Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Biol ; 222(Pt 15)2019 08 07.
Article in English | MEDLINE | ID: mdl-31262786

ABSTRACT

Among animals with visual processing mechanisms, the leech Hirudo verbana is a rare example in which all neurons can be identified. However, little is known about its visual system, which is composed of several pigmented head eyes and photosensitive non-pigmented sensilla that are distributed across its entire body. Although several interneurons are known to respond to visual stimuli, their response properties are poorly understood. Among these, the S-cell system is especially intriguing: it is multimodal, spans the entire body of the leech and is thought to be involved in sensory integration. To improve our understanding of the role of this system, we tested its spectral sensitivity, spatial integration and adaptation properties. The response of the S-cell system to visual stimuli was found to be strongly dependent on the size of the area stimulated, and adaptation was local. Furthermore, an adaptation experiment demonstrated that at least two color channels contributed to the response, and that their contribution was dependent on the adaptation to the background. The existence of at least two color channels was further supported by transcriptomic evidence, which indicated the existence of at least two distinct groups of putative opsins for leeches. Taken together, our results show that the S-cell system has response properties that could be involved in the processing of spatial and color information of visual stimuli. We propose the leech as a novel system to understand visual processing mechanisms with many practical advantages.


Subject(s)
Leeches/physiology , Photoreceptor Cells/classification , Transcriptome , Animals , Color Vision , Electrophysiological Phenomena , Interneurons/physiology , Leeches/genetics , Leeches/metabolism , Opsins/isolation & purification , Photic Stimulation , Photoreceptor Cells/chemistry , Photoreceptor Cells/cytology
2.
J Bacteriol ; 201(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30373756

ABSTRACT

Halophilic Archaea are a distinctive pink color due to a carotenoid pigment called bacterioruberin. To sense or utilize light, many halophilic Archaea also produce rhodopsins, complexes of opsin proteins with a retinal prosthetic group. Both bacterioruberin and retinal are synthesized from isoprenoid precursors, with lycopene as the last shared intermediate. We previously described a regulatory mechanism by which Halobacterium salinarum bacterioopsin and Haloarcula vallismortis cruxopsin inhibit bacterioruberin synthesis catalyzed by lycopene elongase. In this work, we found that opsins in all three major Halobacteria clades inhibit bacterioruberin synthesis, suggesting that this regulatory mechanism existed in the common Halobacteria ancestor. Halophilic Archaea, which are generally heterotrophic and aerobic, likely evolved from an autotrophic, anaerobic methanogenic ancestor by acquiring many genes from Bacteria via lateral gene transfer. These bacterial "imports" include genes encoding opsins and lycopene elongases. To determine if opsins from Bacteria inhibit bacterioruberin synthesis, we tested bacterial opsins and found that an opsin from Curtobacterium, in the Actinobacteria phylum, inhibits bacterioruberin synthesis catalyzed by its own lycopene elongase, as well as that catalyzed by several archaeal enzymes. We also determined that the lycopene elongase from Halococcus salifodinae, a species from a family of Halobacteria lacking opsin homologs, retained the capacity to be inhibited by opsins. Together, our results indicate that opsin-mediated inhibition of bacterioruberin biosynthesis is a widely distributed mechanism found in both Archaea and Bacteria, possibly predating the divergence of the two domains. Further analysis may provide insight into the acquisition and evolution of the genes and their host species.IMPORTANCE All organisms use a variety of mechanisms to allocate limited resources to match their needs in their current environment. Here, we explore how halophilic microbes use a novel mechanism to allow efficient production of rhodopsin, a complex of an opsin protein and a retinal prosthetic group. We previously demonstrated that Halobacterium salinarum bacterioopsin directs available resources toward retinal by inhibiting synthesis of bacterioruberin, a molecule that shares precursors with retinal. In this work, we show that this mechanism can be carried out by proteins from halophilic Archaea that are not closely related to H. salinarum and those in at least one species of Bacteria Therefore, opsin-mediated inhibition of bacterioruberin synthesis may be a highly conserved, ancient regulatory mechanism.


Subject(s)
Carotenoids/biosynthesis , Halobacteriales/drug effects , Halobacteriales/metabolism , Opsins/metabolism , Actinobacteria/chemistry , Aerobiosis , Anaerobiosis , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Archaeal , Opsins/isolation & purification
3.
Analyst ; 143(6): 1378-1386, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29220051

ABSTRACT

Membrane proteins (MPs), despite being critically important drug targets for the pharmaceutical industry, are difficult to study due to challenges in obtaining high yields of functional protein. Most current extraction efforts use specialized non-ionic detergents to solubilize and stabilize MPs, with MPs being concentrated by ultrafiltration (UF). However, many detergents are retained during the UF step, which can destabilize MPs and/or interfere with their characterization. Here, we studied the influence of detergent selection on the extraction and UF-based concentration of biomedically-relevant MPs, the light-driven sodium and chloride transporters, KR2 and halorhodopsin (pHR) which are also model proteins for more complex mammalian rhodopsins. We also designed a flat-bottomed centrifugal filter that can concentrate MPs with enhanced removal of free detergents by promoting concentration polarization (CP). We tested the performance of this new filter using four commonly employed MP detergents, octyl-ß-D maltoside (OM), decyl-ß-D maltoside (DM), dodecyl-ß-D maltoside (DDM) and octyl-ß-D glucoside (OG), over a range of detergent and salt concentrations. Detergent passage is significantly higher for the flat-bottomed filter achieving up to 2-fold greater sieving of detergent in DM-solubilized pHR system due to the high degree of CP. We observe more efficient, up to 5-fold higher extraction of KR2 in the presence of a longer 12-carbon alkyl chain detergent, DDM compared to a shorter 8-carbon detergent, OM. Assuming complete binding and elution of the extracted protein, DDM-based extraction of KR2 could lead to a potential 7-fold improvement in purification yields compared to conventional methods which yield ∼1 mg MP per liter of cell culture. However, the longer chain detergents like DDM form larger micelles that are difficult to remove by UF. Thus, there exists a trade-off between choosing a detergent that will enable efficient extraction of MP while showing easier removal during subsequent UF. The extraction efficiency and UF-based separation of detergent micelles provide insights for other applications involving detergent-mediated separation/extraction.


Subject(s)
Detergents , Membrane Proteins/isolation & purification , Ultrafiltration , Escherichia coli , Halorhodopsins/isolation & purification , Micelles , Opsins/isolation & purification
4.
PLoS One ; 9(7): e102392, 2014.
Article in English | MEDLINE | ID: mdl-25029531

ABSTRACT

We purpose here to analyze and compare the population and topography of cone photoreceptors in two mouse strains using automated routines, and to design a method of retinal sampling for their accurate manual quantification. In whole-mounted retinas from pigmented C57/BL6 and albino Swiss mice, the longwave-sensitive (L) and the shortwave-sensitive (S) opsins were immunodetected to analyze the population of each cone type. In another group of retinas both opsins were detected with the same fluorophore to quantify all cones. In a third set of retinas, L-opsin and Brn3a were immunodetected to determine whether L-opsin+cones and retinal ganglion cells (RGCs) have a parallel distribution. Cones and RGCs were automatically quantified and their topography illustrated with isodensity maps. Our results show that pigmented mice have a significantly higher number of total cones (all-cones) and of L-opsin+cones than albinos which, in turn, have a higher population of S-opsin+cones. In pigmented animals 40% of cones are dual (cones that express both opsins), 34% genuine-L (cones that only express the L-opsin), and 26% genuine-S (cones that only express the S-opsin). In albinos, 23% of cones are genuine-S and the proportion of dual cones increases to 76% at the expense of genuine-L cones. In both strains, L-opsin+cones are denser in the central than peripheral retina, and all-cones density increases dorso-ventrally. In pigmented animals S-opsin+cones are scarce in the dorsal retina and very numerous in the ventral retina, being densest in its nasal aspect. In albinos, S-opsin+cones are abundant in the dorsal retina, although their highest densities are also ventral. Based on the densities of each cone population, we propose a sampling method to manually quantify and infer their total population. In conclusion, these data provide the basis to study cone degeneration and its prevention in pathologic conditions.


Subject(s)
Retinal Cone Photoreceptor Cells/cytology , Animals , Cell Count/methods , Mice , Mice, Inbred C57BL , Opsins/isolation & purification , Species Specificity , Transcription Factor Brn-3A/isolation & purification
5.
Protein Expr Purif ; 75(2): 236-41, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20858543

ABSTRACT

Previous studies of constitutively activated mutants of opsin in the absence of chromophore were carried out in crude cell membranes because such mutants could not be recovered in a detergent-solubilized form in the active state. We employed a strategy in which a stabilizing disulfide bond allowed for successful purification of a constitutively activated mutant opsin, N2C/E113Q/M257Y/D282C, solubilized in nonionic detergent from mammalian cell culture. The purified mutant opsin is able to activate transducin to a higher degree than opsin and may prove useful for future structural studies of the active state of GPCRs.


Subject(s)
Cysteine/chemistry , Disulfides , Opsins , Recombinant Proteins , Animals , Cattle , Cell Line , Cloning, Molecular , Cysteine/genetics , Detergents/chemistry , Disulfides/chemistry , Humans , Mutagenesis, Site-Directed , Opsins/chemistry , Opsins/genetics , Opsins/isolation & purification , Opsins/metabolism , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Retinaldehyde/metabolism , Signal Transduction/genetics , Transducin/metabolism
6.
Curr Biol ; 19(16): 1396-402, 2009 Aug 25.
Article in English | MEDLINE | ID: mdl-19664923

ABSTRACT

Studies in the 1930s demonstrated that birds possess photoreceptors that are located within the hypothalamus and regulate photoperiodic responses to day length. Most recently, photoperiod has been shown to alter the activity of the pars tuberalis to release thyrotrophin, which ultimately drives a reproductive response. Despite these significant findings, the cellular and molecular identity of the hypothalamic photoreceptors has remained a mystery. Action spectra implicated an opsin-based photopigment system, but further identification based on rod- or cone-opsin probes failed, suggesting the utilization of a novel opsin. The vertebrate ancient (VA) opsin photopigments were isolated in 1997 but were thought to have a restricted taxonomic distribution, confined to the agnatha and teleost fish. Here, we report the isolation of VA opsin from chicken and show that the two isoforms spliced from this gene (cVAL and cVA) are capable of forming functional photopigments. Further, we show that VA opsin is expressed within a population of hypothalamic neurons with extensive projections to the median eminence. These results provide the most complete cellular and molecular description of a deep brain photoreceptor in any vertebrate and strongly implicate VA opsin in mediating the avian photoperiodic response.


Subject(s)
Chickens/physiology , Hypothalamus/physiology , Neurons/physiology , Opsins/physiology , Photoperiod , Photoreceptor Cells, Vertebrate/physiology , Animals , Base Sequence , Cells, Cultured/radiation effects , Chickens/genetics , DNA, Complementary/genetics , Fishes/genetics , Fishes/physiology , Gonadotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/physiology , Hypothalamus/cytology , Median Eminence/cytology , Median Eminence/metabolism , Molecular Sequence Data , Neurons/chemistry , Opsins/genetics , Opsins/isolation & purification , Opsins/radiation effects , Photic Stimulation , Photoreceptor Cells, Vertebrate/chemistry , Phylogeny , Pituitary Gland, Anterior/metabolism , Protein Isoforms/physiology , Recombinant Fusion Proteins/physiology , Recombinant Fusion Proteins/radiation effects , Species Specificity , Thyrotropin/metabolism , Triiodothyronine/biosynthesis , Triiodothyronine/physiology
SELECTION OF CITATIONS
SEARCH DETAIL