Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.612
Filter
1.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702343

ABSTRACT

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Animals , Mice , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Virotherapy/methods , Combined Modality Therapy , mRNA Vaccines/immunology , Melanoma, Experimental/therapy , Melanoma, Experimental/immunology , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , Humans , Cell Line, Tumor , Cancer Vaccines/immunology , Cancer Vaccines/genetics , Cancer Vaccines/administration & dosage
2.
Adv Exp Med Biol ; 1451: 369-381, 2024.
Article in English | MEDLINE | ID: mdl-38801591

ABSTRACT

Despite the significant advancement of new tools and technology in the field of medical biology and molecular biology, the challenges in the treatment of most cancer types remain constant with the problem of developing resistance toward drugs and no substantial enhancement in the overall survival rate of cancer patients. Immunotherapy has shown the most promising results in different clinical and preclinical trials in the treatment of various cancer due to its higher efficacy and minimum collateral damage in many cancer patients as compared to conventional chemotherapy and radiotherapy. An oncolytic virus is a new class of immunotherapy that can selectively replicate in tumor cells and destroy them by the process of cell lysis while exerting minimum or no effect on a normal cell. Besides this, it can also activate the host's innate immune system, which generates an anti-tumor immune response to eliminate the tumor cells. Several wild types and genetically modified viruses have been investigated to show oncolytic behavior. Vaccinia virus has been studied extensively and tested for its promising oncolytic nature on various model systems and clinical trials. Recently, several engineered vaccinia viruses have been developed that express the desired genes encoded for selective penetration in tumor cells and enhanced activation of the immune system for generating anti-tumor immunity. However, further investigation is required to prove their potential and enhance their therapeutic efficacy.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Poxviridae , Humans , Oncolytic Virotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , Animals , Poxviridae/genetics , Poxviridae/physiology , Immunotherapy/methods , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/physiology
3.
Adv Protein Chem Struct Biol ; 140: 419-492, 2024.
Article in English | MEDLINE | ID: mdl-38762277

ABSTRACT

Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.


Subject(s)
Immunotherapy , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Oncolytic Virotherapy/methods , Animals
4.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750591

ABSTRACT

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Subject(s)
Natural Killer T-Cells , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Female , Mice , Natural Killer T-Cells/immunology , Oncolytic Virotherapy/methods , Humans , Cell Line, Tumor , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Immunotherapy/methods , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Combined Modality Therapy , Neoplasm Metastasis , Vesiculovirus/genetics , Dendritic Cells/immunology , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Disease Models, Animal
5.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731910

ABSTRACT

Oncolytic virotherapy is a promising immunotherapy approach for cancer treatment that utilizes viruses to preferentially infect and eliminate cancer cells while stimulating the immune response. In this review, we synthesize the current literature on the molecular circuits of immune sensing and response to oncolytic virotherapy, focusing on viral DNA or RNA sensing by infected cells, cytokine and danger-associated-signal sensing by neighboring cells, and the subsequent downstream activation of immune pathways. These sequential sense-and-response mechanisms involve the triggering of molecular sensors by viruses or infected cells to activate transcription factors and related genes for a breadth of immune responses. We describe how the molecular signals induced in the tumor upon virotherapy can trigger diverse immune signaling pathways, activating both antigen-presenting-cell-based innate and T cell-based adaptive immune responses. Insights into these complex mechanisms provide valuable knowledge for enhancing oncolytic virotherapy strategies.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Virotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Signal Transduction , Immunity, Innate , Immunotherapy/methods
6.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732225

ABSTRACT

Oncolytic viruses (OVs) are characterised by their preference for infecting and replicating in tumour cells either naturally or after genetic modification, resulting in oncolysis. Furthermore, OVs can elicit both local and systemic anticancer immune responses while specifically infecting and lysing tumour cells. These characteristics render them a promising therapeutic approach for paediatric brain tumours (PBTs). PBTs are frequently marked by a cold tumour immune microenvironment (TIME), which suppresses immunotherapies. Recent preclinical and clinical studies have demonstrated the capability of OVs to induce a proinflammatory immune response, thereby modifying the TIME. In-depth insights into the effect of OVs on different cell types in the TIME may therefore provide a compelling basis for using OVs in combination with other immunotherapy modalities. However, certain limitations persist in our understanding of oncolytic viruses' ability to regulate the TIME to enhance anti-tumour activity. These limitations primarily stem from the translational limitations of model systems, the difficulties associated with tracking reliable markers of efficacy throughout the course of treatment and the role of pre-existing viral immunity. In this review, we describe the different alterations observed in the TIME in PBTs due to OV treatment, combination therapies of OVs with different immunotherapies and the hurdles limiting the development of effective OV therapies while suggesting future directions based on existing evidence.


Subject(s)
Brain Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Tumor Microenvironment , Humans , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Oncolytic Virotherapy/methods , Tumor Microenvironment/immunology , Oncolytic Viruses/physiology , Oncolytic Viruses/genetics , Child , Immunotherapy/methods , Combined Modality Therapy/methods , Animals
7.
J Hematol Oncol ; 17(1): 36, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783389

ABSTRACT

Oncolytic viruses (OVs) offer a novel approach to treat solid tumors; however, their efficacy is frequently suboptimal due to various limiting factors. To address this challenge, we engineered an OV containing targets for neuron-specific microRNA-124 and Granulocyte-macrophage colony-stimulating factor (GM-CSF), significantly enhancing its neuronal safety while minimally compromising its replication capacity. Moreover, we identified PARP1 as an HSV-1 replication restriction factor using genome-wide CRISPR screening. In models of glioblastoma (GBM) and triple-negative breast cancer (TNBC), we showed that the combination of OV and a PARP inhibitor (PARPi) exhibited superior efficacy compared to either monotherapy. Additionally, single-cell RNA sequencing (scRNA-seq) revealed that this combination therapy sensitized TNBC to immune checkpoint blockade, and the incorporation of an immune checkpoint inhibitor (ICI) further increased the survival rate of tumor-bearing mice. The combination of PARPi and ICI synergistically enhanced the ability of OV to establish durable tumor-specific immune responses. Our study effectively overcomes the inherent limitations of OV therapy, providing valuable insights for the clinical treatment of TNBC, GBM, and other malignancies.


Subject(s)
Oncolytic Virotherapy , Oncolytic Virotherapy/methods , Animals , Humans , Mice , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Glioblastoma/therapy , Glioblastoma/genetics , Oncolytic Viruses/genetics , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/genetics , Female , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Herpesvirus 1, Human/genetics , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , MicroRNAs/genetics , Xenograft Model Antitumor Assays , CRISPR-Cas Systems
8.
Viruses ; 16(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38793657

ABSTRACT

NUT (nuclear-protein-in-testis) carcinoma (NC) is a highly aggressive tumor disease. Given that current treatment regimens offer a median survival of six months only, it is likely that this type of tumor requires an extended multimodal treatment approach to improve prognosis. In an earlier case report, we could show that an oncolytic herpes simplex virus (T-VEC) is functional in NC patients. To identify further combination partners for T-VEC, we have investigated the anti-tumoral effects of T-VEC and five different small molecule inhibitors (SMIs) alone and in combination in human NC cell lines. Dual combinations were found to result in higher rates of tumor cell reductions when compared to the respective monotherapy as demonstrated by viability assays and real-time tumor cell growth monitoring. Interestingly, we found that the combination of T-VEC with SMIs resulted in both stronger and earlier reductions in the expression of c-Myc, a main driver of NC cell proliferation, when compared to T-VEC monotherapy. These results indicate the great potential of combinatorial therapies using oncolytic viruses and SMIs to control the highly aggressive behavior of NC cancers and probably will pave the way for innovative multimodal clinical studies in the near future.


Subject(s)
Biological Products , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/physiology , Oncolytic Viruses/genetics , Oncolytic Virotherapy/methods , Cell Line, Tumor , Combined Modality Therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Proliferation/drug effects , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Carcinoma/therapy , Cell Survival/drug effects , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasm Proteins , Herpesvirus 1, Human
9.
Biochem Biophys Res Commun ; 718: 149931, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38723415

ABSTRACT

Oncolytic viruses (OVs) have shown potential in converting a "cold" tumor into a "hot" one and exhibit effectiveness in various cancer types. However, only a subset of patients respond to oncolytic virotherapy. It is important to understand the resistance mechanisms to OV treatment in pancreatic ductal adenocarcinoma (PDAC) to engineer oncolytic viruses. In this study, we used transcriptome RNA sequencing (RNA-seq) to identify Visfatin, which was highly expressed in the responsive tumors following OV treatment. To explore the antitumor efficacy, we modified OV-mVisfatin, which effectively inhibited tumor growth. For the first time, we revealed that Visfatin promoted the antitumor efficacy of OV by remodeling the tumor microenvironment, which involved enhancing CD8+ T cell and DC cell infiltration and activation, repolarizing macrophages towards the M1-like phenotype, and decreasing Treg cells using single-cell RNA sequencing (scRNA-seq) and flow cytometry. Furthermore, PD-1 blockade significantly enhanced OV-mVisfatin antitumor efficacy, offering a promising new therapeutic strategy for PDAC.


Subject(s)
Herpesvirus 1, Human , Nicotinamide Phosphoribosyltransferase , Oncolytic Virotherapy , Oncolytic Viruses , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Mice , Oncolytic Virotherapy/methods , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Herpesvirus 1, Human/genetics , Cell Line, Tumor , Oncolytic Viruses/genetics , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Mice, Inbred C57BL , Humans , CD8-Positive T-Lymphocytes/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Female
10.
Mol Med Rep ; 30(1)2024 07.
Article in English | MEDLINE | ID: mdl-38757346

ABSTRACT

Ovarian cancer is a multifactorial and deadly disease. Despite significant advancements in ovarian cancer therapy, its incidence is on the rise and the molecular mechanisms underlying ovarian cancer invasiveness, metastasis and drug resistance remain largely elusive, resulting in poor prognosis. Oncolytic viruses armed with therapeutic transgenes of interest offer an attractive alternative to chemical drugs, which often face innate and acquired drug resistance. The present study constructed a novel oncolytic adenovirus carrying ERCC1 short interfering (si)RNA, regulated by hTERT and HIF promoters, termed Ad­siERCC1. The findings demonstrated that this oncolytic adenovirus effectively inhibits the proliferation, migration and invasion of ovarian cancer cells. Furthermore, the downregulation of ERCC1 expression by siRNA ameliorates drug resistance to cisplatin (DDP) chemotherapy. It was found that Ad­siERCC1 blocks the cell cycle in the G1 phase and enhances apoptosis through the PI3K/AKT­caspase­3 signaling pathways in SKOV3 cells. The results of the present study highlighted the critical effect of oncolytic virus Ad­siERCC1 in inhibiting the survival of ovarian cancer cells and increasing chemotherapy sensitivity to DDP. These findings underscore the potent antitumor effect of Ad­siERCC1 on ovarian cancers in vivo.


Subject(s)
Adenoviridae , Apoptosis , Cell Proliferation , Cisplatin , DNA-Binding Proteins , Endonucleases , Oncolytic Virotherapy , Oncolytic Viruses , Ovarian Neoplasms , RNA, Small Interfering , Humans , Female , Ovarian Neoplasms/therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Adenoviridae/genetics , Cell Line, Tumor , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Apoptosis/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cell Movement/genetics , Drug Resistance, Neoplasm/genetics , Genetic Vectors/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
11.
Nat Commun ; 15(1): 3669, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693119

ABSTRACT

Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.


Subject(s)
Fusobacterium nucleatum , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , RNA-Binding Proteins , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/genetics , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Humans , Oncolytic Virotherapy/methods , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/immunology , Cell Line, Tumor , Fusobacterium nucleatum/immunology , Neoplasms/therapy , Neoplasms/immunology , Female , Immunity, Innate , Mice, Inbred BALB C
12.
Virology ; 595: 110093, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692134

ABSTRACT

Oncolytic virotherapy stands out as a burgeoning and promising therapeutic paradigm, harnessing the intrinsic cytotoxicity of oncolytic viruses for selective replication and dissemination within tumors. The primary mode of action revolves around the direct eradication of tumor cells. In our previous investigations, we formulated an oncolytic herpes simplex virus type 2 (OH2) and substantiated its anti-tumor efficacy both in vivo and in vitro. Subsequently, we embarked on a phase I/II clinical trial in China (NMPA, 2018L02743) and the USA (FDA, IND 27137) to assess OH2's safety, biodistribution, and anti-tumor activity as a standalone agent in patients with advanced solid tumors. In this investigation, our primary focus was to comprehend the influence of the major capsid protein VP5 of OH2 on its efficacy as an antitumor agent. Our findings underscore that the VP5 protein significantly amplifies OH2's oncolytic impact on A549 cells. Additionally, we observed that VP5 actively promotes the induction of apoptosis in A549 cells, both in vivo and in vitro. Through comprehensive transcriptional sequencing, we further authenticated that the VP5 protein triggers apoptosis-related signaling pathways and Gene Ontology (GO) terms in A549 cells. Moreover, we scrutinized differentially expressed genes in the p53-dependent apoptosis pathway and conducted meticulous in vitro validation of these genes. Subsequently, we delved deeper into unraveling the functional significance of the TP53I3 gene and conclusively affirmed that the VP5 protein induces apoptosis in A549 cells through the TP53I3 gene. These revelations illuminate the underlying mechanisms of OH2's antitumor activity and underscore the pivotal role played by the VP5 protein. The outcomes of our study harbor promising implications for the formulation of effective oncolytic virotherapy strategies in cancer treatment.


Subject(s)
Apoptosis , Herpesvirus 2, Human , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , A549 Cells , Oncolytic Virotherapy/methods , Animals , Herpesvirus 2, Human/physiology , Herpesvirus 2, Human/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Mice , Xenograft Model Antitumor Assays
13.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673835

ABSTRACT

Virotherapy is one of the perspective technologies in the treatment of malignant neoplasms. Previously, we have developed oncolytic vaccinia virus VV-GMCSF-Lact and its high cytotoxic activity and antitumor efficacy against glioma was shown. In this work, using immortalized and patient-derived cells with different sensitivity to VV-GMCSF-Lact, we evaluated the cytotoxic effect of chemotherapy agents. Additionally, we studied the combination of VV-GMCSF-Lact with temozolomide which is the most preferred drug for glioma treatment. Experimental results indicate that first adding temozolomide and then the virus to the cells is inherently more efficient than dosing it in the reverse order. Testing these regimens in the U87 MG xenograft glioblastoma model confirmed this effect, as assessed by tumor growth inhibition index and histological analysis. Moreover, VV-GMCSF-Lact as monotherapy is more effective against U87 MG glioblastoma xenografts comparing temozolomide.


Subject(s)
Glioma , Granulocyte-Macrophage Colony-Stimulating Factor , Oncolytic Virotherapy , Oncolytic Viruses , Temozolomide , Vaccinia virus , Xenograft Model Antitumor Assays , Humans , Animals , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Temozolomide/pharmacology , Temozolomide/therapeutic use , Cell Line, Tumor , Mice , Glioma/therapy , Glioma/drug therapy , Glioma/pathology , Vaccinia virus/genetics , Vaccinia virus/physiology , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Mice, Nude , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Glioblastoma/therapy , Glioblastoma/drug therapy , Glioblastoma/pathology , Combined Modality Therapy
14.
Viruses ; 16(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38675903

ABSTRACT

Gliomas account for approximately 75-80% of all malignant primary tumors in the central nervous system (CNS), with glioblastoma multiforme (GBM) considered the deadliest. Despite aggressive treatment involving a combination of chemotherapy, radiotherapy, and surgical intervention, patients with GBM have limited survival rates of 2 to 5 years, accompanied by a significant decline in their quality of life. In recent years, novel management strategies have emerged, such as immunotherapy, which includes the development of vaccines or T cells with chimeric antigen receptors, and oncolytic virotherapy (OVT), wherein wild type (WT) or genetically modified viruses are utilized to selectively lyse tumor cells. In vitro and in vivo studies have shown that the Zika virus (ZIKV) can infect glioma cells and induce a robust oncolytic activity. Consequently, interest in exploring this virus as a potential oncolytic virus (OV) for high-grade gliomas has surged. Given that ZIKV actively circulates in Colombia, evaluating its neurotropic and oncolytic capabilities holds considerable national and international importance, as it may emerge as an alternative for treating highly complex gliomas. Therefore, this literature review outlines the generalities of GBM, the factors determining ZIKV's specific tropism for nervous tissue, and its oncolytic capacity. Additionally, we briefly present the progress in preclinical studies supporting the use of ZIKV as an OVT for gliomas.


Subject(s)
Brain Neoplasms , Glioma , Oncolytic Virotherapy , Oncolytic Viruses , Zika Virus Infection , Zika Virus , Oncolytic Virotherapy/methods , Humans , Zika Virus/physiology , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , Glioma/therapy , Glioma/virology , Animals , Zika Virus Infection/therapy , Zika Virus Infection/virology , Brain Neoplasms/therapy , Brain Neoplasms/virology , Glioblastoma/therapy , Glioblastoma/virology
15.
Viruses ; 16(4)2024 04 05.
Article in English | MEDLINE | ID: mdl-38675909

ABSTRACT

Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.


Subject(s)
Adenoviridae , Breast Neoplasms , Drug Resistance, Neoplasm , Neoplastic Stem Cells , Oncolytic Virotherapy , Oncolytic Viruses , Paclitaxel , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Paclitaxel/pharmacology , Adenoviridae/genetics , Adenoviridae/physiology , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , Oncolytic Virotherapy/methods , Female , Cell Line, Tumor , Animals , Mice , Symporters/metabolism , Symporters/genetics , Genetic Vectors/genetics
16.
Front Immunol ; 15: 1272351, 2024.
Article in English | MEDLINE | ID: mdl-38558795

ABSTRACT

In recent years, oncolytic viruses have emerged as promising agents for treating various cancers. An oncolytic virus is a non-pathogenic virus that, due to genetic manipulation, tends to replicate in and cause lysis of cancerous cells while leaving healthy cells unaffected. Among these viruses, vaccinia virus is an attractive platform for use as an oncolytic platform due to its 190 Kb genome with a high capacity for encoding therapeutic payloads. Combining oncolytic VV therapy with other conventional cancer treatments has been shown to be synergistic and more effective than monotherapies. Additionally, OVV can be used as a vector to deliver therapeutic payloads, alone or in combination with other treatments, to increase overall efficacy. Here, we present a comprehensive analysis of preclinical and clinical studies that have evaluated the efficacy of oncolytic vaccinia viruses in cancer immunotherapy. We discuss the outcomes of these studies, including tumor regression rates, overall survival benefits, and long-term responses. Moreover, we provide insights into the challenges and limitations associated with oncolytic vaccinia virus- based therapies, including immune evasion mechanisms, potential toxicities, and the development of resistance.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/genetics , Vaccinia virus/genetics , Neoplasms/therapy , Neoplasms/genetics , Immunotherapy
17.
Front Immunol ; 15: 1375433, 2024.
Article in English | MEDLINE | ID: mdl-38576614

ABSTRACT

Oncolytic virus (OV) therapy has emerged as a promising frontier in cancer treatment, especially for solid tumours. While immunotherapies like immune checkpoint inhibitors and CAR-T cells have demonstrated impressive results, their limitations in inducing complete tumour regression have spurred researchers to explore new approaches targeting tumours resistant to current immunotherapies. OVs, both natural and genetically engineered, selectively replicate within cancer cells, inducing their lysis while sparing normal tissues. Recent advancements in clinical research and genetic engineering have enabled the development of targeted viruses that modify the tumour microenvironment, triggering anti-tumour immune responses and exhibiting synergistic effects with other cancer therapies. Several OVs have been studied for breast cancer treatment, including adenovirus, protoparvovirus, vaccinia virus, reovirus, and herpes simplex virus type I (HSV-1). These viruses have been modified or engineered to enhance their tumour-selective replication, reduce toxicity, and improve oncolytic properties.Newer generations of OVs, such as Oncoviron and Delta-24-RGD adenovirus, exhibit heightened replication selectivity and enhanced anticancer effects, particularly in breast cancer models. Clinical trials have explored the efficacy and safety of various OVs in treating different cancers, including melanoma, nasopharyngeal carcinoma, head and neck cancer, and gynecologic malignancies. Notably, Talimogene laherparepvec (T-VEC) and Oncorine have. been approved for advanced melanoma and nasopharyngeal carcinoma, respectively. However, adverse effects have been reported in some cases, including flu-like symptoms and rare instances of severe complications such as fistula formation. Although no OV has been approved specifically for breast cancer treatment, ongoing preclinical clinical trials focus on four groups of viruses. While mild adverse effects like low-grade fever and nausea have been observed, the effectiveness of OV monotherapy in breast cancer remains insufficient. Combination strategies integrating OVs with chemotherapy, radiotherapy, or immunotherapy, show promise in improving therapeutic outcomes. Oncolytic virus therapy holds substantial potential in breast cancer treatment, demonstrating safety in trials. Multi-approach strategies combining OVs with conventional therapies exhibit more promising therapeutic effects than monotherapy, signalling a hopeful future for OV-based breast cancer treatments.


Subject(s)
Breast Neoplasms , Melanoma , Nasopharyngeal Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Female , Humans , Oncolytic Virotherapy/adverse effects , Oncolytic Virotherapy/methods , Melanoma/therapy , Oncolytic Viruses/genetics , Breast Neoplasms/therapy , Breast Neoplasms/etiology , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Neoplasms/therapy , Tumor Microenvironment
19.
Mol Oncol ; 18(4): 781-784, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561242

ABSTRACT

Oncolytic viruses (OVs) are biological therapeutic agents that selectively destroy cancer cells while sparing normal healthy cells. Besides direct oncolysis, OV infection induces a proinflammatory shift in the tumor microenvironment and the release of tumor-associated antigens (TAAs) that might induce an anti-tumor immunity. Due to their immunostimulatory effect, OVs have been explored for cancer vaccination against specific TAAs. However, this approach usually requires genetic modification of the virus and the production of a new viral vector for each target, which is difficult to implement for low prevalent antigens. In a recent study, Chiaro et al. presented an elegant proof of concept on how to implement the PeptiCRAd vaccination platform to overcome this limitation for the treatment of mesothelioma. Authors showed the feasibility of identifying immunogenic TAAs in human mesothelioma and using them to coat oncolytic adenovirus particles. The result was a customized virus-based cancer vaccine that circumvents time and resource-consuming steps incurred from genetically engineering viruses. Although some questions remain to be addressed, this interesting approach suggests novel strategies for personalized cancer medicine using oncolytic virotherapy.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Adenoviridae/genetics , Marriage , Oncolytic Viruses/genetics , Mesothelioma/therapy , Antigens, Neoplasm , Tumor Microenvironment
20.
PLoS One ; 19(3): e0298437, 2024.
Article in English | MEDLINE | ID: mdl-38498459

ABSTRACT

Ionizing radiation (IR) and oncolytic viruses are both used to treat cancer, and the effectiveness of both agents depends upon stimulating an immune response against the tumor. In this study we tested whether combining image guided ionizing radiation (IG-IR) with an oncolytic vaccinia virus (VACV) could yield a better therapeutic response than either treatment alone. ΔF4LΔJ2R VACV grew well on irradiated human and mouse breast cancer cells, and the virus can be combined with 4 or 8 Gy of IR to kill cells in an additive or weakly synergistic manner. To test efficacy in vivo we used immune competent mice bearing orthotopic TUBO mammary tumors. IG-IR worked well with 10 Gy producing 80% complete responses, but this was halved when the tumors were treated with VACV starting 2 days after IG-IR. VACV monotherapy was ineffective in this model. The antagonism was time dependent as waiting for 21 days after IG-IR eliminated the inhibitory effect but without yielding any further benefits over IR alone. In irradiated tumors, VACV replication was also lower, suggesting that irradiation created an environment that did not support infection as well in vivo as in vitro. A study of how four different treatment regimens affected the immune composition of the tumor microenvironment showed that treating irradiated tumors with VACV altered the immunological profiles in tumors exposed to IR or VACV alone. We detected more PD-1 and PD-L1 expression in tumors exposed to IR+VACV but adding an αPD-1 antibody to the protocol did not change the way VACV interferes with IG-IR therapy. VACV encodes many immunosuppressive gene products that may interfere with the ability of radiotherapy to induce an effective anti-tumor immune response through the release of danger-associated molecular patterns. These data suggest that infecting irradiated tumors with VACV, too soon after exposure, may interfere in the innate and linked adaptive immune responses that are triggered by radiotherapy to achieve a beneficial impact.


Subject(s)
Mammary Neoplasms, Animal , Oncolytic Virotherapy , Oncolytic Viruses , Radiotherapy, Image-Guided , Vaccinia , Humans , Animals , Mice , Vaccinia virus/genetics , Oncolytic Viruses/genetics , Mammary Neoplasms, Animal/radiotherapy , Immunotherapy , Oncolytic Virotherapy/methods , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...