protein expression. Most of the mechanisms that modulate oncomiR expression are linked to transcriptional or posttranscriptional regulation. However, non-transcriptional processes, such as gene amplification, have been described as alternative processes that are responsible for increasing oncomiR expression. The current review summarises the different mechanisms controlling the upregulation of oncomiR expression in cancer cells and the tumour microenvironment (TME). Detailed knowledge of the mechanism underlying the regulation of oncomiR expression in cancer may pave the way for understanding the critical role of oncomiRs in cancer development and progression.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Neoplasms/metabolism , Genes, Tumor Suppressor , Oncogenes , Oncogene Proteins/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
16.
J Biol Chem ; 300(1): 105522, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043798

ABSTRACT

Notch signaling plays a critical role in cell fate decisions in all cell types. Furthermore, gain-of-function mutations in NOTCH1 have been uncovered in many human cancers. Disruption of Notch signaling has recently emerged as an attractive disease treatment strategy. However, the nuclear interaction landscape of the oncoprotein NOTCH1 remains largely unexplored. We therefore employed here a proximity-dependent biotin identification approach to identify in vivo protein associations with the nuclear Notch1 intracellular domain in live cells. We identified a large set of previously reported and unreported proteins that associate with NOTCH1, including general transcription and elongation factors, DNA repair and replication factors, coactivators, corepressors, and components of the NuRD and SWI/SNF chromatin remodeling complexes. We also found that Notch1 intracellular domain associates with protein modifiers and components of other signaling pathways that may influence Notch signal transduction and protein stability such as USP7. We further validated the interaction of NOTCH1 with histone deacetylase 1 or GATAD2B using protein network analysis, proximity-based ligation, in vivo cross-linking and coimmunoprecipitation assays in several Notch-addicted cancer cell lines. Through data mining, we also revealed potential drug targets for the inhibition of Notch signaling. Collectively, these results provide a valuable resource to uncover the mechanisms that fine-tune Notch signaling in tumorigenesis and inform therapeutic targets for Notch-addicted tumors.


Subject(s)
Carcinogenesis , Neoplasms , Oncogene Proteins , Receptor, Notch1 , Humans , Cell Differentiation , Cell Line , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Receptors, Notch/metabolism , Signal Transduction , Ubiquitin-Specific Peptidase 7/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Neoplasms/genetics , Neoplasms/metabolism
17.
J Cell Sci ; 136(23)2023 12 01.
Article in English | MEDLINE | ID: mdl-37997922

ABSTRACT

The correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive. Here, we report the identification of DEK bodies, focal assemblies of DEK that regularly occur at specific, yet unidentified, sites of heterochromatin replication exclusively in late S-phase. In these bodies, DEK localizes in direct proximity to active replisomes in agreement with a function in the early maturation of heterochromatin. A high-throughput siRNA screen, supported by mutational and biochemical analyses, identifies SUMO as one regulator of DEK body formation, linking DEK to the complex SUMO protein network that controls chromatin states and cell fate. This work combines and refines our previous data on DEK as a factor essential for heterochromatin integrity and facilitating replication under stress, and delineates an avenue of further study for unraveling the contribution of DEK to cancer development.


Subject(s)
Heterochromatin , Neoplasms , Humans , Poly-ADP-Ribose Binding Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Chromatin
18.
Physiol Res ; 72(S3): S277-S286, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37888971

ABSTRACT

Neuroblastoma represents 8-10 % of all malignant tumors in childhood and is responsible for 15 % of cancer deaths in the pediatric population. Aggressive neuroblastomas are often resistant to chemotherapy. Canonically, neuroblastomas can be classified according to the MYCN (N-myc proto-oncogene protein) gene amplification, a common marker of tumor aggressiveness and poor prognosis. It has been found that certain compounds with chelating properties may show anticancer activity, but there is little evidence for the effect of chelators on neuroblastoma. The effect of new chelators characterized by the same functional group, designated as HLZ (1-hydrazino phthalazine), on proliferation (WST-1 and methylene blue assay), cell cycle (flow cytometry), apoptosis (proliferation assay after use of specific pharmacological inhibitors and western blot analysis) and ROS production (fluorometric assay based on dichlorofluorescein diacetate metabolism) was studied in three neuroblastoma cell lines with different levels of MYCN amplification. The molecules were effective only on MYCN-non-amplified cells in which they arrested the cell cycle in the G0/G1 phase. We investigated the mechanism of action and identified the activation of cell signaling that involves protein kinase C.


Subject(s)
Neuroblastoma , Oncogene Proteins , Child , Humans , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/therapeutic use , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Oncogene Proteins/pharmacology , Nuclear Proteins/genetics , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Neuroblastoma/drug therapy , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Apoptosis , Cell Proliferation
19.
Cancer Biol Ther ; 24(1): 2271212, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37906510

ABSTRACT

Anaplastic lymphoma kinase-positive large B-cell lymphoma (ALK+ LBCL) is a rare subtype of non-Hodgkin lymphoma. ALK inhibitors are being tried to treat recurrent/refractory ALK+ LBCL. A majority of patients with ALK+ tumors respond to crizotinib, but partial cases ultimately develop resistance about a year later. Here, we report a case of ALK+ LBCL carrying a new fusion gene involving CDK14 and ALK, CLTC-ALK gene rearrangements and MTOR gene mutation. The patient had progressive disease after combination of crizotinib and chemotherapy treatment about 5.5 months later, accompanied by reduced abundance of CDK14-ALK, increased abundance of CLTC-ALK and a novel MFHAS1 gene mutation. However, MTOR mutation turned negative. The patient received alectinib combined with hyper-CVAD, then followed by alectinib as monotherapy for 21 months. The patient achieved partial response and remained in a stable condition. This case suggests that CDK14-ALK fusion gene may be more sensitive to crizotinib than CLTC-ALK fusion gene. MTOR is associated with the anti-tumor mechanism of ALK inhibitors. MFHAS1 gene mutation and/or CLTC-ALK gene copy number amplification may involve resistance to crizotinib. Furthermore, alectinib may inhibit the carcinogenicity of these gene changes and improve the prognosis of ALK+ LBCL.


The novel CDK14-ALK fusion gene in ALK+ LBCL was sensitive to crizotinib.MFHAS1 gene mutation and/or CLTC-ALK gene copy number amplification may involve resistance to crizotinib.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lymphoma, B-Cell , Humans , Anaplastic Lymphoma Kinase/genetics , Carbazoles/pharmacology , Carbazoles/therapeutic use , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/genetics , Crizotinib/pharmacology , Crizotinib/therapeutic use , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm/genetics , High-Throughput Nucleotide Sequencing , Lung Neoplasms/pathology , Lymphoma, B-Cell/drug therapy , Mutation , Oncogene Proteins/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases/genetics
20.
Oncogene ; 42(45): 3331-3343, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37752234

ABSTRACT

The internal tandem duplication of the FMS-like tyrosine kinase 3 (FLT3-ITD) is one of the most frequent genetic alterations in acute myeloid leukemia (AML). Limited and transient clinical benefit of FLT3 kinase inhibitors (FLT3i) emphasizes the need for alternative therapeutic options for this subset of myeloid malignancies. Herein, we showed that FLT3-ITD mutant (FLT3-ITD+) AML cells were susceptible toward inhibitors of DHODH, a rate-limiting enzyme of de novo pyrimidine biosynthesis. Genetic and pharmacological blockade of DHODH triggered downregulation of FLT3-ITD protein, subsequently suppressed activation of downstream ERK and STAT5, and promoted cell death of FLT3-ITD+ AML cells. Mechanistically, DHODH blockade triggered autophagy-mediated FLT3-ITD degradation via inactivating mTOR, a potent autophagy repressor. Notably, blockade of DHODH synergized with an FDA-approved FLT3i quizartinib in significantly impairing the growth of FLT3-ITD+ AML cells and improving tumor-bearing mice survival. We further demonstrated that DHODH blockade exhibited profound anti-proliferation effect on quizartinib-resistant cells in vitro and in vivo. In summary, this study demonstrates that the induction of degradation of FLT3-ITD protein by DHODH blockade may offer a promising therapeutic strategy for AML patients harboring FLT3-ITD mutation.


Subject(s)
Dihydroorotate Dehydrogenase , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Autophagy , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation , Oncogene Proteins/genetics , Protein Kinase Inhibitors/pharmacology , Pyrimidines/biosynthesis , Pyrimidines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...