Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.149
Filter
1.
Anat Histol Embryol ; 53(4): e13071, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38868938

ABSTRACT

The pecten is a fold-structured projection at the ocular fundus in bird eyes, showing morphological diversity between the diurnal and nocturnal species. However, its biological functions remain unclear. This study investigated the morphological and histological characteristics of pectens in wild birds. Additionally, the expression of non-visual opsin genes was studied in chicken pectens. These genes, identified in the chicken retina and brain, perceive light periodicity regardless of visual communication. Similar pleat numbers have been detected among bird taxa; however, pecten size ratios in the ocular fundus showed noticeable differences between diurnal and nocturnal birds. The pectens in nocturnal brown hawk owl show extremely poor vessel distribution and diameters compared with that of diurnal species. RT-PCR analysis confirmed the expression of Opn5L3, Opn4x, Rrh and Rgr genes. In situ hybridization analysis revealed the distribution of Rgr-positive reactions in non-melanotic cells around the pecten vessels. This study suggests a novel hypothesis that pectens develop dominantly in diurnal birds as light acceptors and contribute to continuous visual function or the onset of periodic behaviour.


Subject(s)
In Situ Hybridization , Opsins , Retina , Animals , Opsins/genetics , Opsins/metabolism , Retina/physiology , Chickens/physiology , Chickens/genetics , Birds/physiology , Circadian Rhythm/physiology , Brain/metabolism
2.
Sci Rep ; 14(1): 10699, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729974

ABSTRACT

In recent years it became apparent that, in mammals, rhodopsin and other opsins, known to act as photosensors in the visual system, are also present in spermatozoa, where they function as highly sensitive thermosensors for thermotaxis. The intriguing question how a well-conserved protein functions as a photosensor in one type of cells and as a thermosensor in another type of cells is unresolved. Since the moiety that confers photosensitivity on opsins is the chromophore retinal, we examined whether retinal is substituted in spermatozoa with a thermosensitive molecule. We found by both functional assays and mass spectrometry that retinal is present in spermatozoa and required for thermotaxis. Thus, starvation of mice for vitamin A (a precursor of retinal) resulted in loss of sperm thermotaxis, without affecting motility and the physiological state of the spermatozoa. Thermotaxis was restored after replenishment of vitamin A. Using reversed-phase ultra-performance liquid chromatography mass spectrometry, we detected the presence of retinal in extracts of mouse and human spermatozoa. By employing UltraPerformance convergence chromatography, we identified a unique retinal isomer in the sperm extracts-tri-cis retinal, different from the photosensitive 11-cis isomer in the visual system. The facts (a) that opsins are thermosensors for sperm thermotaxis, (b) that retinal is essential for thermotaxis, and (c) that tri-cis retinal isomer uniquely resides in spermatozoa and is relatively thermally unstable, suggest that tri-cis retinal is involved in the thermosensing activity of spermatozoa.


Subject(s)
Opsins , Retinaldehyde , Spermatozoa , Vitamin A , Male , Animals , Spermatozoa/metabolism , Spermatozoa/physiology , Mice , Opsins/metabolism , Humans , Retinaldehyde/metabolism , Vitamin A/metabolism , Taxis Response/physiology , Sperm Motility/physiology , Isomerism
3.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38736374

ABSTRACT

Nonvisual opsins are transmembrane proteins expressed in the eyes and other tissues of many animals. When paired with a light-sensitive chromophore, nonvisual opsins form photopigments involved in various nonvisual, light-detection functions including circadian rhythm regulation, light-seeking behaviors, and seasonal responses. Here, we investigate the molecular evolution of nonvisual opsin genes in anuran amphibians (frogs and toads). We test several evolutionary hypotheses including the predicted loss of nonvisual opsins due to nocturnal ancestry and potential functional differences in nonvisual opsins resulting from environmental light variation across diverse anuran ecologies. Using whole-eye transcriptomes of 81 species, combined with genomes, multitissue transcriptomes, and independently annotated genes from an additional 21 species, we identify which nonvisual opsins are present in anuran genomes and those that are also expressed in the eyes, compare selective constraint among genes, and test for potential adaptive evolution by comparing selection between discrete ecological classes. At the genomic level, we recovered all 18 ancestral vertebrate nonvisual opsins, indicating that anurans demonstrate the lowest documented amount of opsin gene loss among ancestrally nocturnal tetrapods. We consistently found expression of 14 nonvisual opsins in anuran eyes and detected positive selection in a subset of these genes. We also found shifts in selective constraint acting on nonvisual opsins in frogs with differing activity periods, habitats, distributions, life histories, and pupil shapes, which may reflect functional adaptation. Although many nonvisual opsins remain poorly understood, these findings provide insight into the diversity and evolution of these genes across anurans, filling an important gap in our understanding of vertebrate opsins and setting the stage for future research on their functional evolution across taxa.


Subject(s)
Anura , Evolution, Molecular , Opsins , Animals , Opsins/genetics , Opsins/metabolism , Anura/genetics , Phylogeny , Eye/metabolism , Transcriptome , Adaptation, Physiological/genetics
4.
Sci Rep ; 14(1): 11642, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773346

ABSTRACT

Vision restoration is one of the most promising applications of optogenetics. However, it is limited due to the poor-sensitivity, slow-kinetics and narrow band absorption spectra of opsins. Here, a detailed theoretical study of retinal ganglion neurons (RGNs) expressed with ChRmine, ReaChR, CoChR, CatCh and their mutants, with near monochromatic LEDs, and broadband sunlight, halogen lamp, RGB LED light, and pure white light sources has been presented. All the opsins exhibit improved light sensitivity and larger photocurrent on illuminating with broadband light sources compared to narrow band LEDs. ChRmine allows firing at ambient sunlight (1.5 nW/mm2) and pure white light (1.2 nW/mm2), which is lowest among the opsins considered. The broadband activation spectrum of ChRmine and its mutants is also useful to restore color sensitivity. Although ChRmine exhibits slower turn-off kinetics with broadband light, high-fidelity spikes can be evoked upto 50 Hz. This limit extends upto 80 Hz with the improved hsChRmine mutant although it requires double the irradiance compared to ChRmine. The present study shows that ChRmine and its mutants allow activation of RGNs with ambient light which is useful for goggle-free white light optogenetic retinal prostheses with improved quality of restored vision.


Subject(s)
Light , Optogenetics , Retinal Ganglion Cells , Optogenetics/methods , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Humans , Mutation , Animals , Opsins/genetics , Opsins/metabolism , Vision, Ocular/physiology
5.
J Insect Physiol ; 155: 104636, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609008

ABSTRACT

Photic entrainment is an essential function of the circadian clock, which enables organisms to set the appropriate timing of daily behavioral and physiological events. Recent studies have shown that the mechanisms of the circadian clock and photic entrainment vary among insect species. This study aimed to elucidate the circadian photoreceptors necessary for photic entrainment in firebrats Thermobia domestica, one of the most primitive apterygote insects. A homology search of publicly available RNA sequence (RNA-seq) data from T. domestica exhibited a cryptochrome 2 (cry2) gene and three opsin genes, opsin long wavelength 1 (opLW1), opLW2, and opUV, as candidate circadian photoreceptors. We examined the possible involvement of these genes in photic entrainment of firebrat locomotor rhythms. Firebrats had the highest entrainability to the light-dark cycle of green light. Treatment with dsRNA of the candidate genes strongly downregulated the respective targeted genes, and in the case of opsin genes, other untargeted genes were occasionally downregulated to various degrees. Under constant light, most control firebrats became arrhythmic, whereas a fraction of those treated with double RNAi of the two opLWs remained rhythmic. Behavioral experiments revealed that the transient cycles necessary for re-entrainment to shifted light cycles were lengthened when opLW2 expression was reduced. These results suggest that opLW2 is involved in the photic entrainment of circadian rhythm in firebrats.


Subject(s)
Circadian Rhythm , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Locomotion , Tephritidae/genetics , Tephritidae/physiology , Opsins/genetics , Opsins/metabolism , Light , Photoreceptor Cells, Invertebrate/physiology , Photoreceptor Cells, Invertebrate/metabolism , Circadian Clocks/genetics
6.
Vision Res ; 219: 108403, 2024 06.
Article in English | MEDLINE | ID: mdl-38581820

ABSTRACT

Bioluminescence is a prevalent phenomenon throughout the marine realm and is often the dominant source of light in mesophotic and aphotic depth horizons. Shrimp belonging to the superfamily Oplophoroidea are mesopelagic, perform diel vertical migration, and secrete a bright burst of bioluminescent mucous when threatened. Species in the family Oplophoridae also possess cuticular light-emitting photophores presumably for camouflage via counter-illumination. Many species within the superfamily express a single visual pigment in the retina, consistent with most other large-bodied mesopelagic crustaceans studied to date. Photophore-bearing species have an expanded visual opsin repertoire and dual-sensitivity visual systems, as evidenced by transcriptomes and electroretinograms. In this study, we used immunohistochemistry to describe opsin protein localization in the retinas of four species of Oplophoroidea and non-ocular tissues of Janicella spinicauda. Our results show that Acanthephyra purpurea (Acanthephyridae) retinas possess LWS-only photoreceptors, consistent with the singular peak sensitivity previously reported. Oplophoridae retinas contain two opsin clades (LWS and MWS) consistent with dual-sensitivity. Oplophorus gracilirostris and Systellaspis debilis have LWS in the proximal rhabdom (R1-7 cells) and MWS2 localized in the distal rhabdom (R8 cell). Surprisingly, Janicella spinicauda has LWS in the proximal rhabdom (R1-7) and co-localized MWS1 and MWS2 opsin paralogs in the distal rhabdom, providing the first evidence of co-localization of opsins in a crustacean rhabdomeric R8 cell. Furthermore, opsins were found in multiple non-ocular tissues of J. spinicauda, including nerve, tendon, and photophore. These combined data demonstrate evolutionary novelty and opsin duplication within Oplophoridae, with implications for visual ecology, evolution in mesophotic environments, and a mechanistic understanding of adaptive counter-illumination using photophore bioluminescence.


Subject(s)
Opsins , Animals , Opsins/metabolism , Photoreceptor Cells, Invertebrate/physiology , Photoreceptor Cells, Invertebrate/metabolism , Retina/metabolism , Immunohistochemistry , Phylogeny
7.
Zoolog Sci ; 41(2): 141-158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587909

ABSTRACT

The silkworm Bombyx mori exhibits a photoperiodic response (PR) for embryonic diapause induction. This article provides a comprehensive review of literature on the silkworm PR, starting from early works on population to recent studies uncovering the molecular mechanism. Makita Kogure (1933) conducted extensive research on the PR, presenting a pioneering paper on insect photoperiodism. In the 1970s and 80s, artificial diets were developed, and the influence of nutrition on PR was well documented. The photoperiodic photoreceptor has been investigated from organ to molecular level in the silkworm. Culture experiments demonstrated that the photoperiodic induction can be programmed in an isolated brain (Br)-subesophageal ganglion (SG) complex with corpora cardiaca (CC)-corpora allata (CA). The requirement of dietary vitamin A for PR suggests the involvement of opsin pigment in the photoperiodic reception, and a cDNA encoding an opsin (Boceropsin) was cloned from the brain. The effector system concerning the production and secretion of diapause hormone (DH) has also been extensively investigated in the silkworm. DH is produced in a pair of posterior cells of SG, transported to CC by nervi corporis cardiaci, and ultimately released into the hemolymph. Possible involvement of GABAergic and corazonin (Crz) signal pathways was suggested in the control of DH secretion. Knockout (KO) experiments of GABA transporter (GAT) and circadian clock genes demonstrated that GAT plays a crucial role in PR through circadian control. A model outlining the PR mechanism, from maternal photoperiodic light reception to DH secretion, has been proposed.


Subject(s)
Bombyx , Diapause, Insect , Diapause , Animals , Bombyx/metabolism , DNA, Complementary , Ganglia , Opsins/metabolism
8.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38573520

ABSTRACT

Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.


Subject(s)
Opsins , Retinal Pigments , Humans , Animals , Opsins/genetics , Anura/genetics , Gene Duplication , Microspectrophotometry
9.
Am Nat ; 203(5): 604-617, 2024 May.
Article in English | MEDLINE | ID: mdl-38635367

ABSTRACT

AbstractSelection pressures differ along environmental gradients, and traits tightly linked to fitness (e.g., the visual system) are expected to track such variation. Along gradients, adaptation to local conditions might be due to heritable and nonheritable environmentally induced variation. Disentangling these sources of phenotypic variation requires studying closely related populations in nature and in the laboratory. The Nicaraguan lakes represent an environmental gradient in photic conditions from clear crater lakes to very turbid great lakes. From two old, turbid great lakes, Midas cichlid fish (Amphilophus cf. citrinellus) independently colonized seven isolated crater lakes of varying light conditions, resulting in a small adaptive radiation. We estimated variation in visual sensitivities along this photic gradient by measuring cone opsin gene expression among lake populations. Visual sensitivities observed in all seven derived crater lake populations shifted predictably in direction and magnitude, repeatedly mirroring changes in photic conditions. Comparing wild-caught and laboratory-reared fish revealed that 48% of this phenotypic variation is genetically determined and evolved rapidly. Decreasing intrapopulation variation as environments become spectrally narrower suggests that different selective landscapes operate along the gradient. We conclude that the power to predict phenotypic evolution along gradients depends on both the magnitude of environmental change and the selective landscape shape.


Subject(s)
Cichlids , Lakes , Animals , Cichlids/genetics , Opsins/genetics , Gene Expression , Ecosystem
10.
Vision Res ; 217: 108367, 2024 04.
Article in English | MEDLINE | ID: mdl-38428375

ABSTRACT

The principal eyes of jumping spiders (Salticidae) integrate a dual-lens system, a tiered retinal matrix with multiple photoreceptor classes and muscular control of retinal movements to form high resolution images, extract color information, and dynamically evaluate visual scenes. While much work has been done to characterize these more complex principal anterior eyes, little work has investigated the three other pairs of simpler secondary eyes: the anterior lateral eye pair and two posterior (lateral and median) pairs of eyes. We investigated the opsin protein component of visual pigments in the eyes of three species of salticid using transcriptomics and immunohistochemistry. Based on characterization and localization of a set of three conserved opsins (Rh1 - green sensitive, Rh2 - blue sensitive, and Rh3 - ultraviolet sensitive) we have identified potential photoreceptors for blue light detection in the eyes of two out of three species: Menemerus bivittatus (Chrysillini) and Habrocestum africanum (Hasarinii). Additionally, the photoreceptor diversity of the secondary eyes exhibits more variation than previous estimates, particularly for the small, posterior median eyes previously considered vestigial in some species. In all three species investigated the lateral eyes were dominated by green-sensitive visual pigments (RH1 opsins), while the posterior median retinas were dominated by opsins forming short-wavelength sensitive visual pigments (e.g. RH2 and/or RH3/RH4). There was also variation among secondary eye types and among species in the distribution of opsins in retinal photoreceptors, particularly for the putatively blue-sensitive visual pigment formed from RH2. Our findings suggest secondary eyes have the potential for color vision, with observed differences between species likely associated with different ecologies and visual tasks.


Subject(s)
Opsins , Rod Opsins , Rod Opsins/metabolism , Retina/metabolism , Photoreceptor Cells , Retinal Pigments
11.
Biomol Concepts ; 15(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38502542

ABSTRACT

Opsins play a key role in the ability to sense light both in image-forming vision and in non-visual photoreception (NVP). These modalities, in most animal phyla, share the photoreceptor protein: an opsin-based protein binding a light-sensitive chromophore by a lysine (Lys) residue. So far, visual and non-visual opsins have been discovered throughout the Metazoa phyla, including the photoresponsive Hydra, an eyeless cnidarian considered the evolutionary sister species to bilaterians. To verify whether light influences and modulates opsin gene expression in Hydra, we utilized four expression sequence tags, similar to two classic opsins (SW rhodopsin and SW blue-sensitive opsin) and two non-visual opsins (melanopsin and peropsin), in investigating the expression patterns during both diurnal and circadian time, by means of a quantitative RT-PCR. The expression levels of all four genes fluctuated along the light hours of diurnal cycle with respect to the darkness one and, in constant dark condition of the circadian cycle, they increased. The monophasic behavior in the L12:D12 cycle turned into a triphasic expression profile during the continuous darkness condition. Consequently, while the diurnal opsin-like expression revealed a close dependence on light hours, the highest transcript levels were found in darkness, leading us to novel hypothesis that in Hydra, an "internal" biological rhythm autonomously supplies the opsins expression during the circadian time. In conclusion, in Hydra, both diurnal and circadian rhythms apparently regulate the expression of the so-called visual and non-visual opsins, as already demonstrated in higher invertebrate and vertebrate species. Our data confirm that Hydra is a suitable model for studying ancestral precursor of both visual and NVP, providing useful hints on the evolution of visual and photosensory systems.


Subject(s)
Cnidaria , Hydra , Animals , Opsins/genetics , Opsins/chemistry , Opsins/metabolism , Cnidaria/genetics , Cnidaria/metabolism , Hydra/genetics , Hydra/metabolism , Phylogeny , Circadian Rhythm/genetics
12.
Int J Biol Macromol ; 265(Pt 1): 130636, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467214

ABSTRACT

In insects, vision is crucial in finding host plants, but its role in nocturnal insects is largely unknown. Vision involves responses to specific spectra of photon wavelengths and opsins plays an important role in this process. Long-wavelength sensitive opsin (LW opsin) and blue-sensitive opsin (BL opsin) are main visual opsin proteins and play important in behavior regulation.We used CRISPR/Cas9 technology to mutate the long-wavelength-sensitive and blue wavelength-sensitive genes and explored the role of vision in the nocturnal invasive pest Tuta absoluta. Light wave experiments revealed that LW2(-/-) and BL(-/-) mutants showed abnormal wavelength tropism. Both LW2 and BL mutations affected the preference of T. absoluta for the green environment. Mutations in LW2 and BL are necessary to inhibit visual attraction. The elimination of LW2 and BL affected the preference of leaf moths for green plants, and mutations in both induced a preference in moths for white plants. Behavioral changes resulting from LW2(-/-) and BL(-/-) mutants were not affected by sense of smell, further supporting the regulatory role of vision in insect behavior. To the best of our knowledge, this is the first study to reveal that vision, not smell, plays an important role in the host-seeking behavior of nocturnal insects at night, of which LW2 and BL opsins are key regulatory factors. These study findings will drive the development of the "vision-ecology" theory.


Subject(s)
Color Vision , Moths , Animals , Opsins/genetics , Opsins/metabolism , Introduced Species , Moths/genetics , Moths/metabolism , Insecta/metabolism
13.
CRISPR J ; 7(1): 41-52, 2024 02.
Article in English | MEDLINE | ID: mdl-38353618

ABSTRACT

The Pacific abalone is an important aquaculture shellfish and serves as an important model in basic biology study. However, the study of abalone is limited by lack of highly efficient and easy-to-use gene-editing tools. In this paper, we demonstrate efficient gene knockout in Pacific abalone using CRISPR-Cas9. We developed a highly effective microinjection method by nesting fertilized eggs in a low-concentration agarose gel. We identified the cilia developmental gene ß-tubulin and light-sensitive transmembrane protein r-opsin as target genes and designed highly specific sgRNAs for modifying their genomic sequences. Sanger sequencing of the genomic regions of ß-tubulin and r-opsin genes from injected larvae identified various genomic long-fragment deletions. In situ hybridization showed gene expression patterns of ß-tubulin and r-opsin were significantly altered in the mosaic mutants. Knocking out ß-tubulin in abalone embryos efficiently affected cilia development. Scanning electron microscopy and swimming behavior assay showed defecting cilia and decreased motility. Moreover, knocking out of r-opsin in abalone embryos effectively affected the expression and development of eyespots. Overall, this work developed an easy-to-use mosaic gene knockout protocol for abalone, which will allow researchers to utilize CRISPR-Cas9 approaches to study unexploited abalone biology and will lead to novel breeding methods for this aquaculture species.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Tubulin , Opsins
14.
STAR Protoc ; 5(1): 102860, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38306268

ABSTRACT

Cholecystokinin (CCK) is the most abundant neuropeptide that broadly regulates the physiological status of animals. Here, we present a two-color laser theta burst stimulation (L-TBS) protocol for simultaneous activation of Schaffer collateral and perforant pathway in the hippocampus of CCK Cre mice. We describe steps for heterosynaptic long-term potentiation induction by L-TBS. This technique allows for the examination of the neurotransmitter roles in synaptic modulation and facilitates the exploration of pathological mechanisms in genetic models of brain disorders in mice. For complete details on the use and execution of this protocol, please refer to Su et al.1.


Subject(s)
Long-Term Potentiation , Opsins , Mice , Animals , Long-Term Potentiation/physiology , Opsins/metabolism , Hippocampus/metabolism
15.
J Photochem Photobiol B ; 252: 112861, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335869

ABSTRACT

Body-color changes in many poikilothermic animals can occur quickly. This color change is generally initiated by visual system, followed by neuromuscular or neuroendocrine control. We have previously showed that the ventral skin color of the large yellow croaker (Larimichthys crocea) presents golden yellow in dark environment and quickly changes to silvery white in light environment. In the present study, we found that the light-induced whitening of ventral skin color was independent of visual input. Using light-emitting diode sources of different wavelength with same luminance (150 lx) but different absolute irradiance (0.039-0.333 mW/cm2), we further found that the blue light (λmax = 480 nm, 0.107 mW/cm2) is more effectively in induction of whitening of ventral skin color in compare with other light sources. Interestingly, the result of RT-PCR showed opsin 3 transcripts expressed in xanthophores. Recombinant protein of Opsin 3 with 11-cis retinal formed functional blue-sensitive pigment, with an absorption maximum at 468 nm. The HEK293T cells transfected with Opsin 3 showed a blue light-evoked Ca2+ response. Knock-down of Opsin 3 expression blocked the light-induced xanthosomes aggregation in vitro. Moreover, the light-induced xanthosomes aggregation was mediated via Ca2+-PKC and Ca2+-CaMKII pathways, and relied on microtubules and dynein. Decrease of cAMP levels was a prerequisite for xanthosomes aggregation. Our results provide a unique organism model exhibiting light-induced quick body color change, which was independent of visual input but rather rely on non-visual function of Opsin 3 within xanthophore.


Subject(s)
Fishes , Skin , Humans , Animals , HEK293 Cells , Skin/metabolism , Fishes/metabolism , Opsins/metabolism , Light
16.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396801

ABSTRACT

It is unclear whether normal human skin tissue or abnormal scarring are photoreceptive. Therefore, this study investigated photosensitivity in normal skin tissue and hypertrophic scars. The expression of opsins, which are photoreceptor proteins, in normal dermal fibroblasts (NDFs) and hypertrophic scar fibroblasts (HSFs) was examined. After exposure to blue light (BL), changes in the expression levels of αSMA and clock-related genes, specifically PER2 and BMAL1, were examined in both fibroblast types. Opsins were expressed in both fibroblast types, with OPN3 exhibiting the highest expression levels. After peripheral circadian rhythm disruption, BL induced rhythm formation in NDFs. In contrast, although HSFs showed changes in clock-related gene expression levels, no distinct rhythm formation was observed. The expression level of αSMA was significantly higher in HSFs and decreased to the same level as that in NDFs upon BL exposure. When OPN3 knocked-down HSFs were exposed to BL, the reduction in αSMA expression was inhibited. This study showed that BL exposure directly triggers peripheral circadian synchronization in NDFs but not in HSFs. OPN3-mediated BL exposure inhibited HSFs. Although the current results did not elucidate the relationship between peripheral circadian rhythms and hypertrophic scars, they show that BL can be applied for the prevention and treatment of hypertrophic scars and keloids.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Cicatrix, Hypertrophic/metabolism , Skin/metabolism , Keloid/metabolism , Fibroblasts/metabolism , Opsins/metabolism , Rod Opsins/metabolism
17.
Invest Ophthalmol Vis Sci ; 65(2): 31, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38381411

ABSTRACT

Purpose: N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification catalyzed by N-acetyltransferase 10 (NAT10), a critical factor known to influence mRNA stability. However, the role of ac4C in visual development remains unexplored. Methods: Analysis of public datasets and immunohistochemical staining were conducted to assess the expression pattern of nat10 in zebrafish. We used CRISPR/Cas9 and RNAi technologies to knockout (KO) and knockdown (KD) nat10, the zebrafish ortholog of human NAT10, and evaluated its effects on early development. To assess the impact of nat10 knockdown on visual function, we performed comprehensive histological evaluations and behavioral analyses. Transcriptome profiling and real-time (RT)-PCR were utilized to detect alterations in gene expression resulting from the nat10 knockdown. Dot-blot and RNA immunoprecipitation (RIP)-PCR analyses were conducted to verify changes in ac4C levels in both total RNA and opsin mRNA specifically. Additionally, we used the actinomycin D assay to examine the stability of opsin mRNA following the nat10 KD. Results: Our study found that the zebrafish NAT10 protein shares similar structural properties with its human counterpart. We observed that the nat10 gene was prominently expressed in the visual system during early zebrafish development. A deficiency of nat10 in zebrafish embryos resulted in increased mortality and developmental abnormalities. Behavioral and histological assessments indicated significant vision impairment in nat10 KD zebrafish. Transcriptomic analysis and RT-PCR identified substantial downregulation of retinal transcripts related to phototransduction, light response, photoreceptors, and visual perception in the nat10 KD group. Dot-blot and RIP-PCR analyses confirmed a pronounced reduction in ac4C levels in both total RNA and specifically in opsin messenger RNA (mRNA). Additionally, by evaluating mRNA decay in zebrafish treated with actinomycin D, we observed a significant decrease in the stability of opsin mRNA in the nat10 KD group. Conclusions: The ac4C-mediated mRNA modification plays an essential role in maintaining visual development and retinal function. The loss of NAT10-mediated ac4C modification results in significant disruptions to these processes, underlining the importance of this RNA modification in ocular development.


Subject(s)
Acetyltransferases , Zebrafish , Humans , Animals , Zebrafish/genetics , Dactinomycin , Opsins , Rod Opsins , RNA/genetics , RNA, Messenger/genetics
18.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38421315

ABSTRACT

Vision is mainly based on two different tasks, object detection and color discrimination, carried out by photoreceptor (PR) cells. The Drosophila compound eye consists of ∼800 ommatidia. Every ommatidium contains eight PR cells, six outer cells (R1-R6) and two inner cells (R7 and R8), by which object detection and color vision are achieved, respectively. Expression of opsin genes in R7 and R8 is highly coordinated through the instructive signal from R7 to R8, and two major ommatidial subtypes are distributed stochastically; pale type expresses Rh3/Rh5 and yellow type expresses Rh4/Rh6 in R7/R8. The homeodomain protein Defective proventriculus (Dve) is expressed in yellow-type R7 and in six outer PRs, and it is involved in Rh3 repression to specify the yellow-type R7. dve mutant eyes exhibited atypical coupling, Rh3/Rh6 and Rh4/Rh5, indicating that Dve activity is required for proper opsin coupling. Surprisingly, Dve activity in R1 is required for the instructive signal, whereas activity in R6 and R7 blocks the signal. Our results indicate that functional coupling of two different neurons is established through signaling pathways from adjacent neurons that are functionally different.


Subject(s)
Color Vision , Drosophila Proteins , Animals , Drosophila/genetics , Drosophila/metabolism , Opsins/genetics , Opsins/metabolism , Color Vision/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Neurons/metabolism , Signal Transduction/genetics , Photoreceptor Cells, Invertebrate/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism
19.
J Mol Evol ; 92(2): 93-103, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38416218

ABSTRACT

Ecological and evolutionary transitions offer an excellent opportunity to examine the molecular basis of adaptation. Fishes of the order Beloniformes include needlefishes, flyingfishes, halfbeaks, and allies, and comprise over 200 species occupying a wide array of habitats-from the marine epipelagic zone to tropical rainforest rivers. These fishes also exhibit a diversity of diets, including piscivory, herbivory, and zooplanktivory. We investigated how diet and habitat affected the molecular evolution of cone opsins, which play a key role in bright light and colour vision and are tightly linked to ecology and life history. We analyzed a targeted-capture dataset to reconstruct the evolutionary history of beloniforms and assemble cone opsin sequences. We implemented codon-based clade models of evolution to examine how molecular evolution was affected by habitat and diet. We found high levels of positive selection in medium- and long-wavelength beloniform opsins, with piscivores showing increased positive selection in medium-wavelength opsins and zooplanktivores showing increased positive selection in long-wavelength opsins. In contrast, short-wavelength opsins showed purifying selection. While marine/freshwater habitat transitions have an effect on opsin molecular evolution, we found that diet plays a more important role. Our study suggests that evolutionary transitions along ecological axes produce complex adaptive interactions that affect patterns of selection on genes that underlie vision.


Subject(s)
Cone Opsins , Animals , Cone Opsins/genetics , Phylogeny , Opsins/genetics , Fishes/genetics , Evolution, Molecular
20.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339118

ABSTRACT

Variants within the Retinitis Pigmentosa GTPase regulator (RPGR) gene are the predominant cause of X-Linked Retinitis Pigmentosa (XLRP), a common and severe form of inherited retinal disease. XLRP is characterised by the progressive degeneration and loss of photoreceptors, leading to visual loss and, ultimately, bilateral blindness. Unfortunately, there are no effective approved treatments for RPGR-associated XLRP. We sought to investigate the efficacy of RPGRORF15 gene supplementation using a clinically relevant construct in human RPGR-deficient retinal organoids (ROs). Isogenic RPGR knockout (KO)-induced pluripotent stem cells (IPSCs) were generated using established CRISPR/Cas9 gene editing methods targeting RPGR. RPGR-KO and isogenic wild-type IPSCs were differentiated into ROs and utilised to test the adeno associated virus (AAV) RPGR (AAV-RPGR) clinical vector construct. The transduction of RPGR-KO ROs using AAV-RPGR successfully restored RPGR mRNA and protein expression and localisation to the photoreceptor connecting cilium in rod and cone photoreceptors. Vector-derived RPGR demonstrated equivalent levels of glutamylation to WT ROs. In addition, treatment with AAV-RPGR restored rhodopsin localisation within RPGR-KO ROs, reducing mislocalisation to the photoreceptor outer nuclear layer. These data provide mechanistic insights into RPGRORF15 gene supplementation functional potency in human photoreceptor cells and support the previously reported Phase I/II trial positive results using this vector construct in patients with RPGR-associated XLRP, which is currently being tested in a Phase III clinical trial.


Subject(s)
Opsins , Retinitis Pigmentosa , Humans , Opsins/genetics , Dependovirus/genetics , Dependovirus/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Reactive Oxygen Species/metabolism , Carrier Proteins/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy , Retinitis Pigmentosa/metabolism , Rhodopsin/genetics , Genetic Therapy/methods , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...