Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 951
Filter
3.
Rinsho Shinkeigaku ; 64(5): 326-332, 2024 May 24.
Article in Japanese | MEDLINE | ID: mdl-38644210

ABSTRACT

Leber's hereditary optic atrophy (LHON) is a genetic optic neuropathy that is more prevalent in young males but can occur from childhood to old age. The primary cause is mitochondrial genetic mutations, which are associated with dysfunction of mitochondrial electron transport chain complex I. It manifests as acute to subacute visual impairment, often starting unilaterally but progressing to involve both eyes within weeks to months. Visual loss is severe, with many patients having corrected visual acuity below 0.1. The differential diagnosis of optic neuritis is essential, and assessments such as pupillary light reflex, fluorescein fundus angiography, and magnetic resonance imaging can be useful for differentiation. LHON should be considered as one of the differential diagnoses for optic neuritis, and collaboration between neurologists and ophthalmologists is crucial for accurate diagnosis and appropriate treatment.


Subject(s)
Magnetic Resonance Imaging , Optic Atrophy, Hereditary, Leber , Optic Atrophy, Hereditary, Leber/diagnosis , Optic Atrophy, Hereditary, Leber/genetics , Humans , Diagnosis, Differential , Male , Mutation , Optic Neuritis/diagnosis , Optic Neuritis/etiology , Optic Neuritis/diagnostic imaging , Fluorescein Angiography , Female , Electron Transport Complex I/genetics , Adult , Mitochondria/genetics , Child
4.
Rom J Ophthalmol ; 68(1): 65-71, 2024.
Article in English | MEDLINE | ID: mdl-38617721

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is the most common maternally inherited disease linked to mitochondrial DNA (mtDNA). The patients present with subacute asymmetric bilateral vision loss. Approximately 95% of the LHON cases are caused by m.3460G>A (MTND1), m.11778G>A (MTND4), and m.14484T>C (MTND6) mutations. The hallmark of hereditary optic neuropathies determined by mitochondrial dysfunction is the vulnerability and degeneration of retinal ganglion cells (RGC). We present the case of a 28-year-old man who came to our clinic complaining of a subacute decrease in visual acuity of his left eye. From his medical history, we found out that one month before he had the same symptoms in the right eye. From the family history, we noted that an uncle has had vision problems since childhood. We carried out complete blood tests, including specific antibodies for autoimmune and infectious diseases. Laboratory tests and MRI were within normal limits. A blood test of the mtDNA showed the presence of 11778 G>A mutation on the mtND6 gene. The medical history, the fundus appearance, the OCT, and the paraclinical investigations, made us diagnose our patient with Leber's hereditary optic neuropathy. As soon as possible, we began the treatment with systemic idebenone, 900 mg/day. We examined the patient 2, 6, and 10 weeks after initiating the treatment. Abbreviations: LHON = Leber's Hereditary Optic Neuropathy, mtDNA = mitochondrial DNA, VA = visual acuity, RE = right eye, LE = left eye, OCT = Optical coherence tomography, pRNFL = peripapillary retinal nerve fiber layer, GCL = retinal ganglion cells layer, MRI = magnetic resonance imaging, VEP = visual evoked potentials, VEP IT = VEP implicit time, VEP A = VEP amplitude.


Subject(s)
Optic Atrophy, Hereditary, Leber , Optic Nerve Diseases , Male , Humans , Child , Adult , Optic Atrophy, Hereditary, Leber/diagnosis , Optic Atrophy, Hereditary, Leber/genetics , Diagnosis, Differential , Evoked Potentials, Visual , DNA, Mitochondrial/genetics
5.
Orphanet J Rare Dis ; 19(1): 148, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582886

ABSTRACT

BACKGROUND: Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations. RESULTS: We describe a large family including 95 maternally related individuals, showing 30 patients with Leber hereditary optic neuropathy. The mutation responsible for the phenotype is a novel transition, m.3734A > G, in the mitochondrial gene encoding the ND1 subunit of respiratory complex I. Molecular-genetic, biochemical and cellular studies corroborate the pathogenicity of this genetic change. CONCLUSIONS: With the study of this family, we confirm that, also for this very rare mutation, sex and age are important factors modifying penetrance. Moreover, this pedigree offers an excellent opportunity to search for other genetic or environmental factors that additionally contribute to modify penetrance.


Subject(s)
DNA, Mitochondrial , Optic Atrophy, Hereditary, Leber , Humans , DNA, Mitochondrial/genetics , Optic Atrophy, Hereditary, Leber/genetics , Pedigree , Mutation/genetics , Phenotype
6.
Acta Neuropathol Commun ; 12(1): 37, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429841

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is driven by mtDNA mutations affecting Complex I presenting as progressive retinal ganglion cell dysfunction usually in the absence of extra-ophthalmic symptoms. There are no long-term neuroprotective agents for LHON. Oral nicotinamide provides a robust neuroprotective effect against mitochondrial and metabolic dysfunction in other retinal injuries. We explored the potential for nicotinamide to protect mitochondria in LHON by modelling the disease in mice through intravitreal injection of the Complex I inhibitor rotenone. Using MitoV mice expressing a mitochondrial-tagged YFP in retinal ganglion cells we assessed mitochondrial morphology through super-resolution imaging and digital reconstruction. Rotenone induced Complex I inhibition resulted in retinal ganglion cell wide mitochondrial loss and fragmentation. This was prevented by oral nicotinamide treatment. Mitochondrial ultrastructure was quantified by transition electron microscopy, demonstrating a loss of cristae density following rotenone injection, which was also prevented by nicotinamide treatment. These results demonstrate that nicotinamide protects mitochondria during Complex I dysfunction. Nicotinamide has the potential to be a useful treatment strategy for LHON to limit retinal ganglion cell degeneration.


Subject(s)
Optic Atrophy, Hereditary, Leber , Rotenone , Mice , Animals , Rotenone/toxicity , Rotenone/metabolism , Niacinamide/adverse effects , Niacinamide/metabolism , Mitochondria/metabolism , Retinal Ganglion Cells , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Optic Atrophy, Hereditary, Leber/therapy , Electron Transport Complex I/metabolism
7.
Doc Ophthalmol ; 148(3): 133-143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38451375

ABSTRACT

PURPOSE: Leber hereditary optic neuropathy (LHON) affects retinal ganglion cells causing severe vision loss. Pattern electroretinogram and photopic negative response (PhNR) of the light-adapted (LA) full-field electroretinogram (ERG) are typically affected in LHON. In the present study, we evaluated dark-adapted (DA) and LA oscillatory potentials (OPs) of the flash ERG in genetically characterized LHON patients to dissociate slow from fast components of the response. METHODS: Seven adult patients (mean age = 28.4 ± 5.6) in whom genetic diagnosis confirmed LHON with mtDNA or nuclear DNAJC30 (arLHON) pathogenic variants were compared to 12 healthy volunteers (mean age = 35.0 ± 12.1). Full-field ERGs were recorded from both eyes. Offline digital filters at 50, 75 and 100 Hz low cutoff frequencies were applied to isolate high-frequency components from the original ERG signals. RESULTS: ERG a-waves and b-waves were comparable between LHON patients and controls, while PhNR was significantly reduced (p = 0.009) in LHON patients compared to controls, as expected. OPs derived from DA signals (75 Hz low cutoff frequency) showed reduced peak amplitude for OP2 (p = 0.019). LA OP differences between LHON and controls became significant (OP2: p = 0.047, OP3: p = 0.039 and OP4: p = 0.013) when the 100 Hz low-cutoff frequency filter was applied. CONCLUSIONS: Reduced OPs in LHON patients may represent disturbed neuronal interactions in the inner retina with preserved photoreceptoral (a-wave) to bipolar cell (b-wave) activation. Reduced DA OP2 and high-cutoff LA OP alterations may be further explored as functional measures to characterize LHON status and progression.


Subject(s)
Dark Adaptation , Electroretinography , Optic Atrophy, Hereditary, Leber , Photic Stimulation , Retinal Ganglion Cells , Humans , Electroretinography/methods , Optic Atrophy, Hereditary, Leber/physiopathology , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/diagnosis , Male , Adult , Female , Retinal Ganglion Cells/physiology , Young Adult , Dark Adaptation/physiology , Middle Aged , Visual Acuity/physiology
8.
Sci Rep ; 14(1): 5702, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459091

ABSTRACT

In order to explore the spectrum of mitochondrial DNA (mtDNA) mutations in Korean patients with Leber's hereditary optic neuropathy (LHON), we investigated the spectrum of mtDNA mutations in 145 Korean probands confirmed with the diagnosis of LHON. Total genomic DNA was isolated from the peripheral blood leukocytes of the patients with suspected LHON, and mtDNA mutations were identified by direct sequencing. Analysis of mtDNA mutations revealed seven primary LHON mutations including the nucleotide positions (nps) 11778A (101 probands, 69.2%), 14484C (31 probands, 21.2%), 3460A (5 probands, 3.4%), and G3635A, G3733A, C4171A, and G13051A mutations in one proband each. In addition, two provisional mtDNA mutations at nps T3472C, and G13259A were each found in one proband, respectively. Another provisional mtDNA mutation at np T3394C was found in two probands. In conclusion, the spectrum of mtDNA mutations in Korean patients with LHON may differ from other ethnicities, which is characterized by high prevalence of 11778A and 14484C mutations, and a low prevalence of the 3460A mutation.


Subject(s)
Optic Atrophy, Hereditary, Leber , Humans , Optic Atrophy, Hereditary, Leber/genetics , Mutation , DNA, Mitochondrial/genetics , Mitochondria/genetics , Republic of Korea
9.
Cell Rep Med ; 5(3): 101437, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38428428

ABSTRACT

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to rapid and severe bilateral vision loss. Idebenone has been shown to be effective in stabilizing and restoring vision in patients treated within 1 year of onset of vision loss. The open-label, international, multicenter, natural history-controlled LEROS study (ClinicalTrials.gov NCT02774005) assesses the efficacy and safety of idebenone treatment (900 mg/day) in patients with LHON up to 5 years after symptom onset (N = 199) and over a treatment period of 24 months, compared to an external natural history control cohort (N = 372), matched by time since symptom onset. LEROS meets its primary endpoint and confirms the long-term efficacy of idebenone in the subacute/dynamic and chronic phases; the treatment effect varies depending on disease phase and the causative mtDNA mutation. The findings of the LEROS study will help guide the clinical management of patients with LHON.


Subject(s)
Optic Atrophy, Hereditary, Leber , Ubiquinone/analogs & derivatives , Humans , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/diagnosis , Antioxidants/therapeutic use , Ubiquinone/therapeutic use , Ubiquinone/genetics , Mutation
10.
J Chin Med Assoc ; 87(3): 261-266, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38305450

ABSTRACT

BACKGROUND: Leber hereditary optic neuropathy (LHON) is mainly the degeneration of retinal ganglion cells (RGCs) associated with high apoptosis and reactive oxygen species (ROS) levels, which is accepted to be caused by the mutations in the subunits of complex I of the mitochondrial electron transport chain. The treatment is still infant while efforts of correcting genes or using antioxidants do not bring good and consistent results. Unaffected carrier carries LHON mutation but shows normal phenotype, suggesting that the disease's pathogenesis is complex, in which secondary factors exist and cooperate with the primary complex I dysfunction. METHODS: Using LHON patient-specific induced pluripotent stem cells (iPSCs) as the in vitro disease model, we previously demonstrated that circRNA_0087207 had the most significantly higher expression level in the LHON patient-iPSC-derived RGCs compared with the unaffected carrier-iPSC-derived RGCs. To elaborate the underlying pathologies regulated by circRNA_008720 mechanistically, bioinformatics analysis was conducted and elucidated that circRNA_0087207 could act as a sponge of miR-548c-3p and modulate PLSCR1/TGFB2 levels in ND4 mutation-carrying LHON patient-iPSC-derived RGCs. RESULTS: Using LHON iPSC-derived RGCs as the disease-based platform, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on targeted mRNA of miR-548c-3p showed the connection with apoptosis, suggesting downregulation of miR548c-3p contributes to the apoptosis of LHON patient RGCs. CONCLUSION: We showed that the downregulation of miR548c-3p plays a critical role in modulating cellular dysfunction and the apoptotic program of RGCs in LHON.


Subject(s)
MicroRNAs , Optic Atrophy, Hereditary, Leber , Humans , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/pathology , RNA, Circular/genetics , Mitochondria , Apoptosis , Mutation , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/metabolism
11.
Semin Ophthalmol ; 39(4): 320-323, 2024 May.
Article in English | MEDLINE | ID: mdl-38420942

ABSTRACT

The prognosis of 11,778 mitochondrial mutations in Leber hereditary optic neuropathy (LHON) is poor. Patients with favorable outcomes (visual acuity better than 20/100) who could be observed for more than 6 months were analyzed. Among 74 patients (57 male, 17 female), 6 (8.1%) showed improvement in visual acuity of 20/100 or higher. The patients with favorable outcomes have better visual acuity at nadir (logMAR 0.98 ± 0.69 in the favorable patients and logMAR 2.32 ± 0.93 in the unfavorable patients, p = .003). Among the favorable group, four patients (36, 32, 19, and 7 years of age at onset) took idebenone within 6 months of onset. However, fifty-one percent of the patients with unfavorable outcomes took idebenone (p = .008). Although the age at onset in the favorable patients is relatively younger than that of the unfavorable patients (20.3 ± 10.8 versus 28.8 ± 12.8 years), a significant difference was not found (p = .138). In conclusion, better visual acuity in nadir and administration of idebenone may affect vision recovery.


Subject(s)
Optic Atrophy, Hereditary, Leber , Humans , Male , Female , Infant , Adolescent , Young Adult , Adult , Optic Atrophy, Hereditary, Leber/genetics , Antioxidants , Prognosis , Mutation , Visual Acuity , DNA, Mitochondrial/genetics
12.
Genes (Basel) ; 15(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38397177

ABSTRACT

Inherited optic neuropathies affect around 1 in 10,000 people in England; in these conditions, vision is lost as retinal ganglion cells lose function or die (usually due to pathological variants in genes concerned with mitochondrial function). Emerging gene therapies for these conditions have emphasised the importance of early and expedient molecular diagnoses, particularly in the paediatric population. Here, we report our real-world clinical experience of such a population, exploring which children presented with the condition, how they were investigated and the time taken for a molecular diagnosis to be reached. A retrospective case-note review of paediatric inherited optic neuropathy patients (0-16 years) in the tertiary neuro-ophthalmology service at Moorfields Eye Hospital between 2016 and 2020 identified 19 patients. Their mean age was 9.3 ± 4.6 (mean ± SD) years at presentation; 68% were male, and 32% were female; and 26% had comorbidities, with diversity of ethnicity. Most patients had undergone genetic testing (95% (n = 18)), of whom 43% (n = 8) received a molecular diagnosis. On average, this took 54.8 ± 19.5 weeks from presentation. A cerebral MRI was performed in 70% (n = 14) and blood testing in 75% (n = 15) of patients as part of their workup. Continual improvement in the investigative pathways for inherited optic neuropathies will be paramount as novel therapeutics become available.


Subject(s)
Ophthalmology , Optic Atrophy, Autosomal Dominant , Optic Atrophy, Hereditary, Leber , Optic Nerve Diseases , Humans , Male , Female , Child , Child, Preschool , Adolescent , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Autosomal Dominant/genetics , Retrospective Studies , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/genetics , Optic Nerve Diseases/therapy
14.
Cell Rep Med ; 5(2): 101383, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38272025

ABSTRACT

Idebenone, the only approved treatment for Leber hereditary optic neuropathy (LHON), promotes recovery of visual function in up to 50% of patients, but we can neither predict nor understand the non-responders. Idebenone is reduced by the cytosolic NAD(P)H oxidoreductase I (NQO1) and directly shuttles electrons to respiratory complex III, bypassing complex I affected in LHON. We show here that two polymorphic variants drastically reduce NQO1 protein levels when homozygous or compound heterozygous. This hampers idebenone reduction. In its oxidized form, idebenone inhibits complex I, decreasing respiratory function in cells. By retrospectively analyzing a large cohort of idebenone-treated LHON patients, classified by their response to therapy, we show that patients with homozygous or compound heterozygous NQO1 variants have the poorest therapy response, particularly if carrying the m.3460G>A/MT-ND1 LHON mutation. These results suggest consideration of patient NQO1 genotype and mitochondrial DNA mutation in the context of idebenone therapy.


Subject(s)
Optic Atrophy, Hereditary, Leber , Ubiquinone/analogs & derivatives , Humans , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Antioxidants/therapeutic use , Antioxidants/pharmacology , Retrospective Studies , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Ubiquinone/metabolism , Electron Transport Complex I/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism
16.
J Mol Med (Berl) ; 102(1): 1-10, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37982904

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is a mitochondrial genetic disease with central vision loss as the main symptom. It is one of the diseases that cause vision loss and optic atrophy in young and middle-aged people. The mutations of these three primary mitochondrial mutations, m.11778G>A, m.14484T>C, and m.3460G>A, are the main molecular basis, but their pathogenesis is also affected by nuclear genes, mitochondrial genetic background, and environmental factors. This article summarizes the research progress on molecular pathogenesis, clinical symptoms, and treatment of LHON in recent years, aiming to summarize the genetic pathogenesis and clinical treatment points of LHON.


Subject(s)
DNA, Mitochondrial , Optic Atrophy, Hereditary, Leber , Middle Aged , Humans , DNA, Mitochondrial/genetics , Optic Atrophy, Hereditary, Leber/diagnosis , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/therapy , Mutation , Mitochondria/genetics , Mitochondria/pathology
17.
Am J Ophthalmol ; 257: 113-128, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37716450

ABSTRACT

PURPOSE: To assess longitudinal relationships among visual function and anatomical measures of gene therapy in G11778A Leber hereditary optic neuropathy (LHON). DESIGN: Phase 1 clinical trial. METHODS: This was a single-institution study of patients with G11778A LHON. Patients with chronic bilateral visual loss >12 months (group 1, n = 11), acute bilateral visual loss <12 months (group 2, n = 9), or unilateral visual loss (group 3, n = 8) were administered unilateral intravitreal AAV2(Y444,500,730F)-P1ND4v2 injection with low, medium, high, and higher doses to worse eye for groups 1 and 2 and better eye for group 3. Oucome measures were best-corrected visual acuity (BCVA), visual field mean deviation (VF MD), steady-state pattern electroretinogram (SS-PERG), optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) thickness and ganglion cell+inner plexiform layer (GCIPL) thickness, and National Eye Institute Visual Function Questionnaire (NEI-VFQ-25) scores. Mean follow-up was 33.6 months (range = 18-36 months). RESULTS: Baseline SS-PERG amplitude was much reduced in both eyes of all groups including asymptomatic eyes of group 3, and showed no appreciable changes irrespective of disease stage and treatment. Significant and progressive GCIPL and RNFL thinning occurred in all eyes; BCVA and VF MD fluctuated in treated and fellow eyes, with some eyes having modest improvement that may be related to natural history or to gene therapy. Mean NEI-VFQ-25 scores declined in group 3 subjects (P = .023), CONCLUSION: Asymptomatic eyes in LHON patients with unilateral visual loss may be beyond the window of effective neuroprotection given reduced GCIPL and SS-PERG. Randomization of patients to an untreated control group would help to assess treatment effect by accounting for variable natural history. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.


Subject(s)
Optic Atrophy, Hereditary, Leber , Humans , Genetic Therapy , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/therapy , Retinal Ganglion Cells/physiology , Tomography, Optical Coherence/methods , Vision Disorders/therapy , Visual Acuity , Visual Fields
18.
Curr Opin Ophthalmol ; 35(3): 244-251, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38117686

ABSTRACT

PURPOSE OF REVIEW: To discuss relevant clinical outcomes, challenges, and future opportunities of gene therapy in Leber hereditary optic neuropathy (LHON). RECENT FINDINGS: Results of G11778A LHON Phase 3 randomized clinical trials with unilateral intravitreal rAAV2/2-ND4 allotopic gene therapy show good safety and unexpected bilateral partial improvements of BCVA (best-corrected visual acuity) with mean logMAR BCVA improvements of up to near ∼0.3 logMAR (3 lines) in the treated eyes and ∼0.25 logMAR (2.5 lines) in the sham-treated or placebo-treated fellow eyes. Final mean BCVA levels after gene therapy were in the range of ∼1.3 logMAR (20/400) bilaterally. SUMMARY: Bilateral partial improvement with unilateral LHON gene therapy was unanticipated and may be due to treatment efficacy, natural history, learning effect, and other mediators. The overall efficacy is limited given the final BCVA levels. The sequential progressive visual loss and varied occurrence of spontaneous partial improvement in LHON confound trial results. Future clinical trials with randomization of patients to a group not receiving gene therapy in either eye would help to assess treatment effect. Promising future LHON gene therapy strategies include mitochondrially-targeted-sequence adeno-associated virus ('MTS-AAV') for direct delivery of the wild-type mitochondrial DNA into the mitochondria and CRISPR-free, RNA-free mitochondrial base editing systems. Signs of anatomical optic nerve damage and objective retinal ganglion cell dysfunction are evident in the asymptomatic eyes of LHON patients experiencing unilateral visual loss, indicating the therapeutic window is narrowing before onset of visual symptoms. Future treatment strategies utilizing mitochondrial base editing in LHON carriers without optic neuropathy holds the promise of a more advantageous approach to achieve optimal visual outcome by reducing disease penetrance and mitigating retinal ganglion cell loss when optic neuropathy develops.


Subject(s)
Optic Atrophy, Hereditary, Leber , Humans , DNA, Mitochondrial/genetics , Electroretinography , Genetic Therapy/methods , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/therapy , Tomography, Optical Coherence , Vision Disorders/etiology , Visual Fields , Clinical Trials, Phase III as Topic , Randomized Controlled Trials as Topic
19.
Int J Mol Sci ; 24(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38069388

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is a common mitochondrial genetic disease, causing irreversible blindness in young individuals. Current treatments are inadequate, and there is no definitive cure. This study evaluates the effectiveness of delivering wildtype human NADH ubiquinone oxidoreductase subunit 4 (hND4) gene using mito-targeted AAV(MTSAAV) to rescue LHOH mice. We observed a declining pattern in electroretinograms amplitudes as mice aged across all groups (p < 0.001), with significant differences among groups (p = 0.023; Control vs. LHON, p = 0.008; Control vs. Rescue, p = 0.228). Inner retinal thickness and intraocular pressure did not change significantly with age or groups. Compared to LHON mice, those rescued with wildtype hND4 exhibited improved retinal visual acuity (0.29 ± 0.1 cy/deg vs. 0.15 ± 0.1 cy/deg) and increased functional hyperemia response (effect of flicker, p < 0.001, effect of Group, p = 0.004; Interaction Flicker × Group, p < 0.001). Postmortem analysis shows a marked reduction in retinal ganglion cell density in the LHON group compared to the other groups (Effect of Group, p < 0.001, Control vs. LHON, p < 0.001, Control vs. Rescue, p = 0.106). These results suggest that MTSAAV-delivered wildtype hND4 gene rescues, at least in part, visual impairment in an LHON mouse model and has the therapeutic potential to treat this disease.


Subject(s)
Mitochondrial Diseases , Optic Atrophy, Hereditary, Leber , Humans , Mice , Animals , Aged , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/therapy , Mitochondrial Diseases/therapy , Mitochondria/genetics , Blindness/genetics , Genetic Therapy/methods , Disease Models, Animal , DNA, Mitochondrial/genetics
20.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139324

ABSTRACT

Leber hereditary optic neuropathy (LHON) is a rare disorder causing a sudden painless loss of visual acuity in one or both eyes, affecting young males in their second to third decade of life. The molecular background of the LHON is up to 90%, genetically defined by a point mutation in mitochondrial DNA. Recently, an autosomal recessive form of LHON (LHONAR1, arLHON) has been discovered, caused by biallelic variants in the DNAJC30 gene. This study provides the results of the DNAJC30 gene analysis in a large group of 46 Polish patients diagnosed with LHON, together with the clinical characterization of the disease. The c.152A>G (p.Tyr51Cys) substitution in the DNAJC30 gene was detected in all the patients as homozygote or compound heterozygote. Moreover, we identified one novel variant, c.293A>G, p.(Tyr98Cys), as well as two ultra-rare DNAJC30 variants: c.293A>C, p.(Tyr98Ser), identified to date only in one individual affected with LHONAR1, and c.130_131delTC (p.Ser44ValfsTer8), previously described only in two patients with Leigh syndrome. The patients presented here represent the largest group of subjects with DNAJC30 gene mutations described to date. Based on our data, the autosomal recessive form of LHON caused by DNAJC30 gene mutations is more frequent than the mitochondrial form in Polish patients. The results of our study suggest that Sanger sequencing of the single-exon DNAJC30 gene should be a method of choice applied to identify a molecular background of clinically confirmed LHON in Polish patients. This approach will help to reduce the costs of molecular testing.


Subject(s)
HSP40 Heat-Shock Proteins , Optic Atrophy, Hereditary, Leber , Humans , Male , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mutation , Optic Atrophy, Hereditary, Leber/genetics , Poland , Rare Diseases/genetics , HSP40 Heat-Shock Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...