Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 14: 24, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24418109

ABSTRACT

BACKGROUND: Reconstruction of the parental origins of cultivated plants from wild relatives, especially after long periods of domestication, is not a trivial task. However, recent advances in molecular phylogenetics, among other approaches, have proved to be very informative in analyses of the origin and evolution of polyploid genomes. An established minor garden crop, triploid onion Allium × cornutum (Clementi ex Visiani, 1842) (2n = 3x = 24), is widespread in southeastern Asia and Europe. Our previous cytogenetic analyses confirmed its highly heterozygous karyotype and indicated its possible complex triparental genome origin. Allium cepa L. and Allium roylei Stearn were suggested as two putative parental species of A. × cornutum, whereas the third parental species remained hitherto unknown. RESULTS: Here we report the phylogenetic analyses of the internal transcribed spacers ITS1-5.8S-ITS2 of 35S rDNA and the non-transcribed spacer (NTS) region of 5S rDNA of A. × cornutum and its relatives of the section Cepa. Both ITS and NTS sequence data revealed intra-individual variation in triploid onion, and these data clustered into the three main clades, each with high sequence homology to one of three other species of section Cepa: A. cepa, A. roylei, and unexpectedly, the wild Asian species Allium pskemense B. Fedtsh. Allium pskemense is therefore inferred to be the third, so far unknown, putative parental species of triploid onion Allium × cornutum. The 35S and 5S rRNA genes were found to be localised on somatic chromosomes of A. × cornutum and its putative parental species by double fluorescent in situ hybridisation (FISH). The localisation of 35S and 5S rDNA in A. × cornutum chromosomes corresponded to their respective positions in the three putative parental species, A. cepa, A. pskemense, and A. roylei. GISH (genomic in situ hybridisation) using DNA of the three putative parental diploids corroborated the results of the phylogenetic study. CONCLUSIONS: The combined molecular, phylogenetic and cytogenetic data obtained in this study provided evidence for a unique triparental origin of triploid onion A. × cornutum with three putative parental species, A. cepa, A. pskemense, and A. roylei.


Subject(s)
Onions/genetics , Phylogeny , Triploidy , Allium/classification , Allium/embryology , Allium/genetics , Onions/classification , Onions/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...