Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52.405
Filter
1.
Biol Res ; 57(1): 36, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822414

ABSTRACT

BACKGROUND: Helicase for meiosis 1 (HFM1), a putative DNA helicase expressed in germ-line cells, has been reported to be closely associated with premature ovarian insufficiency (POI). However, the underlying molecular mechanism has not been clearly elucidated. The aim of this study was to investigate the function of HFM1 in the first meiotic prophase of mouse oocytes. RESULTS: The results suggested that the deficiency of HFM1 resulting in increased apoptosis and depletion of oocytes in mice, while the oocytes were arrested in the pachytene stage of the first meiotic prophase. In addition, impaired DNA double-strand break repair and disrupted synapsis were observed in the absence of HFM1. Further investigation revealed that knockout of HFM1 promoted ubiquitination and degradation of FUS protein mediated by FBXW11. Additionally, the depletion of HFM1 altered the intranuclear localization of FUS and regulated meiotic- and oocyte development-related genes in oocytes by modulating the expression of BRCA1. CONCLUSIONS: These findings elaborated that the critical role of HFM1 in orchestrating the regulation of DNA double-strand break repair and synapsis to ensure meiosis procession and primordial follicle formation. This study provided insights into the pathogenesis of POI and highlighted the importance of HFM1 in maintaining proper meiotic function in mouse oocytes.


Subject(s)
Meiotic Prophase I , Oocytes , Ubiquitination , Animals , Oocytes/metabolism , Meiotic Prophase I/physiology , Female , Mice , DNA Breaks, Double-Stranded , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Meiosis/physiology , DNA Repair/physiology , Mice, Knockout , Apoptosis/physiology
2.
Reprod Domest Anim ; 59(6): e14631, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828566

ABSTRACT

This study examines the impact of Notoginsenoside R1 (NGR1), a compound from Panax notoginseng, on the maturation of porcine oocytes and their embryonic development, focusing on its effects on antioxidant levels and mitochondrial function. This study demonstrates that supplementing in vitro maturation (IVM) medium with NGR1 significantly enhances several biochemical parameters. These include elevated levels of glutathione (GSH), nuclear factor erythrocyte 2-related factor 2 (NRF2) and mRNA expression of catalase (CAT) and GPX. Concurrently, we observed a decrease in reactive oxygen species (ROS) levels and an increase in JC-1 immunofluorescence, mitochondrial distribution, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and nuclear NRF2 mRNA levels. Additionally, there was an increase in ATP production and lipid droplets (LDs) immunofluorescence. These biochemical improvements correlate with enhanced embryonic outcomes, including a higher blastocyst rate, increased total cell count, enhanced proliferative capacity and elevated octamer-binding transcription factor 4 (Oct4) and superoxide dismutase 2 (Sod2) gene expression. Furthermore, NGR1 supplementation resulted in decreased apoptosis, reduced caspase 3 (Cas3) and BCL2-Associated X (Bax) mRNA levels and decreased glucose-regulated protein 78 kD (GRP78) immunofluorescence in porcine oocytes undergoing in vitro maturation. These findings suggest that NGR1 plays a crucial role in promoting porcine oocyte maturation and subsequent embryonic development by providing antioxidant levels and mitochondrial protection.


Subject(s)
Antioxidants , Embryonic Development , Ginsenosides , In Vitro Oocyte Maturation Techniques , Mitochondria , Oocytes , Animals , Antioxidants/pharmacology , Ginsenosides/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , Mitochondria/drug effects , Embryonic Development/drug effects , Oocytes/drug effects , Female , Swine , Reactive Oxygen Species/metabolism , Embryo Culture Techniques/veterinary
3.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829044

ABSTRACT

Mature oocyte vitrification is the standard of care to preserve fertility in women at risk of infertility. However, ovarian tissue cryopreservation (OTC) is still the only option to preserve fertility in women who need to start gonadotoxic treatment urgently or in prepubertal children. During ovarian cortex preparation for cryopreservation, medullar tissue is removed. Growing antral follicles reside at the border of the cortex-medullar interface of the ovary and are broken during this process, releasing their cumulus-oocyte complex (COC). By thoroughly inspecting the medium and fragmented medullar tissue, these immature cumulus-oocyte complexes can be identified without interfering with the OTC procedure. The ovarian tissue-derived immature oocytes can be successfully matured in vitro, creating an additional source of gametes for fertility preservation. If OTC is performed within or near a medical assisted reproduction laboratory, all necessary in vitro maturation (IVM) and oocyte vitrification tools can be at hand. Furthermore, upon remission and child wish, the patient has multiple options for fertility restoration: ovarian tissue transplantation or embryo transfer after the insemination of vitrified/warmed oocytes. Hence, ovarian tissue oocyte-in vitro maturation (OTO-IVM) can be a valuable adjunct fertility preservation technique.


Subject(s)
Cryopreservation , Fertility Preservation , In Vitro Oocyte Maturation Techniques , Oocytes , Ovary , Female , Fertility Preservation/methods , Humans , Ovary/physiology , Cryopreservation/methods , In Vitro Oocyte Maturation Techniques/methods , Vitrification
4.
J Ovarian Res ; 17(1): 118, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822408

ABSTRACT

In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.


Subject(s)
Aging , Energy Metabolism , Oocytes , Ovary , Oocytes/metabolism , Humans , Female , Aging/metabolism , Ovary/metabolism , Animals , Adenosine Triphosphate/metabolism
5.
J Ovarian Res ; 17(1): 120, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824584

ABSTRACT

BACKGROUND: The common marmoset, Callithrix jacchus, is an invaluable model in biomedical research. Its use includes genetic engineering applications, which require manipulations of oocytes and production of embryos in vitro. To maximize the recovery of oocytes suitable for embryo production and to fulfil the requirements of the 3R principles to the highest degree possible, optimization of ovarian stimulation protocols is crucial. Here, we compared the efficacy of two hormonal ovarian stimulation approaches: 1) stimulation of follicular growth with hFSH followed by triggering of oocyte maturation with hCG (FSH + hCG) and 2) stimulation with hFSH only (FSH-priming). METHODS: In total, 14 female marmosets were used as oocyte donors in this study. Each animal underwent up to four surgical interventions, with the first three performed as ovum pick-up (OPU) procedures and the last one being an ovariohysterectomy (OvH). In total, 20 experiments were carried out with FSH + hCG stimulation and 18 with FSH-priming. Efficacy of each stimulation protocol was assessed through in vitro maturation (IVM), in vitro fertilization (IVF) and embryo production rates. RESULTS: Each study group consisted of two subgroups: the in vivo matured oocytes and the oocytes that underwent IVM. Surprisingly, in the absence of hCG triggering some of the oocytes recovered were at the MII stage, moreover, their number was not significantly lower compared to FSH + hCG stimulation (2.8 vs. 3.9, respectively (ns)). While the IVM and IVF rates did not differ between the two stimulation groups, the IVF rates of in vivo matured oocytes were significantly lower compared to in vitro matured ones in both FSH-priming and FSH + hCG groups. In total, 1.7 eight-cell embryos/experiment (OPU) and 2.1 eight-cell embryos/experiment (OvH) were obtained after FSH + hCG stimulation vs. 1.8 eight-cell embryos/experiment (OPU) and 5.0 eight-cell embryos/experiment (OvH) following FSH-priming. These numbers include embryos obtained from both in vivo and in vitro matured oocytes. CONCLUSION: A significantly lower developmental competence of the in vivo matured oocytes renders triggering of the in vivo maturation with hCG as a part of the currently used FSH-stimulation protocol unnecessary. In actual numbers, between 1 and 7 blastocysts were obtained following each FSH-priming. In the absence of further studies, FSH-priming appears superior to FSH + hCG stimulation in the common marmoset under current experimental settings.


Subject(s)
Callithrix , Chorionic Gonadotropin , Fertilization in Vitro , Follicle Stimulating Hormone , In Vitro Oocyte Maturation Techniques , Oocytes , Ovulation Induction , Animals , Female , Ovulation Induction/methods , In Vitro Oocyte Maturation Techniques/methods , Oocytes/drug effects , Chorionic Gonadotropin/pharmacology , Follicle Stimulating Hormone/pharmacology , Fertilization in Vitro/methods
6.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722097

ABSTRACT

Bez is a Class B scavenger receptor in Drosophila that is yet to be characterised. In a new study, Margret Bülow and colleagues uncover a role for Bez in mobilising lipids from Drosophila adipocytes into the ovary for oocyte maturation. To find out more about the people behind the paper, we caught up with first author, Pilar Carrera, and corresponding author, Margret Bülow, Group Leader at the University of Bonn.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Female , Drosophila , History, 21st Century , Humans , Adipocytes/cytology , Adipocytes/metabolism , History, 20th Century , Developmental Biology/history , Oocytes/metabolism , Oocytes/cytology , Drosophila melanogaster , Ovary/metabolism , Ovary/cytology
7.
Cryo Letters ; 45(3): 185-193, 2024.
Article in English | MEDLINE | ID: mdl-38709190

ABSTRACT

BACKGROUND: Characterization of intracellular ice formation (IIF) in oocytes during the freezing and thawing processes will contribute to optimizing their cryopreservation. However, the observation of the ice formation process in oocytes is limited by the spatiotemporal resolution of the cryomicroscope systems. OBJECTIVE: To observe the intracellular icing of oocytes during cooling and rewarming, and to study the mechanism of formation and growth of intracellular ice in oocytes. MATERIALS AND METHODS: Mouse oocytes were frozen at different cooling rates to induce intracellular ice formation using a cryomicroscopy system consisting of a microscope equipped with a cryogenic cold stage, an automatic cooling system, a temperature control system, and a high-speed camera. The growth patterns of intracellular ice in oocytes were analyzed from the images recorded. Finally, the growth rate of intracellular ice formation in oocytes was calculated using an automatic intracellular ice tracking method. RESULTS: The IIF temperature decreased gradually with the increase in cooling rate. Initiation sites of IIF could be classified into three categories: marginal type, internal type and coexisting type. There was a strong predominance for ice crystal initiation site in the oocytes, with up to 80% of the initiation sites located in the marginal region. The intracellular ice growth modes of darkening and twitching cells were characterized by "spreading" and "clustering", respectively. In addition, twitching cells started to recrystallize during rewarming, while darkening cells did not. The instantaneous maximal growth rate of ice crystals in twitching cells was about 10 times higher than that in darkening cells. CONCLUSION: By visualising the growth of ice crystals in mouse oocytes during cooling and rewarming, we obtained valuable information on the kinetics of ice formation and melting in these cells. This information can help us understand how ice formation and melting affect the viability and quality of oocytes after cryopreservation. Doi.org/10.54680/fr24310110412.


Subject(s)
Cryopreservation , Ice , Oocytes , Animals , Mice , Oocytes/cytology , Oocytes/physiology , Cryopreservation/methods , Female , Freezing , Crystallization , Microscopy/methods
8.
Mol Biol Rep ; 51(1): 621, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709430

ABSTRACT

BACKGROUND: To investigate the effect of plasma-derived extracellular vesicles (EVs) or conventional medium in fertilization and early embryo development rate in mice. METHODS AND RESULTS: MII oocytes (matured in vivo or in vitro conditions) were obtained from female mice. The extracellular vesicles were isolated by ultracentrifugation of plasma and were analyzed and measured for size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By western blotting analysis, the EVs proteins markers such as CD82 protein and heat shock protein 90 (HSP90) were investigated. Incorporating DiI-labeled EVs within the oocyte cytoplasm was visible at 23 h in oocyte cytoplasm. Also, the effective proteins in the early reproductive process were determined in isolated EVs by western blotting. These EVs had a positive effect on the fertilization rate (P < 0.05). The early embryo development (8 cell, morula and blastocyst stages) was higher in groups supplemented with EVs (P < 0.01). CONCLUSION: Our findings showed that supplementing in vitro maturation media with EVs derived- plasma was beneficial for mice's embryo development.


Subject(s)
Embryonic Development , Extracellular Vesicles , Oocytes , Animals , Extracellular Vesicles/metabolism , Mice , Female , Oocytes/metabolism , Oocytes/cytology , Fertilization in Vitro/methods , Blastocyst/metabolism , In Vitro Oocyte Maturation Techniques/methods , HSP90 Heat-Shock Proteins/metabolism
9.
Sci Rep ; 14(1): 10158, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698132

ABSTRACT

This retrospective study applied machine-learning models to predict treatment outcomes of women undergoing elective fertility preservation. Two-hundred-fifty women who underwent elective fertility preservation at a tertiary center, 2019-2022 were included. Primary outcome was the number of metaphase II oocytes retrieved. Outcome class was based on oocyte count (OC): Low (≤ 8), Medium (9-15) or High (≥ 16). Machine-learning models and statistical regression were used to predict outcome class, first based on pre-treatment parameters, and then using post-treatment data from ovulation-triggering day. OC was 136 Low, 80 Medium, and 34 High. Random Forest Classifier (RFC) was the most accurate model (pre-treatment receiver operating characteristic (ROC) area under the curve (AUC) was 77%, and post-treatment ROC AUC was 87%), followed by XGBoost Classifier (pre-treatment ROC AUC 74%, post-treatment ROC AUC 86%). The most important pre-treatment parameters for RFC were basal FSH (22.6%), basal LH (19.1%), AFC (18.2%), and basal estradiol (15.6%). Post-treatment parameters were estradiol levels on trigger-day (17.7%), basal FSH (11%), basal LH (9%), and AFC (8%). Machine-learning models trained with clinical data appear to predict fertility preservation treatment outcomes with relatively high accuracy.


Subject(s)
Fertility Preservation , Machine Learning , Humans , Female , Fertility Preservation/methods , Adult , Retrospective Studies , Oocytes , Oocyte Retrieval/methods , Treatment Outcome , ROC Curve
10.
PLoS One ; 19(5): e0302992, 2024.
Article in English | MEDLINE | ID: mdl-38713664

ABSTRACT

Bean beetle (Callosobruchus maculatus) exhibits clear phenotypic plasticity depending on population density; However, the underlying molecular mechanism remains unknown. Compared to low-density individuals, high-density individuals showed a faster terminal oocyte maturity rate. Four insulin-like peptide (ILP) genes were identified in the bean beetle, which had higher expression levels in the head than in the thorax and abdomen. The population density could regulate the expression levels of CmILP1-3, CmILP2-3, and CmILP1 as well as CmILP3 in the head, thorax, and abdomen, respectively. RNA interference results showed that each CmILP could regulate terminal oocyte maturity rate, indicating that there was functional redundancy among CmILPs. Silencing each CmILP could lead to down-regulation of some other CmILPs, however, CmILP3 was up-regulated in the abdomen after silencing CmILP1 or CmILP2. Compared to single gene silencing, silencing CmILP3 with CmILP1 or CmILP2 at the same time led to more serious retardation in oocyte development, suggesting CmILP3 could be up-regulated to functionally compensate for the down-regulation of CmILP1 and CmILP2. In conclusion, population density-dependent plasticity in terminal oocyte maturity rate of bean beetle was regulated by CmILPs, which exhibited gene redundancy and gene compensation.


Subject(s)
Coleoptera , Oocytes , Animals , Coleoptera/genetics , Coleoptera/metabolism , Oocytes/metabolism , Oocytes/growth & development , Female , RNA Interference , Insect Proteins/genetics , Insect Proteins/metabolism , Insulin/metabolism , Insulin/genetics , Population Density , Insulin-Like Peptides
11.
Sci Rep ; 14(1): 10569, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719918

ABSTRACT

Within the medical field of human assisted reproductive technology, a method for interpretable, non-invasive, and objective oocyte evaluation is lacking. To address this clinical gap, a workflow utilizing machine learning techniques has been developed involving automatic multi-class segmentation of two-dimensional images, morphometric analysis, and prediction of developmental outcomes of mature denuded oocytes based on feature extraction and clinical variables. Two separate models have been developed for this purpose-a model to perform multiclass segmentation, and a classifier model to classify oocytes as likely or unlikely to develop into a blastocyst (Day 5-7 embryo). The segmentation model is highly accurate at segmenting the oocyte, ensuring high-quality segmented images (masks) are utilized as inputs for the classifier model (mask model). The mask model displayed an area under the curve (AUC) of 0.63, a sensitivity of 0.51, and a specificity of 0.66 on the test set. The AUC underwent a reduction to 0.57 when features extracted from the ooplasm were removed, suggesting the ooplasm holds the information most pertinent to oocyte developmental competence. The mask model was further compared to a deep learning model, which also utilized the segmented images as inputs. The performance of both models combined in an ensemble model was evaluated, showing an improvement (AUC 0.67) compared to either model alone. The results of this study indicate that direct assessments of the oocyte are warranted, providing the first objective insights into key features for developmental competence, a step above the current standard of care-solely utilizing oocyte age as a proxy for quality.


Subject(s)
Blastocyst , Machine Learning , Oocytes , Humans , Blastocyst/cytology , Blastocyst/physiology , Oocytes/cytology , Female , Embryonic Development , Adult , Fertilization in Vitro/methods , Image Processing, Computer-Assisted/methods
12.
ACS Nano ; 18(21): 13618-13634, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739841

ABSTRACT

Postovulatory aging oocytes usually feature diminished potential for fertilization and poor embryonic development due to enhanced oxidative damage to the subcellular organelles and macromolecules, which stands as a formidable obstacle in assisted reproductive technologies (ART). Here, we developed lipoic acid (LA) and polyethylene glycol (PEG)-modified CeO2 nanoparticles (LA-PEG-CeNPs) with biocompatibility, enzyme-like autocatalytic activity, and free radical scavenging capacity. We further investigated the LA-PEG-CeNPs effect in mouse postovulatory oocytes during in vitro aging. The results showed that LA-PEG-CeNPs dramatically reduced the accumulation of ROS in aging oocytes, improving mitochondrial dysfunction; they also down-regulated the pro-apoptotic activity by rectifying cellular caspase-3, cleaved caspase-3, and Bcl-2 levels. Consistently, this nanoenzyme prominently alleviated the proportion of abnormalities in spindle structure, chromosome alignment, microtubule stability, and filamentous actin (F-actin) distribution in aging oocytes, furthermore decreased oocyte fragmentation, and improved its ability of fertilization and development to blastocyst. Taken together, our finding suggests that LA-PEG-CeNPs can alleviate oxidative stress damage on oocyte quality during postovulatory aging, implying their potential value for clinical practice in assisted reproduction.


Subject(s)
Cerium , Mitochondria , Nanoparticles , Oocytes , Oxidative Stress , Polyethylene Glycols , Thioctic Acid , Animals , Oocytes/drug effects , Oocytes/metabolism , Oxidative Stress/drug effects , Mice , Mitochondria/metabolism , Mitochondria/drug effects , Cerium/chemistry , Cerium/pharmacology , Female , Nanoparticles/chemistry , Thioctic Acid/chemistry , Thioctic Acid/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Reactive Oxygen Species/metabolism , Cellular Senescence/drug effects , Ovulation/drug effects , Apoptosis/drug effects
13.
Cells ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38727294

ABSTRACT

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.


Subject(s)
Behavior, Animal , Mitochondria , Oocytes , Oxidative Stress , Animals , Oocytes/metabolism , Mitochondria/metabolism , Female , Mice , Male , Ovulation , Anxiety/metabolism , Anxiety/pathology , Antioxidants/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Blastocyst/metabolism , Cellular Senescence , Memory
14.
Protein Sci ; 33(6): e4995, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747377

ABSTRACT

Membrane proteins play critical physiological roles as receptors, channels, pumps, and transporters. Despite their importance, however, low expression levels often hamper the experimental characterization of membrane proteins. We present an automated and web-accessible design algorithm called mPROSS (https://mPROSS.weizmann.ac.il), which uses phylogenetic analysis and an atomistic potential, including an empirical lipophilicity scale, to improve native-state energy. As a stringent test, we apply mPROSS to the Kv1.2-Kv2.1 paddle chimera voltage-gated potassium channel. Four designs, encoding 9-26 mutations relative to the parental channel, were functional and maintained potassium-selective permeation and voltage dependence in Xenopus oocytes with up to 14-fold increase in whole-cell current densities. Additionally, single-channel recordings reveal no significant change in the channel-opening probability nor in unitary conductance, indicating that functional expression levels increase without impacting the activity profile of individual channels. Our results suggest that the expression levels of other dynamic channels and receptors may be enhanced through one-shot design calculations.


Subject(s)
Xenopus laevis , Animals , Algorithms , Kv1.2 Potassium Channel/genetics , Kv1.2 Potassium Channel/metabolism , Kv1.2 Potassium Channel/chemistry , Oocytes/metabolism , Phylogeny , Shab Potassium Channels/metabolism , Shab Potassium Channels/genetics , Shab Potassium Channels/chemistry , Mutation , Xenopus
15.
Reprod Domest Anim ; 59(5): e14595, 2024 May.
Article in English | MEDLINE | ID: mdl-38773768

ABSTRACT

Oocyte maturation involves both nuclear and cytoplasmic maturation. Mogroside V (MV) has been shown to enhance nuclear maturation, mitochondrial content, and developmental potential of porcine oocyte during in vitro maturation (IVM). However, the impact of MV on cytoplasmic maturation and its underlying mechanisms are not understood. This study aimed to assess the effect of MV on cytoplasmic maturation. Germinal vesicle (GV) oocytes treated with MV exhibited a noticeable increase in cortical granules (CGs) formation. Additionally, MV enhanced the expression of NNAT and improved glucose uptake in mature oocytes. Further insights were gained through Smart-seq2 analysis of RNA isolated from 100 oocytes. A total of 11,274 and 11,185 transcripts were identified in oocytes treated with and without MV, respectively. Among quantified genes, 438 differentially expressed genes (DEGs) were identified for further analysis. Gene Ontology (GO) enrichment analysis indicated that these DEGs were primarily involved in DNA repair regulation, cellular response to DNA damage, intracellular components, and organelles. Furthermore, the DEGs were significantly enriched in three KEGG pathways: fatty acid synthesis, pyruvate metabolism, and WNT signalling. To validate the results, lipid droplets (LD) and triglyceride (TG) were examined. MV led to an increase in the accumulation of LD and TG production in mature oocytes. These findings suggest that MV enhances cytoplasmic maturation by promoting lipid droplet synthesis. Overall, this study provides valuable insights into the mechanisms through which MV improves oocyte quality during IVM. The results have significant implications for research in livestock reproduction and offer guidance for future studies in this field.


Subject(s)
In Vitro Oocyte Maturation Techniques , Oocytes , Animals , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/drug effects , Female , Swine , Lipid Droplets/metabolism , Diterpenes/pharmacology , Triglycerides/metabolism , Triterpenes
16.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1469-1485, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783809

ABSTRACT

Ovarian tissue cryopreservation (OTC) is currently the exclusive choice for preserving fertility in both young girls before reaching puberty and young women who require immediate chemotherapy. Ovarian tissue transplantation has proven to be effective in restoring hormonal cycles and fertility. However, in certain cancer cases, there is a potential risk of inadvertently reintroducing malignant cells when transplanting cryopreserved ovarian tissue. Therefore, the use of an artificial ovary as an innovative and complementary approach allows for the development of isolated follicles, facilitates oocyte maturation and ovulation, and can partially restore endocrine function. This paper presents a comprehensive overview of techniques used to preserve fertility in natural ovarian tissues, including slow freezing, vitrification and hydrogel encapsulation methods. Additionally, it reviews fertility preservation techniques for artificial ovarian tissues, such as strategies involving hydrogel-encapsulated follicle, scaffolding for constructing ovarian microtissues, and 3D printing engineering. Lastly, this article explores current challenges and difficulties encountered in preserving ovarian tissue fertility, while also anticipating future trends in development, making it a valuable reference for the implementation of ovarian tissue fertility preservation.


Subject(s)
Cryopreservation , Fertility Preservation , Ovary , Female , Fertility Preservation/methods , Humans , Cryopreservation/methods , Hydrogels , Vitrification , Artificial Organs , Ovarian Follicle , Oocytes , Printing, Three-Dimensional
17.
Cells ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786026

ABSTRACT

Infertility is considered a global health issue as it currently affects one in every six couples, with female factors reckoned to contribute to partly or solely 50% of all infertility cases. Over a thousand genes are predicted to be highly expressed in the female reproductive system and around 150 genes in the ovary. However, some of their functions in fertility remain to be elucidated. In this study, 13 ovary and/or oocyte-enriched genes (Ccdc58, D930020B18Rik, Elobl, Fbxw15, Oas1h, Nlrp2, Pramel34, Pramel47, Pkd1l2, Sting1, Tspan4, Tubal3, Zar1l) were individually knocked out by the CRISPR/Cas9 system. Mating tests showed that these 13 mutant mouse lines were capable of producing offspring. In addition, we observed the histology section of ovaries and performed in vitro fertilization in five mutant mouse lines. We found no significant anomalies in terms of ovarian development and fertilization ability. In this study, 13 different mutant mouse lines generated by CRISPR/Cas9 genome editing technology revealed that these 13 genes are individually not essential for female fertility in mice.


Subject(s)
CRISPR-Cas Systems , Fertility , Ovary , Animals , Female , Ovary/metabolism , Fertility/genetics , Mice , CRISPR-Cas Systems/genetics , Oocytes/metabolism , Male , Gene Editing , Mice, Knockout , Mice, Inbred C57BL
18.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786074

ABSTRACT

Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3'UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development.


Subject(s)
Oocytes , RNA-Binding Proteins , Oocytes/metabolism , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Female , Mice , Meiosis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental , 3' Untranslated Regions/genetics , Polyadenylation , RNA Stability/genetics
19.
Mar Drugs ; 22(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786593

ABSTRACT

α7 nicotinic acetylcholine receptors (nAChRs) are mainly distributed in the central nervous system (CNS), including the hippocampus, striatum, and cortex of the brain. The α7 nAChR has high Ca2+ permeability and can be quickly activated and desensitized, and is closely related to Alzheimer's disease (AD), epilepsy, schizophrenia, lung cancer, Parkinson's disease (PD), inflammation, and other diseases. α-conotoxins from marine cone snail venom are typically short, disulfide-rich neuropeptides targeting nAChRs and can distinguish various subtypes, providing vital pharmacological tools for the functional research of nAChRs. [Q1G, ΔR14]LvΙB is a rat α7 nAChRs selective antagonist, modified from α-conotoxin LvΙB. In this study, we utilized three types of fluorescein after N-Hydroxy succinimide (NHS) activation treatment: 6-TAMRA-SE, Cy3 NHS, and BODIPY-FL NHS, labeling the N-Terminal of [Q1G, ΔR14]LvΙB under weak alkaline conditions, obtaining three fluorescent analogs: LvIB-R, LvIB-C, and LvIB-B, respectively. The potency of [Q1G, ΔR14]LvΙB fluorescent analogs was evaluated at rat α7 nAChRs expressed in Xenopus laevis oocytes. Using a two-electrode voltage clamp (TEVC), the half-maximal inhibitory concentration (IC50) values of LvIB-R, LvIB-C, and LvIB-B were 643.3 nM, 298.0 nM, and 186.9 nM, respectively. The stability of cerebrospinal fluid analysis showed that after incubation for 12 h, the retention rates of the three fluorescent analogs were 52.2%, 22.1%, and 0%, respectively. [Q1G, ΔR14]LvΙB fluorescent analogs were applied to explore the distribution of α7 nAChRs in the hippocampus and striatum of rat brain tissue and it was found that Cy3- and BODIPY FL-labeled [Q1G, ΔR14]LvΙB exhibited better imaging characteristics than 6-TAMARA-. It was also found that α7 nAChRs are widely distributed in the cerebral cortex and cerebellar lobules. Taking into account potency, imaging, and stability, [Q1G, ΔR14]LvΙB -BODIPY FL is an ideal pharmacological tool to investigate the tissue distribution and function of α7 nAChRs. Our findings not only provide a foundation for the development of conotoxins as visual pharmacological probes, but also demonstrate the distribution of α7 nAChRs in the rat brain.


Subject(s)
Brain , Conotoxins , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Conotoxins/pharmacology , Conotoxins/chemistry , Rats , Brain/metabolism , Brain/drug effects , Oocytes/drug effects , Oocytes/metabolism , Nicotinic Antagonists/pharmacology , Fluorescent Dyes , Rats, Sprague-Dawley , Male , Female
20.
Reprod Biol Endocrinol ; 22(1): 52, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711160

ABSTRACT

BACKGROUND: Elevated FSH often occurs in women of advanced maternal age (AMA, age ≥ 35) and in infertility patients undergoing controlled ovarian stimulation (COS). There is controversy on whether high endogenous FSH contributes to infertility and whether high exogenous FSH adversely impacts patient pregnancy rates. METHODS: The senescence-accelerated mouse-prone-8 (SAMP8) model of female reproductive aging was employed to assess the separate impacts of age and high FSH activity on the percentages (%) of viable and mature ovulated oocytes recovered after gonadotropin treatment. Young and midlife mice were treated with the FSH analog equine chorionic gonadotropin (eCG) to model both endogenous FSH elevation and exogenous FSH elevation. Previously we showed the activin inhibitor ActRIIB:Fc increases oocyte quality by preventing chromosome and spindle misalignments. Therefore, ActRIIB:Fc treatment was performed in an effort to increase % oocyte viability and % oocyte maturation. RESULTS: The high FSH activity of eCG is ootoxic to ovulatory oocytes, with greater decreases in % viable oocytes in midlife than young mice. High FSH activity of eCG potently inhibits oocyte maturation, decreasing the % of mature oocytes to similar degrees in young and midlife mice. ActRIIB:Fc treatment does not prevent eCG ootoxicity, but it restores most oocyte maturation impeded by eCG. CONCLUSIONS: FSH ootoxicity to ovulatory oocytes and FSH maturation inhibition pose a paradox given the well-known pro-growth and pro-maturation activities of FSH in the earlier stages of oocyte growth. We propose the FOOT Hypothesis ("FSH OoToxicity Hypothesis), that FSH ootoxicity to ovulatory oocytes comprises a new driver of infertility and low pregnancy success rates in DOR women attempting spontaneous pregnancy and in COS/IUI patients, especially AMA women. We speculate that endogenous FSH elevation also contributes to reduced fecundity in these DOR and COS/IUI patients. Restoration of oocyte maturation by ActRIB:Fc suggests that activin suppresses oocyte maturation in vivo. This contrasts with prior studies showing activin A promotes oocyte maturation in vitro. Improved oocyte maturation with agents that decrease endogenous activin activity with high specificity may have therapeutic benefit for COS/IVF patients, COS/IUI patients, and DOR patients attempting spontaneous pregnancies.


Subject(s)
Activin Receptors, Type II , Oocytes , Animals , Female , Oocytes/drug effects , Mice , Activin Receptors, Type II/metabolism , Ovulation/drug effects , Chorionic Gonadotropin/pharmacology , Follicle Stimulating Hormone/blood , Oogenesis/drug effects , Ovulation Induction/methods , Immunoglobulin Fc Fragments/pharmacology , Aging/drug effects , Aging/physiology , Pregnancy , Activins
SELECTION OF CITATIONS
SEARCH DETAIL
...