Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.283
Filter
1.
Int Ophthalmol ; 44(1): 284, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926206

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the lamina cribrosa curvature index in different types of glaucoma in comparison with clinical findings and conventional measurement methods. MATERIAL AND METHOD: Patients older than 18 years who were followed up in Glaucoma Unit of Department of Ophthalmology at Firat University Faculty of Medicine, whose disease had been under control at least for 1 year, who had at least three reliable visual fields, whose refractive error was between - 6 and + 5 diopter and who did not have any disease other than glaucoma that would affect the visual field, were included in the study. Clinical and demographic characteristics, visual field, optical coherence tomography and lamina cribrosa curvature index (LCCI) results were evaluated. The study patients were divided into six groups: early-stage primary open-angle glaucoma (POAG) as group 1 and intermediate-advanced stage POAG as group 2, pseudo-exfoliation glaucoma (PEXG) as group 3, normal tension glaucoma (NTG) as group 4, ocular hypertension patients whom subsequently developed POAG as group 5 and healthy control as group 6. RESULTS: A total of 189 eyes of 101 patients were included in our study. Forty-seven patients were male (46.5%) and 54 were female (53.5%). The mean age was 62.43 ± 1.49 years. LCCI, mean deviation (MD), visual field index (VFI), pattern standard deviation (PSD) and retinal nerve fiber layer thickness (RNFL) values were analyzed in all groups and Pearson correlation analysis showed statistically significant correlation between PSD and RNFL measurements with LCCI values in all groups. MD value was correlated with LCCI in groups 2, 3 and 4, while VFI value was correlated with LCCI in all groups except group 5. When the groups were compared with each other according to the Post-Hoc Tamhane test, LCCI measurement showed statistically significant results in accordance with MD, VFI, PSD and RNFL values. CONCLUSION: The LCCI assessment is mostly consistent with conventional tests. In this study, in which different types of glaucoma and healthy subjects were examined simultaneously, LCCI shows promise as a detailed and reliable assessment method.


Subject(s)
Intraocular Pressure , Optic Disk , Tomography, Optical Coherence , Visual Fields , Humans , Male , Female , Tomography, Optical Coherence/methods , Middle Aged , Visual Fields/physiology , Optic Disk/pathology , Optic Disk/diagnostic imaging , Intraocular Pressure/physiology , Aged , Glaucoma, Open-Angle/diagnosis , Glaucoma, Open-Angle/physiopathology , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology , Adult , Follow-Up Studies , Glaucoma/diagnosis , Glaucoma/physiopathology
2.
Invest Ophthalmol Vis Sci ; 65(6): 9, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38837167

ABSTRACT

Purpose: Optical coherence tomography (OCT) representations in clinical practice are static and do not allow for a dynamic visualization and quantification of blood flow. This study aims to present a method to analyze retinal blood flow dynamics using time-resolved structural OCT. Methods: We developed novel imaging protocols to acquire video-rate time-resolved OCT B-scans (1024 × 496 pixels, 10 degrees field of view) at four different sensor integration times (integration time of 44.8 µs at a nominal A-scan rate of 20 kHz, 22.4 µs at 40 kHz, 11.2 µs at 85 kHz, and 7.24 µs at 125 kHz). The vessel centers were manually annotated for each B-scan and surrounding subvolumes were extracted. We used a velocity model based on signal-to-noise ratio (SNR) drops due to fringe washout to calculate blood flow velocity profiles in vessels within five optic disc diameters of the optic disc rim. Results: Time-resolved dynamic structural OCT revealed pulsatile SNR changes in the analyzed vessels and allowed the calculation of potential blood flow velocities at all integration times. Fringe washout was stronger in acquisitions with longer integration times; however, the ratio of the average SNR to the peak SNR inside the vessel was similar across all integration times. Conclusions: We demonstrated the feasibility of estimating blood flow profiles based on fringe washout analysis, showing pulsatile dynamics in vessels close to the optic nerve head using structural OCT. Time-resolved dynamic OCT has the potential to uncover valuable blood flow information in clinical settings.


Subject(s)
Regional Blood Flow , Retinal Vessels , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Retinal Vessels/physiology , Retinal Vessels/diagnostic imaging , Blood Flow Velocity/physiology , Regional Blood Flow/physiology , Optic Disk/blood supply , Optic Disk/diagnostic imaging , Signal-To-Noise Ratio , Male , Female , Adult , Middle Aged
3.
Transl Vis Sci Technol ; 13(6): 1, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829624

ABSTRACT

Purpose: Deep learning architectures can automatically learn complex features and patterns associated with glaucomatous optic neuropathy (GON). However, developing robust algorithms requires a large number of data sets. We sought to train an adversarial model for generating high-quality optic disc images from a large, diverse data set and then assessed the performance of models on generated synthetic images for detecting GON. Methods: A total of 17,060 (6874 glaucomatous and 10,186 healthy) fundus images were used to train deep convolutional generative adversarial networks (DCGANs) for synthesizing disc images for both classes. We then trained two models to detect GON, one solely on these synthetic images and another on a mixed data set (synthetic and real clinical images). Both the models were externally validated on a data set not used for training. The multiple classification metrics were evaluated with 95% confidence intervals. Models' decision-making processes were assessed using gradient-weighted class activation mapping (Grad-CAM) techniques. Results: Following receiver operating characteristic curve analysis, an optimal cup-to-disc ratio threshold for detecting GON from the training data was found to be 0.619. DCGANs generated high-quality synthetic disc images for healthy and glaucomatous eyes. When trained on a mixed data set, the model's area under the receiver operating characteristic curve attained 99.85% on internal validation and 86.45% on external validation. Grad-CAM saliency maps were primarily centered on the optic nerve head, indicating a more precise and clinically relevant attention area of the fundus image. Conclusions: Although our model performed well on synthetic data, training on a mixed data set demonstrated better performance and generalization. Integrating synthetic and real clinical images can optimize the performance of a deep learning model in glaucoma detection. Translational Relevance: Optimizing deep learning models for glaucoma detection through integrating DCGAN-generated synthetic and real-world clinical data can be improved and generalized in clinical practice.


Subject(s)
Deep Learning , Glaucoma , Optic Disk , Optic Nerve Diseases , ROC Curve , Humans , Optic Disk/diagnostic imaging , Optic Disk/pathology , Optic Nerve Diseases/diagnostic imaging , Optic Nerve Diseases/diagnosis , Glaucoma/diagnostic imaging , Glaucoma/diagnosis , Female , Male , Middle Aged , Algorithms
4.
Lasers Med Sci ; 39(1): 154, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862806

ABSTRACT

PURPOSE: To investigate the diagnostic ability of retinal superficial vasculature evaluation by optic coherence tomography angiography (OCTA) combined with visual field (VF) testing for early primary open-angle glaucoma (POAG). PATIENTS AND METHODS: In this cross-sectional study, 84 participants were included, including 11 in the ocular hypertension (OHT) group, 11 in the preperimetric POAG (pre-POAG) group, 29 in the early POAG group and 33 in the control group. All participants underwent 6 × 6 mm2 scans of macula and optic nerved head by optic coherence tomography (OCT) and OCTA, along with white-on-white and blue-on-yellow VF testing by static automated perimetry. The ability of diagnosing early glaucoma by either various examinations separately or combination of examinations in both terms of function and structure was studied using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). RESULTS: The superficial retinal vessel densities (VD) in peri-nasal, para-temporal, peri-temporal and peri-inferior regions around the macula, as well as vessel area densities (VAD) in all peripapillary regions, were significantly different among the four groups, with lower VD or VAD in the early POAG patients compared to the normal individuals. The diagnostic ability of peripapillary superficial retinal VAD alone or VF testing alone was limited for early POAG only. However, the combination of these two was more effective in distinguishing normal individuals from OHT subjects or pre-POAG patients without VF defects, with better performance than the combination of peripapillary retinal nerve fiber layer (RNFL) thickness and VF indicators. CONCLUSIONS: Peripapillary retinal vessel densities were generally lower in early POAG patients compared to normal individuals. The combination of peripapillary superficial retinal VAD by OCTA with white-on-white VF testing improved the ability to distinguish POAG patients at early stage without function impairment, which may help in providing reference and guidance for the following-up and treatment of suspected POAG patients.


Subject(s)
Glaucoma, Open-Angle , Microvessels , Retinal Vessels , Tomography, Optical Coherence , Visual Field Tests , Humans , Glaucoma, Open-Angle/physiopathology , Glaucoma, Open-Angle/diagnosis , Glaucoma, Open-Angle/diagnostic imaging , Cross-Sectional Studies , Male , Middle Aged , Visual Field Tests/methods , Female , Tomography, Optical Coherence/methods , Microvessels/diagnostic imaging , Retinal Vessels/diagnostic imaging , Retinal Vessels/physiopathology , Aged , ROC Curve , Visual Fields/physiology , Adult , Optic Disk/blood supply , Optic Disk/diagnostic imaging , Early Diagnosis
5.
Transl Vis Sci Technol ; 13(6): 10, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38884547

ABSTRACT

Purpose: To explore the structural-functional loss relationship from optic-nerve-head- and macula-centred spectral-domain (SD) Optical Coherence Tomography (OCT) images in the full spectrum of glaucoma patients using deep-learning methods. Methods: A cohort comprising 5238 unique eyes classified as suspects or diagnosed with glaucoma was considered. All patients underwent ophthalmologic examination consisting of standard automated perimetry (SAP), macular OCT, and peri-papillary OCT on the same day. Deep learning models were trained to estimate G-pattern visual field (VF) mean deviation (MD) and cluster MD using retinal thickness maps from seven layers: retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer (GCL + IPL), inner nuclear layer and outer plexiform layer (INL + OPL), outer nuclear layer (ONL), photoreceptors and retinal pigmented epithelium (PR + RPE), choriocapillaris and choroidal stroma (CC + CS), total retinal thickness (RT). Results: The best performance on MD prediction is achieved by RNFL, GCL + IPL and RT layers, with R2 scores of 0.37, 0.33, and 0.31, respectively. Combining macular and peri-papillary scans outperforms single modality prediction, achieving an R2 value of 0.48. Cluster MD predictions show promising results, notably in central clusters, reaching an R2 of 0.56. Conclusions: The combination of multiple modalities, such as optic-nerve-head circular B-scans and retinal thickness maps from macular SD-OCT images, improves the performance of MD and cluster MD prediction. Our proposed model demonstrates the highest level of accuracy in predicting MD in the early-to-mid stages of glaucoma. Translational Relevance: Objective measures recorded with SD-OCT can optimize the number of visual field tests and improve individualized glaucoma care by adjusting VF testing frequency based on deep-learning estimates of functional damage.


Subject(s)
Deep Learning , Macula Lutea , Tomography, Optical Coherence , Visual Fields , Tomography, Optical Coherence/methods , Humans , Female , Middle Aged , Male , Visual Fields/physiology , Macula Lutea/diagnostic imaging , Macula Lutea/pathology , Prognosis , Aged , Retinal Ganglion Cells/pathology , Glaucoma/diagnostic imaging , Glaucoma/pathology , Nerve Fibers/pathology , Visual Field Tests/methods , Optic Disk/diagnostic imaging , Optic Disk/pathology
6.
Int Ophthalmol ; 44(1): 250, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907173

ABSTRACT

PURPOSE: To characterize glaucoma progression in early-stage patients with retinal nerve fiber layer (RNFL) using the change analysis software (CAS), which was utilized to track RNFL thinning. METHODS: We retrospectively analyzed 92 eyes of 92 patients with early-stage glaucoma. Patients were divided into two subgroups based on their diagnosis of pseudoexfoliation glaucoma (PEG) and primary open-angle glaucoma (POAG). A complete ophthalmologic examination was performed on all patients. Additionally, automated perimetry was conducted on each patient. Furthermore, Fourier-domain optical coherence tomography (OCT) was employed to measure RNFL and central corneal thickness. Using the OCT device's CAS, we computed the annual rate of total and glaucomatous RNFL thinning for each patient. RESULTS: A total of 44 PEG and 48 POAG patients were included in the study. The right eye measurements of these patients were analyzed and compared. The two groups were not significantly different in age, gender, and the number of visits per year (p > 0.05, for each). However, the difference between the mean RNFL thickness at baseline (91.39 ± 10.71 and 96.9 ± 8.6 µm) and at the last visit (85.2 ± 15.76 µm and 91.56 ± 9.58 µm) was statistically significant between the two groups (p = 0.043, p = 0.039, respectively). Additionally, the difference in annual RNFL thinning rates (1.43 ± 0.81 µm and 1.07 ± 0.32 µm) between the two groups was statistically significant (p = 0.009). CONCLUSION: The annual rate of glaucomatous RNFL loss in early-stage PEG patients (1.23 µm) was higher than in POAG patients (0.87 µm). However, despite these loss rates, scotoma was not detected in the visual field tests of these patients. Therefore, using CAS in the follow-up of early-stage glaucoma patients is a useful alternative for monitoring glaucomatous progression. Furthermore, this method can be utilized in future research for the diagnosis and follow-up of glaucoma in special populations (e.g., those with pathological myopia or high hyperopia) that are not included in normative databases.


Subject(s)
Exfoliation Syndrome , Glaucoma, Open-Angle , Intraocular Pressure , Nerve Fibers , Retinal Ganglion Cells , Tomography, Optical Coherence , Visual Fields , Humans , Tomography, Optical Coherence/methods , Glaucoma, Open-Angle/diagnosis , Glaucoma, Open-Angle/physiopathology , Male , Female , Retrospective Studies , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology , Aged , Exfoliation Syndrome/diagnosis , Middle Aged , Visual Fields/physiology , Intraocular Pressure/physiology , Disease Progression , Visual Field Tests , Follow-Up Studies , Optic Disk/pathology , Optic Disk/diagnostic imaging
7.
BMC Ophthalmol ; 24(1): 247, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862962

ABSTRACT

BACKGROUND: Peripapillary hyperreflective ovoid mass-like structures (PHOMS) are newly characterized lesions wedged around the optic discs, which used to be misdiagnosed. Better understanding and identifying PHOMS are important for monitoring the condition of optic nerve. CASE PRESENTATION: A young female presented to the ophthalmic clinic with blurred vision of both eyes. Protrusions resembling "C-shaped donut" were found circling the optic discs bilaterally. These lesions were homogenous hyperreflective on OCT, while they were also hypoautofluorescent and hypoechogenic. Meanwhile, cystoid macular edema (CME) was also identified in both eyes. The patient was then diagnosed as PHOMS with CME. A short-term glucocorticoids therapy was prescribed systemically. The logMAR best-corrected visual acuity (BCVA) of both eyes reached 0.0 in 4 months with recovery of CME, while the PHOMS remained. CONCLUSIONS: There is currently no report on PHOMS with CME. More attentions should be paid to PHOMS, for they are potential biomarkers for axoplasmic stasis involved in different diseases of the optic nerve.


Subject(s)
Macular Edema , Optic Disk , Tomography, Optical Coherence , Visual Acuity , Humans , Macular Edema/diagnosis , Macular Edema/drug therapy , Female , Tomography, Optical Coherence/methods , Optic Disk/pathology , Optic Disk/diagnostic imaging , Adult , Glucocorticoids/therapeutic use , Fluorescein Angiography/methods , Optic Nerve Diseases/diagnosis
8.
Int Ophthalmol ; 44(1): 272, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916684

ABSTRACT

BACKGROUND: Papilledema is the optic disc swelling caused by increased intracranial pressure (ICP) that can damage the optic nerve and cause subsequent vision loss. Pseudopapilledema refers to optic disc elevation without peripapillary fluid that can arise from several optic disc disorders, with optic disc drusen (ODD) being the most frequent cause. Occasionally, pseudopapilledema patients are mistakenly diagnosed as papilledema, leading to the possibility of unneeded procedures. We aim to thoroughly examine the most current evidence on papilledema and pseudopapilledema causes and several methods for distinguishing between both conditions. METHODS: An extensive literature search was conducted on electronic databases including PubMed and google scholar using keywords that were relevant to the assessed pathologies. Data were collected and then summarized in comprehensive form. RESULTS: Various techniques are employed to distinguish between papilledema and pseudopapilledema. These techniques include Fundus fluorescein angiography, optical coherence tomography, ultrasonography, and magnetic resonance imaging. Lumbar puncture and other invasive procedures may be needed if results are suspicious. CONCLUSION: Papilledema is a sight-threatening condition that may lead to visual affection. Many disc conditions may mimic papilledema. Accordingly, differentiation between papilledema and pseudopailledema is crucial and can be conducted through many modalities.


Subject(s)
Eye Diseases, Hereditary , Fluorescein Angiography , Optic Disk , Papilledema , Tomography, Optical Coherence , Papilledema/diagnosis , Humans , Diagnosis, Differential , Tomography, Optical Coherence/methods , Fluorescein Angiography/methods , Optic Disk/diagnostic imaging , Optic Disk/pathology , Eye Diseases, Hereditary/diagnosis , Optic Nerve Diseases/diagnosis , Fundus Oculi , Magnetic Resonance Imaging/methods , Optic Disk Drusen/diagnosis , Optic Disk Drusen/physiopathology , Optic Disk Drusen/complications
9.
Math Biosci Eng ; 21(4): 5092-5117, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38872528

ABSTRACT

Glaucoma is a chronic neurodegenerative disease that can result in irreversible vision loss if not treated in its early stages. The cup-to-disc ratio is a key criterion for glaucoma screening and diagnosis, and it is determined by dividing the area of the optic cup (OC) by that of the optic disc (OD) in fundus images. Consequently, the automatic and accurate segmentation of the OC and OD is a pivotal step in glaucoma detection. In recent years, numerous methods have resulted in great success on this task. However, most existing methods either have unsatisfactory segmentation accuracy or high time costs. In this paper, we propose a lightweight deep-learning architecture for the simultaneous segmentation of the OC and OD, where we have adopted fuzzy learning and a multi-layer perceptron to simplify the learning complexity and improve segmentation accuracy. Experimental results demonstrate the superiority of our proposed method as compared to most state-of-the-art approaches in terms of both training time and segmentation accuracy.


Subject(s)
Algorithms , Deep Learning , Fuzzy Logic , Glaucoma , Optic Disk , Humans , Optic Disk/diagnostic imaging , Glaucoma/diagnostic imaging , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Image Interpretation, Computer-Assisted/methods , Fundus Oculi
10.
BMC Ophthalmol ; 24(1): 260, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880871

ABSTRACT

BACKGROUND: Quantitative analysis of retinal nerve fibers is important for the diagnosis and treatment of optic nerve diseases. Peripapillary retinal nerve fiber layer (RNFL) cross-sectional area may give a more accurate quantitative assessment of retinal nerve fibers than RNFL thickness but there have been no previous reports of the peripapillary RNFL cross-sectional area or other parameters. The purpose of the current study was to determine peripapillary RNFL cross-sectional area and its association with other factors in an adult Chinese population. METHODS: RNFL cross-sectional area was measured during peripapillary circular optical coherence tomography (OCT) scan with a diameter of 12° centered on the optic disc. Correlation between RNFL cross-sectional area and other parameters was evaluated by linear regression analysis in a cross-sectional study of an adult Chinese population. RESULTS: A total of 2404 eyes from 2404 subjects were examined. Multivariate linear regression analysis showed that larger RNFL cross-sectional area correlated with younger age (p < 0.001), female gender (p = 0.001), no history of diabetes (p = 0.012) and larger optic disc area (p < 0.001). CONCLUSIONS: Peripapillary RNFL cross-sectional area is correlated positively with optic disc area, suggesting that eyes with larger optic discs have thicker RNFL. Further studies are needed to confirm whether this correlation is due to differences in the numbers of retinal nerve fibers or other factors.


Subject(s)
Nerve Fibers , Optic Disk , Retinal Ganglion Cells , Tomography, Optical Coherence , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , China/epidemiology , Cross-Sectional Studies , East Asian People , Nerve Fibers/pathology , Optic Disk/diagnostic imaging , Optic Disk/anatomy & histology , Optic Disk/pathology , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence/methods
11.
J AAPOS ; 28(3): 103924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692560

ABSTRACT

BACKGROUND: Infantile nystagmus syndrome can be associated with an afferent problem (anterior or posterior segment) or constitute an isolated idiopathic disorder. With a normal ophthalmic examination, current guidelines recommend electroretinography (ERG) rather than magnetic resonance (MRI) for preliminary workup. Given the limited use of optical coherence tomography (OCT) in preverbal children, the purpose of this study was to evaluate the role of handheld OCT (HH-OCT) in the initial diagnostic evaluation of infantile nystagmus. METHODS: In this cross-sectional case series, the medical records of all children with infantile nystagmus and HH-OCT imaging at the Duke Eye Center from August 2016 to July 2021 were retrospectively reviewed. Children with anterior segment disorders or obvious retina/optic nerve structural pathology, bilateral ophthalmoplegia, or Down syndrome were excluded. Two masked pediatric ophthalmologists graded HH-OCT images for optic nerve head and macular abnormalities. A neuro-ophthalmologist reviewed clinical findings of each patient's presenting visit and recommended appropriate testing (MRI vs ERG), initially without, and again with HH-OCT image review. RESULTS: A total of 39 cases were included, with mean presenting age of 1.3 years. Final diagnoses included retinal or foveal abnormalities (7), optic nerve pathology (13), idiopathic (10), or unknown (9). HH-OCT findings included optic nerve hypoplasia (1), optic nerve elevation (3), persistence of the inner layers at the fovea (9), thin ganglion cell layer (8), ellipsoid zone abnormality (3), and thin choroid (1). HH-OCT findings altered initial clinical-only management in 16 cases (41%), including avoiding MRI (5) and ERG (10) testing. CONCLUSIONS: Our results suggest that HH-OCT has the potential to augment and streamline the evaluation of infantile nystagmus.


Subject(s)
Nystagmus, Congenital , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Retrospective Studies , Female , Male , Child, Preschool , Nystagmus, Congenital/physiopathology , Nystagmus, Congenital/diagnosis , Infant , Child , Electroretinography , Magnetic Resonance Imaging/methods , Optic Disk/diagnostic imaging , Optic Disk/pathology
12.
Comput Biol Med ; 177: 108613, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781644

ABSTRACT

Deep learning-based image segmentation and detection models have largely improved the efficiency of analyzing retinal landmarks such as optic disc (OD), optic cup (OC), and fovea. However, factors including ophthalmic disease-related lesions and low image quality issues may severely complicate automatic OD/OC segmentation and fovea detection. Most existing works treat the identification of each landmark as a single task, and take into account no prior information. To address these issues, we propose a prior guided multi-task transformer framework for joint OD/OC segmentation and fovea detection, named JOINEDTrans. JOINEDTrans effectively combines various spatial features of the fundus images, relieving the structural distortions induced by lesions and other imaging issues. It contains a segmentation branch and a detection branch. To be noted, we employ an encoder with prior-learning in a vessel segmentation task to effectively exploit the positional relationship among vessel, OD/OC, and fovea, successfully incorporating spatial prior into the proposed JOINEDTrans framework. There are a coarse stage and a fine stage in JOINEDTrans. In the coarse stage, OD/OC coarse segmentation and fovea heatmap localization are obtained through a joint segmentation and detection module. In the fine stage, we crop regions of interest for subsequent refinement and use predictions obtained in the coarse stage to provide additional information for better performance and faster convergence. Experimental results demonstrate that JOINEDTrans outperforms existing state-of-the-art methods on the publicly available GAMMA, REFUGE, and PALM fundus image datasets. We make our code available at https://github.com/HuaqingHe/JOINEDTrans.


Subject(s)
Deep Learning , Fovea Centralis , Optic Disk , Humans , Optic Disk/diagnostic imaging , Fovea Centralis/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Algorithms
13.
Neuroradiology ; 66(7): 1225-1233, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38717474

ABSTRACT

PURPOSE: Morning glory disc anomaly (MGDA) is a rare congenital ophthalmologic disorder. Historically it has been diagnosed fundoscopically, with little in the literature regarding its imaging findings. The purpose of this study is to further characterize the orbital and associated intracranial magnetic resonance imaging (MRI) findings of MGDA in our tertiary pediatric center. METHODS: A retrospective review was performed of fundoscopically-diagnosed cases of MGDA, that had been referred for MRI. All MRI studies were scrutinized for orbital and other intracranial abnormalities known to occur in association with MGDA. RESULTS: 18 of 19 cases of MGDA showed three characteristic MRI findings: funnel-shaped morphology of the posterior optic disc, abnormal soft tissue associated with the retrobulbar optic nerve, and effacement of adjacent subarachnoid spaces. The ipsilateral (intraorbital) optic nerve was larger in one patient and smaller in six. The ipsilateral optic chiasm was larger in two patients and smaller in one. CONCLUSION: This study represents a comprehensive radiological-led investigation into MGDA. It describes the most frequently-encountered MRI findings in MGDA and emphasizes the importance of MRI in this cohort, i.e., in distinguishing MGDA from other posterior globe abnormalities, in assessing the visual pathway, and in screening for associated intracranial abnormalities - skull base/cerebral, vascular, and facial. It hypothesizes neurocristopathy as an underlying cause of MGDA and its associations. Caliber abnormalities of the ipsilateral optic nerve and chiasm are a frequent finding in MGDA. Optic pathway enlargement should not be labeled "glioma". (239/250).


Subject(s)
Magnetic Resonance Imaging , Optic Disk , Humans , Male , Female , Magnetic Resonance Imaging/methods , Retrospective Studies , Child , Optic Disk/abnormalities , Optic Disk/diagnostic imaging , Child, Preschool , Infant , Adolescent , Eye Abnormalities/diagnostic imaging
15.
Transl Vis Sci Technol ; 13(5): 8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38739084

ABSTRACT

Purpose: This study aimed to evaluate the ocular characteristics associated with spontaneously high myopia in adult nonhuman primates (NHPs). Methods: A total of 537 eyes of 277 macaques with an average age of 18.53 ± 3.01 years (range = 5-26 years), raised in a controlled environment, were included. We measured ocular parameters, including spherical equivalent (SE), axial length (AXL), and intraocular pressure. The 45-degree fundus images centered on the macula and the disc assessed the fundus tessellation and parapapillary atrophy (PPA). Additionally, optical coherence tomography (OCT) was used to measure the thickness of the retinal nerve fiber layer (RNFL). Results: The mean SE was -1.58 ± 3.71 diopters (D). The mean AXL was 18.76 ± 0.86 mm. The prevalence rate of high myopia was 17.7%. As myopia aggravated, the AXL increased (r = -0.498, P < 0.001). Compared with non-high myopia, highly myopic eyes had a greater AXL (P < 0.001), less RNFL thickness (P = 0.004), a higher incidence of PPA (P < 0.001), and elevated grades of fundus tessellation (P < 0.001). The binary logistic regression was performed, which showed PPA (odds ratio [OR] = 4.924, 95% confidence interval [CI] = 2.375-10.207, P < 0.001) and higher grades of fundus tessellation (OR = 1.865, 95% CI = 1.474-2.361, P < 0.001) were independent risk characteristics for high myopia. Conclusions: In NHPs, a higher grade of fundus tessellation and PPA were significant biomarkers of high myopia. Translational Relevance: The study demonstrates adult NHPs raised in conditioned rooms have a similar prevalence and highly consistent fundus changes with human beings, which strengthens the foundation for utilizing macaques as an animal model in high myopic studies.


Subject(s)
Fundus Oculi , Tomography, Optical Coherence , Animals , Male , Female , Disease Models, Animal , Optic Disk/pathology , Optic Disk/diagnostic imaging , Optic Atrophy/pathology , Optic Atrophy/epidemiology , Intraocular Pressure/physiology , Myopia, Degenerative/pathology , Myopia, Degenerative/epidemiology , Nerve Fibers/pathology , Axial Length, Eye/pathology , Retinal Ganglion Cells/pathology , Myopia/pathology , Myopia/epidemiology , Myopia/veterinary
16.
BMJ Case Rep ; 17(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38749525

ABSTRACT

A man in his 80s, with a history of diabetes, hypertension and coronary artery disease, presented with bilateral painless progressive vision loss 2 years prior. His examination showed subnormal best corrected visual acuity of 20/50 and 20/80 in the right eye and left eye (LE), respectively, grade II relative afferent pupillary defect in LE, normal anterior segment, intra-ocular pressure (IOP) and defective colour vision in both eyes (BE). Fundus examination revealed optic disc pallor, disc collaterals and grade 2 hypertensive retinopathy in BE. Automated perimetry showed advanced field loss in BE. MRI of the brain and orbits with contrast showed signs of raised intracranial pressure, and magnetic resonance angiogram of the brain showed multiple arterio-venous channels along with the right transverse and sigmoid sinuses. The patient was referred to a neuroradiologist for further evaluation, and cerebral angiogram confirmed multifocal high-flow dural arterio-venous fistulae at right jugular foramen, transverse and sigmoid sinuses. He underwent Onyx liquid embolization.


Subject(s)
Central Nervous System Vascular Malformations , Embolization, Therapeutic , Optic Disk , Humans , Male , Central Nervous System Vascular Malformations/diagnostic imaging , Central Nervous System Vascular Malformations/therapy , Central Nervous System Vascular Malformations/complications , Central Nervous System Vascular Malformations/diagnosis , Embolization, Therapeutic/methods , Optic Disk/blood supply , Optic Disk/diagnostic imaging , Aged, 80 and over , Cerebral Angiography , Magnetic Resonance Angiography , Diagnosis, Differential , Magnetic Resonance Imaging
17.
Int Ophthalmol ; 44(1): 226, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758396

ABSTRACT

PURPOSE: Glaucoma and multiple sclerosis (MS) can cause optic disc pathology and, in this way, affect optical coherence tomography (OCT) data. In this context, the objective of this study is to investigate the changes in the mean, quadrant, and sector data measured by OCT in glaucoma and MS patients. METHODS: The sample of this prospective cohort study consisted of 42 MS patients (84 eyes), 34 Primary open-angle glaucomas patients (67 eyes), and 24 healthy control subjects (48 eyes). The MS group was divided into two groups according to the presence of a history of optic neuritis. Accordingly, those with a history of optic neuritis were included in the MS ON group, and those without a history of optic neuritis were included in the MS NON group. The differences between these groups in the mean, quadrant, and sector data related to the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) were evaluated. RESULTS: Superior nasal (SN), superior temporal (ST), inferior nasal (IN), and superior quadrant (SUP) values were significantly lower in the glaucoma group than in the MS group (p < 0.05). The mean superior GCC (GCC SUP) value was significantly lower in the MS ON group than in the glaucoma group (p < 0.05). On the other hand, SN, ST, inferior temporal (IT), IN, average RNFL (AVE RNFL), semi-average superior RNFL (SUP AVE RNFL), semi-average inferior RNFL (INF AVE RNFL), SUP, and inferior quadrant RNFL (INF) values were significantly lower in the glaucoma group than in the MS NON group (p < 0.05). CONCLUSION: RNFL and GCC parameters get thinner in MS and glaucoma patients. While the inferior and superior RNFL quadrants are more frequently affected in glaucoma patients, the affected quadrants vary according to the presence of a history of optic neuritis in MS patients. It is noteworthy that the GCC superior quadrant was thin in MS ON patients. The findings of this study indicate that OCT data may be valuable in the differential diagnosis of glaucoma and MS.


Subject(s)
Intraocular Pressure , Multiple Sclerosis , Nerve Fibers , Optic Disk , Retinal Ganglion Cells , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Female , Male , Multiple Sclerosis/diagnosis , Multiple Sclerosis/complications , Prospective Studies , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology , Optic Disk/pathology , Optic Disk/diagnostic imaging , Middle Aged , Adult , Intraocular Pressure/physiology , Glaucoma, Open-Angle/diagnosis , Visual Fields/physiology , Optic Neuritis/diagnosis
18.
Invest Ophthalmol Vis Sci ; 65(5): 34, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38776117

ABSTRACT

Purpose: A thin cornea is a potent risk factor for glaucoma. The underlying mechanisms remain unexplained. It has been postulated that central corneal thickness (CCT) may be a surrogate for biomechanical parameters of the posterior eye. In this study, we aimed to explore correlations of biomechanical responses between the cornea and the optic nerve head (ONH) and the peripapillary sclera (PPS) to elevated intraocular pressure (IOP), the primary risk factor of glaucoma. Methods: Inflation tests were performed in nine pairs of human donor globes. One eye of each pair was randomly assigned for cornea or posterior eye inflation. IOP was raised from 5 to 30 millimeters of mercury (mmHg) at 0.5 mmHg steps in the whole globe and the cornea or the ONH/PPS was imaged using a 50 MHz ultrasound probe. Correlation-based ultrasound speckle tracking was used to calculate tissue displacements and strains. Associations of radial, tangential, and shear strains at 30 mmHg between the cornea and the ONH or PPS were evaluated. Results: Corneal shear strain was significantly correlated with ONH shear strain (R = 0.857, P = 0.003) and PPS shear strain (R = 0.724, P = 0.028). CCT was not correlated with any strains in the cornea, ONH, or PPS. Conclusions: Our results suggested that an eye that experiences a larger shear strain in the cornea would likely experience a larger shear strain in its ONH and PPS at IOP elevations. The strong correlation between the cornea's and the ONH's shear response to IOP provides new insights and suggests a plausible explanation of the cornea's connection to glaucoma risk.


Subject(s)
Cornea , Intraocular Pressure , Optic Disk , Humans , Optic Disk/diagnostic imaging , Cornea/diagnostic imaging , Cornea/physiology , Intraocular Pressure/physiology , Biomechanical Phenomena/physiology , Aged , Middle Aged , Sclera/physiology , Sclera/diagnostic imaging , Male , Female , Glaucoma/physiopathology , Aged, 80 and over , Tissue Donors , Adult
19.
Transl Vis Sci Technol ; 13(5): 20, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780955

ABSTRACT

Purpose: We sough to develop an automatic method of quantifying optic disc pallor in fundus photographs and determine associations with peripapillary retinal nerve fiber layer (pRNFL) thickness. Methods: We used deep learning to segment the optic disc, fovea, and vessels in fundus photographs, and measured pallor. We assessed the relationship between pallor and pRNFL thickness derived from optical coherence tomography scans in 118 participants. Separately, we used images diagnosed by clinical inspection as pale (n = 45) and assessed how measurements compared with healthy controls (n = 46). We also developed automatic rejection thresholds and tested the software for robustness to camera type, image format, and resolution. Results: We developed software that automatically quantified disc pallor across several zones in fundus photographs. Pallor was associated with pRNFL thickness globally (ß = -9.81; standard error [SE] = 3.16; P < 0.05), in the temporal inferior zone (ß = -29.78; SE = 8.32; P < 0.01), with the nasal/temporal ratio (ß = 0.88; SE = 0.34; P < 0.05), and in the whole disc (ß = -8.22; SE = 2.92; P < 0.05). Furthermore, pallor was significantly higher in the patient group. Last, we demonstrate the analysis to be robust to camera type, image format, and resolution. Conclusions: We developed software that automatically locates and quantifies disc pallor in fundus photographs and found associations between pallor measurements and pRNFL thickness. Translational Relevance: We think our method will be useful for the identification, monitoring, and progression of diseases characterized by disc pallor and optic atrophy, including glaucoma, compression, and potentially in neurodegenerative disorders.


Subject(s)
Deep Learning , Nerve Fibers , Optic Disk , Photography , Software , Tomography, Optical Coherence , Humans , Optic Disk/diagnostic imaging , Optic Disk/pathology , Tomography, Optical Coherence/methods , Male , Female , Middle Aged , Nerve Fibers/pathology , Photography/methods , Adult , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/cytology , Aged , Optic Nerve Diseases/diagnostic imaging , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/pathology , Fundus Oculi
20.
Sci Rep ; 14(1): 11758, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783015

ABSTRACT

Glaucoma is a progressive neurodegenerative disease characterized by the gradual degeneration of retinal ganglion cells, leading to irreversible blindness worldwide. Therefore, timely and accurate diagnosis of glaucoma is crucial, enabling early intervention and facilitating effective disease management to mitigate further vision deterioration. The advent of optical coherence tomography (OCT) has marked a transformative era in ophthalmology, offering detailed visualization of the macula and optic nerve head (ONH) regions. In recent years, both 2D and 3D convolutional neural network (CNN) algorithms have been applied to OCT image analysis. While 2D CNNs rely on post-prediction aggregation of all B-scans within OCT volumes, 3D CNNs allow for direct glaucoma prediction from the OCT data. However, in the absence of extensively pre-trained 3D models, the comparative efficacy of 2D and 3D-CNN algorithms in detecting glaucoma from volumetric OCT images remains unclear. Therefore, this study explores the efficacy of glaucoma detection through volumetric OCT images using select state-of-the-art (SOTA) 2D-CNN models, 3D adaptations of these 2D-CNN models with specific weight transfer techniques, and a custom 5-layer 3D-CNN-Encoder algorithm. The performance across two distinct datasets is evaluated, each focusing on the macula and the ONH, to provide a comprehensive understanding of the models' capabilities in identifying glaucoma. Our findings demonstrate that the 2D-CNN algorithm consistently provided robust results compared to their 3D counterparts tested in this study for glaucoma detection, achieving AUC values of 0.960 and 0.943 for the macular and ONH OCT test images, respectively. Given the scarcity of pre-trained 3D models trained on extensive datasets, this comparative analysis underscores the overall utility of 2D and 3D-CNN algorithms in advancing glaucoma diagnostic systems in ophthalmology and highlights the potential of 2D algorithms for volumetric OCT image-based glaucoma detection.


Subject(s)
Algorithms , Glaucoma , Neural Networks, Computer , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Glaucoma/diagnostic imaging , Glaucoma/diagnosis , Imaging, Three-Dimensional/methods , Optic Disk/diagnostic imaging , Optic Disk/pathology , Retinal Ganglion Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...