Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 423
Filter
1.
Front Immunol ; 15: 1355566, 2024.
Article in English | MEDLINE | ID: mdl-38835775

ABSTRACT

Dendritic cell (DC)-based vaccines have emerged as a promising strategy in cancer immunotherapy due to low toxicity. However, the therapeutic efficacy of DC as a monotherapy is insufficient due to highly immunosuppressive tumor environment. To address these limitations of DC as immunotherapeutic agent, we have developed a polymeric nanocomplex incorporating (1) oncolytic adenovirus (oAd) co-expressing interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor (GM-CSF) and (2) arginine-grafted bioreducible polymer with PEGylated paclitaxel (APP) to restore antitumor immune surveillance function in tumor milieu and potentiate immunostimulatory attributes of DC vaccine. Nanohybrid complex (oAd/APP) in combination with DC (oAd/APP+DC) induced superior expression level of antitumor cytokines (IL-12, GM-CSF, and interferon gamma) than either oAd/APP or DC monotherapy in tumor tissues, thus resulting in superior intratumoral infiltration of both endogenous and exogenous DCs. Furthermore, oAd/APP+DC treatment led superior migration of DC to secondary lymphoid organs, such as draining lymph nodes and spleen, in comparison with either monotherapy. Superior migration profile of DCs in oAd/APP+DC treatment group resulted in more prolific activation of tumor-specific T cells in these lymphoid organs and greater intratumoral infiltration of T cells. Additionally, oAd/APP+DC treatment led to lower subset of tumor infiltrating lymphocytes and splenocytes being immunosuppressive regulatory T cells than any other treatment groups. Collectively, oAd/APP+DC led to superior induction of antitumor immune response and amelioration of immunosuppressive tumor microenvironment to elicit potent tumor growth inhibition than either monotherapy.


Subject(s)
Adenoviridae , Dendritic Cells , Oncolytic Virotherapy , Oncolytic Viruses , Paclitaxel , Dendritic Cells/immunology , Animals , Paclitaxel/pharmacology , Adenoviridae/genetics , Mice , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Oncolytic Virotherapy/methods , Combined Modality Therapy , Cell Line, Tumor , Humans , Mice, Inbred C57BL , Cancer Vaccines/immunology , Immunotherapy/methods , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Female , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects
2.
Front Immunol ; 15: 1379613, 2024.
Article in English | MEDLINE | ID: mdl-38698850

ABSTRACT

Onco-virotherapy is an emergent treatment for cancer based on viral vectors. The therapeutic activity is based on two different mechanisms including tumor-specific oncolysis and immunostimulatory properties. In this study, we evaluated onco-virotherapy in vitro responses on immunocompetent non-small cell lung cancer (NSCLC) patient-derived tumoroids (PDTs) and healthy organoids. PDTs are accurate tools to predict patient's clinical responses at the in vitro stage. We showed that onco-virotherapy could exert specific antitumoral effects by producing a higher number of viral particles in PDTs than in healthy organoids. In the present work, we used multiplex protein screening, based on proximity extension assay to highlight different response profiles. Our results pointed to the increase of proteins implied in T cell activation, such as IFN-γ following onco-virotherapy treatment. Based on our observation, oncolytic viruses-based therapy responders are dependent on several factors: a high PD-L1 expression, which is a biomarker of greater immune response under immunotherapies, and the number of viral particles present in tumor tissue, which is dependent to the metabolic state of tumoral cells. Herein, we highlight the use of PDTs as an alternative in vitro model to assess patient-specific responses to onco-virotherapy at the early stage of the preclinical phases.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Discovery , Lung Neoplasms , Oncolytic Virotherapy , Proteomics , Humans , Proteomics/methods , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Oncolytic Virotherapy/methods , Organoids , Oncolytic Viruses/immunology , Proteome , Biomarkers, Tumor/metabolism , B7-H1 Antigen/metabolism
3.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702343

ABSTRACT

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Animals , Mice , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Virotherapy/methods , Combined Modality Therapy , mRNA Vaccines/immunology , Melanoma, Experimental/therapy , Melanoma, Experimental/immunology , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , Humans , Cell Line, Tumor , Cancer Vaccines/immunology , Cancer Vaccines/genetics , Cancer Vaccines/administration & dosage
4.
Nat Commun ; 15(1): 3669, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693119

ABSTRACT

Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.


Subject(s)
Fusobacterium nucleatum , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , RNA-Binding Proteins , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/genetics , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Humans , Oncolytic Virotherapy/methods , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/immunology , Cell Line, Tumor , Fusobacterium nucleatum/immunology , Neoplasms/therapy , Neoplasms/immunology , Female , Immunity, Innate , Mice, Inbred BALB C
5.
J Immunother Cancer ; 12(5)2024 May 31.
Article in English | MEDLINE | ID: mdl-38821716

ABSTRACT

Cytokines are small proteins that regulate the growth and functional activity of immune cells, and several have been approved for cancer therapy. Oncolytic viruses are agents that mediate antitumor activity by directly killing tumor cells and inducing immune responses. Talimogene laherparepvec is an oncolytic herpes simplex virus type 1 (oHSV), approved for the treatment of recurrent melanoma, and the virus encodes the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). A significant advantage of oncolytic viruses is the ability to deliver therapeutic payloads to the tumor site that can help drive antitumor immunity. While cytokines are especially interesting as payloads, the optimal cytokine(s) used in oncolytic viruses remains controversial. In this review, we highlight preliminary data with several cytokines and chemokines, including GM-CSF, interleukin 12, FMS-like tyrosine kinase 3 ligand, tumor necrosis factor α, interleukin 2, interleukin 15, interleukin 18, chemokine (C-C motif) ligand 2, chemokine (C-C motif) ligand 5, chemokine (C-X-C motif) ligand 4, or their combinations, and show how these payloads can further enhance the antitumor immunity of oHSV. A better understanding of cytokine delivery by oHSV can help improve clinical benefit from oncolytic virus immunotherapy in patients with cancer.


Subject(s)
Cytokines , Immunotherapy , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Cytokines/metabolism , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Animals , Simplexvirus/immunology , Simplexvirus/genetics , Herpesvirus 1, Human/immunology
6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731910

ABSTRACT

Oncolytic virotherapy is a promising immunotherapy approach for cancer treatment that utilizes viruses to preferentially infect and eliminate cancer cells while stimulating the immune response. In this review, we synthesize the current literature on the molecular circuits of immune sensing and response to oncolytic virotherapy, focusing on viral DNA or RNA sensing by infected cells, cytokine and danger-associated-signal sensing by neighboring cells, and the subsequent downstream activation of immune pathways. These sequential sense-and-response mechanisms involve the triggering of molecular sensors by viruses or infected cells to activate transcription factors and related genes for a breadth of immune responses. We describe how the molecular signals induced in the tumor upon virotherapy can trigger diverse immune signaling pathways, activating both antigen-presenting-cell-based innate and T cell-based adaptive immune responses. Insights into these complex mechanisms provide valuable knowledge for enhancing oncolytic virotherapy strategies.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Virotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Signal Transduction , Immunity, Innate , Immunotherapy/methods
7.
Front Immunol ; 15: 1360436, 2024.
Article in English | MEDLINE | ID: mdl-38812516

ABSTRACT

Bladder cancer is a common type of cancer around the world, and the majority of patients are diagnosed with non-muscle-invasive bladder cancer (NMIBC). Although low-risk NMIBC has a good prognosis, the disease recurrence rate and development of treatment-refractory disease remain high in intermediate- to high-risk NMIBC patients. To address these challenges for the treatment of NMIBC, a novel combination therapy composed of an oncolytic adenovirus (oAd) co-expressing interleukin (IL)-12, granulocyte-macrophage colony-stimulating factor (GM-CSF), and relaxin (RLX; HY-oAd) and a clinical-stage glycogen synthase kinase (GSK)-3ß inhibitor (9-ING-41; elraglusib) was investigated in the present report. Our findings demonstrate that HY-oAd and 9-ING-41 combination therapy (HY-oAd+9-ING-41) exerted superior inhibition of tumor growth compared with respective monotherapy in a syngeneic NMIBC tumor model. HY-oAd+9-ING-41 induced high-level tumor extracellular matrix (ECM) degradation and a more potent antitumor immune response than the respective monotherapy. In detail, HY-oAd+9-ING-41 induced superior accumulation of intratumoral T cells, prevention of immune cell exhaustion, and induction of tumor-specific adaptive immune response compared to either monotherapy. Collectively, these results demonstrate that the combination of HY-oAd and 9-ING-41 may be a promising approach to elicit a potent antitumor immune response against bladder cancer.


Subject(s)
Adenoviridae , Glycogen Synthase Kinase 3 beta , Oncolytic Virotherapy , Oncolytic Viruses , Tumor Microenvironment , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Animals , Adenoviridae/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Mice , Humans , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Cell Line, Tumor , Combined Modality Therapy , Female
8.
Adv Protein Chem Struct Biol ; 140: 419-492, 2024.
Article in English | MEDLINE | ID: mdl-38762277

ABSTRACT

Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.


Subject(s)
Immunotherapy , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Oncolytic Virotherapy/methods , Animals
9.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750591

ABSTRACT

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Subject(s)
Natural Killer T-Cells , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Female , Mice , Natural Killer T-Cells/immunology , Oncolytic Virotherapy/methods , Humans , Cell Line, Tumor , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Immunotherapy/methods , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Combined Modality Therapy , Neoplasm Metastasis , Vesiculovirus/genetics , Dendritic Cells/immunology , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Disease Models, Animal
10.
Cancer Immunol Res ; 12(6): 779-790, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38517470

ABSTRACT

IFN regulatory factor 1 (IRF1) can promote antitumor immunity. However, we have shown previously that in the tumor cell, IRF1 can promote tumor growth, and IRF1-deficient tumor cells exhibit severely restricted tumor growth in several syngeneic mouse tumor models. Here, we investigate the potential of functionally modulating IRF1 to reduce tumor progression and prolong survival. Using inducible IRF1 expression, we established that it is possible to regulate IRF1 expression to modulate tumor progression in established B16-F10 tumors. Expression of IRF2, which is a functional antagonist of IRF1, downregulated IFNγ-induced expression of inhibitory ligands, upregulated MHC-related molecules, and slowed tumor growth and extended survival. We characterized the functional domain(s) of IRF2 needed for this antitumor activity, showing that a full-length IRF2 was required for its antitumor functions. Finally, using an oncolytic vaccinia virus as a delivery platform, we showed that IRF2-expressing vaccinia virus suppressed tumor progression and prolonged survival in multiple tumor models. These results suggest the potency of targeting IRF1 and using IRF2 to modulate immunotherapy.


Subject(s)
Interferon Regulatory Factor-1 , Interferon Regulatory Factor-2 , Oncolytic Viruses , Animals , Interferon Regulatory Factor-2/metabolism , Interferon Regulatory Factor-2/genetics , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Mice , Cell Line, Tumor , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Oncolytic Virotherapy/methods , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vaccinia virus/genetics , Vaccinia virus/immunology , Mice, Inbred C57BL , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Disease Models, Animal , Female
11.
Nature ; 623(7985): 157-166, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853118

ABSTRACT

Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).


Subject(s)
Brain Neoplasms , Glioblastoma , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Glioblastoma/immunology , Glioblastoma/pathology , Nestin/genetics , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Viruses/physiology , Reproducibility of Results , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Treatment Outcome , Tumor Microenvironment/immunology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology
12.
Future Oncol ; 18(2): 245-259, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34821517

ABSTRACT

Oncolytic virotherapy has currently emerged as a powerful therapeutic approach in cancer treatment. Although the history of using viruses goes back to the early 20th century, the approval of talimogene laherparepvec (T-VEC) in 2015 increased interest in oncolytic viruses (OVs). OVs are multifaceted biotherapeutic agents because they replicate in and kill tumor cells and augment immune responses by releasing immunostimulatory molecules from lysed cells. Despite promising results, some limitations hinder the efficacy of oncolytic virotherapy. The delivery challenges and the upregulation of checkpoints following oncolytic virotherapy also mediate resistance to OVs by diminishing immune responses. Furthermore, the localization of receptors of viruses in the tight junctions, interferon responses, and the aberrant expression of genes involved in the cell cycle of the virus, including their infection and replication, reduce the efficacy of OVs. In this review, we present different mechanisms of resistance to OVs and strategies to overcome them.


Lay abstract Using viruses in the treatment of cancer goes back to the early 20th century. One of the promising fields in cancer virotherapy is viruses' ability to preferentially lysis tumor cells, either naturally or genetically engineered cells; these viruses are termed 'oncolytic viruses.' As with other therapeutic strategies, resistance to the oncolytic viruses is the main challenge in their application in clinical trials. This review summarizes the mechanisms of resistance to oncolytic viruses and the strategies that have been used to overcome these challenges.


Subject(s)
Immunotherapy/methods , Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Biological Products/therapeutic use , Clinical Trials as Topic , Herpesvirus 1, Human , Humans , Immunotherapy/trends , Neoplasms/immunology , Oncolytic Virotherapy/trends , Treatment Outcome
14.
Front Immunol ; 12: 782852, 2021.
Article in English | MEDLINE | ID: mdl-34925363

ABSTRACT

In recent years, it became apparent that cancers either associated with viral infections or aberrantly expressing endogenous retroviral elements (EREs) are more immunogenic, exhibiting an intense intra-tumor immune cell infiltration characterized by a robust cytolytic apparatus. On the other hand, epigenetic regulation of EREs is crucial to maintain steady-state conditions and cell homeostasis. In line with this, epigenetic disruptions within steady-state cells can lead to cancer development and trigger the release of EREs into the cytoplasmic compartment. As such, detection of viral molecules by intracellular innate immune sensors leads to the production of type I and type III interferons that act to induce an antiviral state, thus restraining viral replication. This knowledge has recently gained momentum due to the possibility of triggering intratumoral activation of interferon responses, which could be used as an adjuvant to elicit strong anti-tumor immune responses that ultimately lead to a cascade of cytokine production. Accordingly, several therapeutic approaches are currently being tested using this rationale to improve responses to cancer immunotherapies. In this review, we discuss the immune mechanisms operating in viral infections, show evidence that exogenous viruses and endogenous retroviruses in cancer may enhance tumor immunogenicity, dissect the epigenetic control of EREs, and point to interferon pathway activation in the tumor milieu as a promising molecular predictive marker and immunotherapy target. Finally, we briefly discuss current strategies to modulate these responses within tumor tissues, including the clinical use of innate immune receptor agonists and DNA demethylating agents.


Subject(s)
Epigenesis, Genetic/immunology , Immunotherapy/methods , Interferon Type I/metabolism , Interferons/metabolism , Neoplasms/therapy , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clinical Trials as Topic , DNA Demethylation/drug effects , Endogenous Retroviruses/genetics , Endogenous Retroviruses/immunology , Epigenesis, Genetic/drug effects , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunity, Innate/genetics , Neoplasms/genetics , Neoplasms/immunology , Oncolytic Viruses/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 3/agonists , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Interferon Lambda
15.
Cell Physiol Biochem ; 55(6): 726-738, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34816678

ABSTRACT

Viruses have been widely used to treat cancer for many years and they achieved tremendous success in clinical trials with outstanding results, which has led to the foundation of companies that develop recombinant viruses for a better tumor treatment. Even though there has been a great progress in the field of viral tumor immunotherapy, until now only one virus, the oncolytic virus talimogene laherparepvec (TVEC), a genetically modified herpes simplex virus type 1 (T-VEC), has been approved by the FDA for cancer treatment. Although oncolytic viruses showed progress in certain cancer types and patient populations but they have yet shown limited efficacy when it comes to solid tumors. Only recently it was demonstrated that the immune stimulatory aspect of oncolytic viruses can strongly contribute to their anti-tumoral activity. One specific example in this context are arenaviruses, which have been shown to be non-cytopathic in nature lead to the massive immune activation within the tumor resulting in strong anti-tumoral activity. This strong immune activation might be also linked to their noncytopathic features, as their immune stimulatory potential is not self-limiting as is the case for oncolytic viruses due to their fast eradication by anti-viral immune effects. Because of this strong immune activation, arenaviruses appear superior to oncolytic viruses when it comes to potent and long-lasting anti-tumor effects in a broad variety of tumor types. Currently one of the most promising therapeutics which has turned to be very much beneficial for the treatment of different cancer types is represented by antibodies targeting checkpoint inhibitors such as PD-1/PD-L-1. In this review, we will summarize anti-tumoral effects of arenaviruses, and will discuss their potential to be combined with checkpoint inhibitors for a more efficient tumor treatment, which further emphasizes that arenavirus therapy as a viroimmunotherapy can be an efficient tool for the better clearance of tumors.


Subject(s)
Arenavirus/immunology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses/immunology , Biological Products/immunology , Biological Products/therapeutic use , Herpesvirus 1, Human/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy
16.
Nat Commun ; 12(1): 5908, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625564

ABSTRACT

Oncolytic herpes simplex virus-1 is capable of lysing tumor cells while alerting the immune system. CD47, in collaboration with SIRPα, represents an important immune checkpoint to inhibit phagocytosis by innate immune cells. Here we show locoregional control of glioblastoma by an oncolytic herpes virus expressing a full-length anti(α)-human CD47 IgG1 or IgG4 antibody. The antibodies secreted by the virus-infected glioblastoma cells block the CD47 'don't eat me' signal irrespective of the subclass; however, αCD47-IgG1 has a stronger tumor killing effect than αCD47-IgG4 due to additional antibody-dependent cellular phagocytosis by macrophages and antibody-dependent cellular cytotoxicity by NK cells. Intracranially injected αCD47-IgG1-producing virus continuously releases the respective antibody in the tumor microenvironment but not into systemic circulation; additionally, αCD47-IgG1-producing virus also improves the survival of tumor-bearing mice better than control oncolytic herpes virus combined with topical αCD47-IgG1. Results from immunocompetent mouse tumor models further confirm that macrophages, and to a lesser extent NK cells, mediate the anti-tumor cytotoxicity of antibody-producing oncolytic herpesviruses. Collectively, oncolytic herpes simplex virus-1 encoding full-length antibodies could improve immune-virotherapy for glioblastoma.


Subject(s)
Antibodies/pharmacology , Glioblastoma/immunology , Glioblastoma/therapy , Immunity, Innate , Oncolytic Viruses/immunology , Animals , Antibodies/immunology , Antibody-Dependent Cell Cytotoxicity , CD47 Antigen , Disease Models, Animal , Female , Herpesvirus 1, Human/immunology , Humans , Immunoglobulin G , Immunotherapy , Killer Cells, Natural , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Nude , Oncolytic Virotherapy/methods , Phagocytosis , Tumor Microenvironment , Xenograft Model Antitumor Assays
17.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638863

ABSTRACT

Oncolytic adenovirus therapy is gaining importance as a novel treatment option for the management of various cancers. Different concepts of modification within the adenovirus vector have been identified that define the mode of action against and the interaction with the tumour. Adenoviral vectors allow for genetic manipulations that restrict tumour specificity and also the expression of specific transgenes in order to support the anti-tumour effect. Additionally, replication of the virus and reinfection of neighbouring tumour cells amplify the therapeutic effect. Another important aspect in oncolytic adenovirus therapy is the virus induced cell death which is a process that activates the immune system against the tumour. This review describes which elements in adenovirus vectors have been identified for modification not only to utilize oncolytic adenovirus vectors into conditionally replicating adenoviruses (CRAds) that allow replication specifically in tumour cells but also to confer specific characteristics to these viruses. These advances in development resulted in clinical trials that are summarized based on the conceptual design.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/genetics , Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Adenoviridae/immunology , Animals , Clinical Trials as Topic/methods , Clinical Trials as Topic/statistics & numerical data , Genetic Vectors/immunology , Humans , Neoplasms/genetics , Neoplasms/immunology , Oncolytic Viruses/immunology , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Virus Replication/genetics , Virus Replication/immunology
18.
Gynecol Oncol ; 163(3): 481-489, 2021 12.
Article in English | MEDLINE | ID: mdl-34686353

ABSTRACT

OBJECTIVE: Our objective was to assess safety and adverse events associated with intraperitoneal Olvi-Vec virotherapy in patients with platinum-resistant or refractory ovarian cancer (PRROC). Secondary objectives included objective response rate (ORR) per RECIST 1.1 and progression-free survival (PFS). METHODS: Olvi-Vec is a modified vaccinia virus that causes oncolysis and immune activation. An open-label phase 1b trial using a 3 + 3 dose escalation was conducted. Intraperitoneal Olvi-Vec was given as monotherapy in two consecutive daily doses. Translational analyses included anti-virus antibody levels, viral shedding, circulating tumor cells (CTCs) and T cells. RESULTS: Twelve patients (median age: 69 years, range: 45-77) with median 5 prior therapies (range: 2-10) and 2 prior platinum lines (range: 1-5) were enrolled. There were three dose level cohorts: 3 × 109 (n = 6), 1 × 1010 (n = 5), and 2.5 × 1010 (n = 1) plaque forming units (PFU)/day on two consecutive days. Treatment-related adverse events (TRAEs) included G1/G2 nausea (n = 6), fever (n = 6), abdominal distention (n = 5), and abdominal pain (n = 4). There were no Grade 4 TRAEs, no dose relationship to TRAEs, and no deaths attributed to Olvi-Vec. The ORR was 9% (1/11). Stable disease (SD) was 64% (7/11), and SD ≥15 weeks was 46% (5/11). Median PFS was 15.7 weeks (95%CI: 5.7-34.5), including extended PFS in four patients (23.2, 34.5, 59.4+ and 70.8 weeks). Three patients had extended overall survival (deceased 33.6 months, and alive with disease at 54 and 59 months). CTCs diminished in 6/8 (75%) baseline-positive patients. Immune activation was demonstrated from virus-enhanced tumor infiltration of CD8+ T-cells and activation of tumor-specific T-cells in peripheral blood. CONCLUSIONS: Oncolytic viral therapy with intraperitoneal Olvi-Vec showed promising safety, clinical activities, and immune activation in patients with PRROC, warranting further clinical investigation.


Subject(s)
Carcinoma, Ovarian Epithelial/therapy , Immunotherapy/methods , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Ovarian Neoplasms/therapy , Vaccinia virus/physiology , Aged , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/virology , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Female , Humans , Infusions, Parenteral , Middle Aged , Neoplastic Cells, Circulating/pathology , Oncolytic Viruses/immunology , Organoplatinum Compounds/pharmacology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/virology , Progression-Free Survival , Vaccinia virus/immunology
19.
Nat Med ; 27(10): 1789-1796, 2021 10.
Article in English | MEDLINE | ID: mdl-34608333

ABSTRACT

Talimogene laherparepvec (T-VEC) is a herpes simplex virus type 1-based intralesional oncolytic immunotherapy approved for the treatment of unresectable melanoma. The present, ongoing study aimed to estimate the treatment effect of neoadjuvant T-VEC on recurrence-free survival (RFS) of patients with advanced resectable melanoma. An open-label, phase 2 trial (NCT02211131) was conducted in 150 patients with resectable stage IIIB-IVM1a melanoma who were randomized to receive T-VEC followed by surgery (arm 1, n = 76) or surgery alone (arm 2, n = 74). The primary endpoint was a 2-year RFS in the intention-to-treat population. Secondary and exploratory endpoints included overall survival (OS), pathological complete response (pCR), safety and biomarker analyses. The 2-year RFS was 29.5% in arm 1 and 16.5% in arm 2 (overall hazard ratio (HR) = 0.75, 80% confidence interval (CI) = 0.58-0.96). The 2-year OS was 88.9% for arm 1 and 77.4% for arm 2 (overall HR = 0.49, 80% CI = 0.30-0.79). The RFS and OS differences between arms persisted at 3 years. In arm 1, 17.1% achieved a pCR. Increased CD8+ density correlated with clinical outcomes in an exploratory analysis. Arm 1 adverse events were consistent with previous reports for T-VEC. The present study met its primary endpoint and estimated a 25% reduction in the risk of disease recurrence for neoadjuvant T-VEC plus surgery versus upfront surgery for patients with resectable stage IIIB-IVM1a melanoma.


Subject(s)
Biological Products/administration & dosage , Immunotherapy , Melanoma/therapy , Neoadjuvant Therapy , Adult , Aged , Biological Products/immunology , Combined Modality Therapy , Disease-Free Survival , Female , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Humans , Male , Melanoma/genetics , Melanoma/pathology , Melanoma/virology , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Neoplasm Recurrence, Local/virology , Neoplasm Staging , Oncolytic Virotherapy/trends , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology
20.
Eur J Cancer ; 157: 493-510, 2021 11.
Article in English | MEDLINE | ID: mdl-34561127

ABSTRACT

Immunotherapy has revolutionised cancer treatment through restoration of host antitumour immune response. Immune checkpoint inhibitors (ICIs) confer durable responses in only a subset of patients. Mechanisms of ICI resistance to improve durable response rates and overall survival are an area of intense clinical research. Robust clinical development is ongoing to evaluate novel combination therapies to overcome ICI resistance, including targeting immunoregulatory pathways in the tumour microenvironment. Intratumoural (IT) immunotherapies such as toll-like receptor agonists, stimulator of interferon-induced gene agonists, retinoic-inducible gene I-like receptor agonists and oncolytic viruses may represent potential combination treatment options to overcome ICI resistance. Use of IT immunotherapies in combination with ICIs may alter the tumour microenvironment to address resistance mechanisms and improve antitumour response. Optimisation of IT immunotherapy clinical trials will elucidate resistance mechanisms, facilitate clinical trial design, define pharmacodynamic predictors that identify patients who may most benefit and inform clinical development of combination immunotherapy regimens. Here we provide an overview of IT immunotherapy principles, mechanisms of action, categories of IT immunotherapeutics, emerging data, clinical development strategies, response assessment, dose and schedule determination, clinical trial design and translational study design.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cancer Vaccines/administration & dosage , Immunotherapy/methods , Neoplasms/therapy , Oncolytic Viruses/immunology , Clinical Trials as Topic , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/immunology , Humans , Immune Checkpoint Inhibitors/administration & dosage , Immunologic Factors/administration & dosage , Injections, Intralesional , Neoplasms/immunology , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...