Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.880
Filter
3.
Biol Pharm Bull ; 47(6): 1066-1071, 2024.
Article in English | MEDLINE | ID: mdl-38825459

ABSTRACT

Both nuclear and optical imaging are used for in vivo molecular imaging. Nuclear imaging displays superior quantitativity, and it permits imaging in deep tissues. Thus, this method is widely used clinically. Conversely, because of the low permeability of visible to near-IR light in living animals, it is difficult to visualize deep tissues via optical imaging. However, the light at these wavelengths has no ionizing effect, and it can be used without any restrictions in terms of location. Furthermore, optical signals can be controlled in vivo to accomplish target-specific imaging. Nuclear medicine and phototherapy have also evolved to permit targeted-specific imaging. In targeted nuclear therapy, beta emitters are conventionally used, but alpha emitters have received significant attention recently. Concerning phototherapy, photoimmunotherapy with near-IR light was approved in Japan in 2020. In this article, target-specific imaging and molecular targeted therapy utilizing nuclear medicine and optical technologies are discussed.


Subject(s)
Molecular Imaging , Nuclear Medicine , Optical Imaging , Humans , Animals , Optical Imaging/methods , Molecular Imaging/methods , Nuclear Medicine/methods , Phototherapy/methods , Molecular Targeted Therapy/methods , Neoplasms/therapy , Neoplasms/diagnostic imaging
4.
Luminescence ; 39(6): e4798, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825785

ABSTRACT

Cellular hypoxia is a common pathological process in various diseases. Detecting cellular hypoxia is of great scientific significance for early diagnosis of tumors. The hypoxia fluorescence probe analysis method can efficiently and conveniently evaluate the hypoxia status in tumor cells. These probes are covalently linked by hypoxic recognition groups and organic fluorescent molecules. Currently, the fluorescent molecules used in these probes often exhibit the aggregation-caused quenching effect, which is not conducive to fluorescence imaging in water. Herein, an activatable hypoxia fluorescence probe was constructed by covalently linking aggregation-induced emission luminogens to the hypoxic recognition group azobenzene. It does not emit fluorescence in solution and in solid state under light excitation due to the presence of photosensitive azo bonds. It can be cleaved by intracellular azoreductase into fluorescent amino derivatives with aggregation-induced emission characteristic. As the concentration of oxygen in cells decreases, its fluorescence intensity increases, making it suitable for fluorescence imaging to detect hypoxic environment in live cancer cells. This work broadens the molecular design approach for activatable hypoxia fluorescent probes.


Subject(s)
Cell Hypoxia , Fluorescent Dyes , Optical Imaging , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Molecular Structure , Azo Compounds/chemistry , HeLa Cells , Fluorescence
5.
Anal Chim Acta ; 1312: 342748, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834262

ABSTRACT

Diabetes mellitus is a disorder that affects lipid metabolism. Abnormalities in the lipid droplets (LDs) can lead to disturbances in lipid metabolism, which is a significant feature of diabetic patients. Nevertheless, the correlation between diabetes and the polarity of LDs has received little attention in the scientific literature. In order to detect LDs polarity changes in diabetes illness models, we created a new fluorescence probe LD-DCM. This probe has a stable structure, high selectivity, and minimal cytotoxicity. The probe formed a typical D-π-A molecular configuration with triphenylamine (TPA) and dicyanomethylene-4H-pyran (DCM) as electron donor and acceptor parts. The LD-DCM molecule has an immense solvatochromic effect (λem = 544-624 nm), fluorescence enhancement of around 150 times, and a high sensitivity to polarity changes within the linear range of Δf = 0.28 to 0.32, all due to its distinctive intramolecular charge transfer effect (ICT). In addition, LD-DCM was able to monitor the accumulation of LDs and the reduction of LDs polarity in living cells when stimulated by oleic acid, lipopolysaccharide, and high glucose. More importantly, LD-DCM has also been used effectively to detect polarity differences in organs from diabetic, drug-treated, and normal mice. The results showed that the liver polarity of diabetic mice was lower than that of normal mice, while the liver polarity of drug-treated mice was higher than that of diabetic mice. We believe that LD-DCM has the potential to serve as an efficient instrument for the diagnosis of disorders that are associated with the polarity of LDs.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Mice , Humans , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Optical Imaging , Male , Molecular Structure
6.
Anal Chim Acta ; 1312: 342768, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834271

ABSTRACT

A novel biothiols-sensitive near-infrared (NIR) fluorescent probe RhDN based on a rhodamine skeleton was developed for early detection of drug-induced hepatotoxicity in living mice. RhDN can be used not only as a conventional large stokes shift fluorescent (FL) probe, but also as a kind of anti-Stokes frequency upconversion luminescence (FUCL) molecular probe, which represents a long wavelength excitation (808 nm) to short wavelength emission (760 nm), and response to Cys/Hcy/GSH with high sensitivity. Compared with traditional FL methods, the FUCL method exhibited a lower detection limit of Cys, Hcy, and GSH in 75.1 nM, 101.8 nM, and 84.9 nM, respectively. We exemplify RhDN for tracking endogenously biothiols distribution in living cells and further realize real-time in vivo bioimaging of biothiols activity in mice with dual-mode luminescence system. Moreover, RhDN has been successfully applied to visualize the detection of drug-induced hepatotoxicity in living mice. Overall, this report presents a unique approach to the development of large stokes shift NIR FUCL molecular probes for in vitro and in vivo biothiols biosensing.


Subject(s)
Chemical and Drug Induced Liver Injury , Fluorescent Dyes , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Chemical and Drug Induced Liver Injury/diagnostic imaging , Mice , Humans , Infrared Rays , Optical Imaging , Glutathione/analysis , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Cysteine/analysis , Rhodamines/chemistry , Rhodamines/toxicity , Homocysteine/analysis , Luminescence
7.
J Nanobiotechnology ; 22(1): 224, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702709

ABSTRACT

Poorly identified tumor boundaries and nontargeted therapies lead to the high recurrence rates and poor quality of life of prostate cancer patients. Near-infrared-II (NIR-II) fluorescence imaging provides certain advantages, including high resolution and the sensitive detection of tumor boundaries. Herein, a cyanine agent (CY7-4) with significantly greater tumor affinity and blood circulation time than indocyanine green was screened. By binding albumin, the absorbance of CY7-4 in an aqueous solution showed no effects from aggregation, with a peak absorbance at 830 nm and a strong fluorescence emission tail beyond 1000 nm. Due to its extended circulation time (half-life of 2.5 h) and high affinity for tumor cells, this fluorophore was used for primary and metastatic tumor diagnosis and continuous monitoring. Moreover, a high tumor signal-to-noise ratio (up to ~ 10) and excellent preferential mitochondrial accumulation ensured the efficacy of this molecule for photothermal therapy. Therefore, we integrated NIR-II fluorescence-guided surgery and intraoperative photothermal therapy to overcome the shortcomings of a single treatment modality. A significant reduction in recurrence and an improved survival rate were observed, indicating that the concept of intraoperative combination therapy has potential for the precise clinical treatment of prostate cancer.


Subject(s)
Carbocyanines , Mitochondria , Neoplasm Recurrence, Local , Photothermal Therapy , Prostatic Neoplasms , Male , Prostatic Neoplasms/diagnostic imaging , Photothermal Therapy/methods , Humans , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Carbocyanines/chemistry , Optical Imaging/methods , Mice , Surgery, Computer-Assisted/methods , Fluorescent Dyes/chemistry , Mice, Nude , Mice, Inbred BALB C , Infrared Rays , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology
8.
Sci Rep ; 14(1): 10524, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719976

ABSTRACT

Extracellular matrix diseases like fibrosis are elusive to diagnose early on, to avoid complete loss of organ function or even cancer progression, making early diagnosis crucial. Imaging the matrix densities of proteins like collagen in fixed tissue sections with suitable stains and labels is a standard for diagnosis and staging. However, fine changes in matrix density are difficult to realize by conventional histological staining and microscopy as the matrix fibrils are finer than the resolving capacity of these microscopes. The dyes further blur the outline of the matrix and add a background that bottlenecks high-precision early diagnosis of matrix diseases. Here we demonstrate the multiple signal classification method-MUSICAL-otherwise a computational super-resolution microscopy technique to precisely estimate matrix density in fixed tissue sections using fibril autofluorescence with image stacks acquired on a conventional epifluorescence microscope. We validated the diagnostic and staging performance of the method in extracted collagen fibrils, mouse skin during repair, and pre-cancers in human oral mucosa. The method enables early high-precision label-free diagnosis of matrix-associated fibrotic diseases without needing additional infrastructure or rigorous clinical training.


Subject(s)
Microscopy, Fluorescence , Animals , Mice , Humans , Microscopy, Fluorescence/methods , Extracellular Matrix Proteins/metabolism , Optical Imaging/methods , Extracellular Matrix/metabolism , Collagen/metabolism , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Skin/metabolism , Skin/pathology
9.
Talanta ; 275: 126167, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710128

ABSTRACT

The expression of metabotropic glutamate receptor 5 (mGluR5) is subject to developmental regulation and undergoes significant changes in neuropsychiatric disorders and diseases. Visualizing mGluR5 by fluorescence imaging is a highly desired innovative technology for biomedical applications. Nevertheless, there are substantial problems with the chemical probes that are presently accessible. In this study, we have successfully developed a two-photon fluorogenic probe, mGlu-5-TP, based on the structure of mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP). Due to this antagonist-based probe selectively recognizes mGluR5, high expression of mGluR5 on living SH-SY5Y human neuroblastoma cells has been detected during intracellular inflammation triggered by lipopolysaccharides (LPS). Of particular significance, the probe can be employed along with two-photon fluorescence microscopy to enable real-time visualization of the mGluR5 in Aß fiber-treated neuronal cells, thereby establishing a connection to the progression of Alzheimer's disease (AD). These results revealed that the probe can be a valuable imaging tool for studying mGluR5-related diseases in the nervous system.


Subject(s)
Fluorescent Dyes , Neurons , Pyridines , Receptor, Metabotropic Glutamate 5 , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Neurons/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Cell Line, Tumor , Lipopolysaccharides/pharmacology , Photons , Optical Imaging , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/analysis
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124407, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38723466

ABSTRACT

Copper is one of the common among the heavy metal pollution in Chinese herbal medicine (CHM). So, it is essential to develop rapid and accurate testing method to quantify the Cu2+ content in CHM. Herein, we prepared a coordination-based near-infrared fluorescent probe (NRh6G-FA) by introducing a hemicyanine dye in rhodamine 6G scaffold. NRh6G-FA had a high sensitivity, anti-interference performance, fast response (within 60 s), visualization (from light yellow to green) for Cu2+ and excellent sensing performance for the detection of Cu2+ at low concentrations (LOD = 0.225 µM). The most likely mechanism was verified on the basis of Job's plot, ESI-HRMS and DFT calculations. NRh6G-FA could be successfully applied for the detection and "naked eye" recognition of Cu2+ in CHM samples. Moreover, NRh6G-FA was used to visualize Cu2+ in living MCF-7 cells by confocal fluorescence imaging.


Subject(s)
Copper , Drugs, Chinese Herbal , Fluorescent Dyes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Copper/analysis , Humans , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , MCF-7 Cells , Rhodamines/chemistry , Optical Imaging , Spectrometry, Fluorescence/methods , Limit of Detection
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124411, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38728851

ABSTRACT

The advancement of biological imaging techniques critically depends on the development of novel near-infrared (NIR) fluorescent probes. In this study, we introduce a designed NIR fluorescent probe, NRO-ßgal, which exhibits a unique off-on response mechanism to ß-galactosidase (ß-gal). Emitting a fluorescence peak at a wavelength of 670 nm, NRO-ßgal showcases a significant Stokes shift of 85 nm, which is indicative of its efficient energy transfer and minimized background interference. The probe achieves a remarkably low in vitro detection limit of 0.2 U/L and demonstrates a rapid response within 10 min, thereby underscoring its exceptional sensitivity, selectivity, and operational swiftness. Such superior analytical performance broadens the horizon for its application in intricate biological imaging studies. To validate the practical utility of NRO-ßgal in bio-imaging, we employed ovarian cancer cell and mouse models, where the probe's efficacy in accurately delineating tumor cells was examined. The results affirm NRO-ßgal's capability to provide sharp, high-contrast images of tumor regions, thereby significantly enhancing the precision of surgical tumor resection. Furthermore, the probe's potential for real-time monitoring of enzymatic activity in living tissues underscores its utility as a powerful tool for diagnostics in oncology and beyond.


Subject(s)
Fluorescent Dyes , Ovarian Neoplasms , beta-Galactosidase , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Female , beta-Galactosidase/metabolism , Animals , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/pathology , Humans , Cell Line, Tumor , Mice , Spectroscopy, Near-Infrared/methods , Optical Imaging/methods , Mice, Nude , Limit of Detection , Spectrometry, Fluorescence
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124415, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38733918

ABSTRACT

SO2 derivatives play an important role in many metabolic processes, excessive ingestion of them can lead to serious complications of various diseases. In this work, a novel dual ratiometric NIR fluorescent probe XT-CHO based on ICT effect was synthesized for detecting SO2 derivative. In the design of the probe, the α, ß-unsaturated bond formed between benzopyran and coumarin was used as the reaction site for SO2, meanwhile, the extended π-conjugate system promoted maximum emission wavelength of the probe up to 708 nm. Notably, the probe exhibited high selectivity and sensitivity for detecting SO2, the limit of detection reached 2.13 nM and 58.5 nM in fluorescence spectra and UV-Vis absorption spectra, respectively. The reaction mechanism of SO2 and XT-CHO had been verified by 1H NMR, ESI-MS spectra and DFT calculation. Moreover, the probe was successfully applied in detecting endogenous and exogenous SO2 in living cells and proved possessed the mitochondrial targeted ability.


Subject(s)
Fluorescent Dyes , Mitochondria , Sulfur Dioxide , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Sulfur Dioxide/analysis , Humans , Mitochondria/chemistry , Mitochondria/metabolism , Spectrometry, Fluorescence , HeLa Cells , Spectroscopy, Near-Infrared/methods , Coumarins/chemistry , Coumarins/chemical synthesis , Limit of Detection , Density Functional Theory , Optical Imaging
13.
Anal Methods ; 16(21): 3364-3371, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38742948

ABSTRACT

Glyphosate is a widely used broad-spectrum herbicide in agriculture and horticulture to control a variety of weeds and undesirable plants. However, the excessive use of glyphosate has raised a number of environmental and human health concerns. It is urgent to develop tools to detect glyphosate. Herein, a novel dual-signal probe CCU-Cu2+ was designed and synthesized on the basis of CCU. CCU exhibited excellent selectivity and great sensitivity for Cu2+ which were based on both fluorescence "turn-off" reaction and comparative color visualisation methods. Due to the strong chelating ability of glyphosate on Cu2+, the CCU-Cu2+ complex was applied to glyphosate detection in practical samples. The experimental results in vitro showed that the CCU-Cu2+ complex was highly selective and rapid, with a low detection limit (1.6 µM), and could be recognised by the naked eye in the detection of glyphosate. Based on the excellent properties of the CCU-Cu2+ complex, we also constructed a smartphone-assisted detection sensing system for glyphosate detection, which has the advantages of precision, sensitivity, and high interference immunity. Moreover, the CCU-Cu2+ complex was also successfully employed for exogenous glyphosate imaging in living cells. These characteristics demonstrated that CCU-Cu2+ holds significant potential for detection and imaging of glyphosate in bio-systems.


Subject(s)
Copper , Fluorescent Dyes , Glycine , Glyphosate , Herbicides , Glycine/analogs & derivatives , Glycine/chemistry , Fluorescent Dyes/chemistry , Humans , Copper/chemistry , Copper/analysis , Herbicides/analysis , Herbicides/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods , Optical Imaging/methods , Food Contamination/analysis , Smartphone , Food Analysis/methods
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124463, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38749205

ABSTRACT

In this work, a triphenylamine-benzofuran-derived fluorescent probe TBSF was developed for monitoring the sulfite level in Chinese medicinal materials and imaging in living cells. In the testing system, under 445 nm excitation, TBSF responded to sulfite steadily with a 540 nm fluorescence reporting signal. The testing system showed advantages including high sensitivity, rapid response, and high selectivity. In particular, TBSF achieved the sulfite detection in the water decoction of Chinese medicinal materials from both addition and excessive fumigation. It also realized the intracellular imaging of both exogenous and endogenous sulfite in living HepG2 cells. The imaging in water decoction-treated cells inferred the potential for the interdisciplinary detection.


Subject(s)
Benzofurans , Fluorescent Dyes , Spectrometry, Fluorescence , Sulfites , Sulfites/analysis , Fluorescent Dyes/chemistry , Humans , Benzofurans/chemistry , Benzofurans/analysis , Hep G2 Cells , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Aniline Compounds/chemistry , Optical Imaging
15.
Sci Rep ; 14(1): 12084, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802477

ABSTRACT

Selective Plane Illumination Microscopy (SPIM) has become an emerging technology since its first application for 3D in-vivo imaging of the development of a living organism. An extensive number of works have been published, improving both the speed of acquisition and the resolution of the systems. Furthermore, multispectral imaging allows the effective separation of overlapping signals associated with different fluorophores from the spectrum over the whole field-of-view of the analyzed sample. To eliminate the need of using fluorescent dyes, this technique can also be applied to autofluorescence imaging. However, the effective separation of the overlapped spectra in autofluorescence imaging necessitates the use of mathematical tools. In this work, we explore the application of a method based on Principal Component Analysis (PCA) that enables tissue characterization upon spectral autofluorescence data without the use of fluorophores. Thus, enabling the separation of different tissue types in fixed and living samples with no need of staining techniques. Two procedures are described for acquiring spectral data, including a single excitation based method and a multi-excitation scanning approach. In both cases, we demonstrate the effective separation of various tissue types based on their unique autofluorescence spectra.


Subject(s)
Optical Imaging , Principal Component Analysis , Animals , Optical Imaging/methods , Microscopy, Fluorescence/methods , Mice , Fluorescent Dyes/chemistry , Imaging, Three-Dimensional/methods
16.
Anal Chem ; 96(22): 9132-9140, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38764163

ABSTRACT

Gold nanorods (AuNRs) have been considered highly compelling materials for early cancer diagnosis and have aroused a burgeoning fascination among the biomedical sectors. By leveraging the versatile tunable optical properties of AuNRs, herein, we have developed a novel tumor-targeted dual-modal nanoprobe (FFA) that exhibits excellent bioluminescence and photoacoustic imaging performance for early tumor diagnosis. FFA has been synthesized by anchoring the recombinant bioluminescent firefly luciferase protein (Fluc) on the folate-conjugated AuNRs via the PEG linker. TEM images and UV-vis studies confirm the nanorod morphology and successful conjugation of the biomolecules to AuNRs. The nanoprobe FFA relies on the ability of the folate module to target the folate receptor-positive tumor cells actively, and simultaneously, the Fluc module facilitates excellent bioluminescent properties in physiological conditions. The success of chemical engineering in the present study enables stronger bioluminescent signals in the folate receptor-positive cells (Skov3, Hela, and MCF-7) than in folate receptor-negative cells (A549, 293T, MCF-10A, and HepG2). Additionally, the AuNRs induced strong photoacoustic conversion performance, enhancing the resolution of tumor imaging. No apparent toxicity was detected at the cellular and mouse tissue levels, manifesting the biocompatibility nature of the nanoprobe. Prompted by the positive merits of FFA, the in vivo animal studies were performed, and a notable enhancement was observed in the bioluminescent/photoacoustic intensity of the nanoprobe in the tumor region compared to that in the folate-blocking region. Therefore, this synergistic dual-modal bioluminescent and photoacoustic imaging platform holds great potential as a tumor-targeted contrast agent for early tumor diagnosis with high-performance imaging information.


Subject(s)
Contrast Media , Gold , Luminescent Measurements , Nanotubes , Photoacoustic Techniques , Photoacoustic Techniques/methods , Humans , Nanotubes/chemistry , Gold/chemistry , Animals , Contrast Media/chemistry , Mice , Mice, Nude , Optical Imaging , Neoplasms/diagnostic imaging , Female , Luciferases/chemistry , Luciferases/metabolism
17.
Anal Chem ; 96(22): 9097-9103, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768044

ABSTRACT

Herein, a fluorescence light-up 3D DNA walker (FLDW) was powered and accelerated by endogenous adenosine-5'-triphosphate (ATP) molecules to construct a biosensor for sensitive and rapid label-free detection and imaging of microRNA-221 (miRNA-221) in malignant tumor cells. Impressively, ATP as the driving force and accelerator for FLDW could significantly accelerate the operation rate of FLDW, reduce the likelihood of errors in signaling, and improve the sensitivity of detection and imaging. When FLDW was initiated by output DNA H1-op transformed by target miRNA-221, G-rich sequences in the S strand, anchored to AuNP, were exposed to form G-quadruplexes (G4s), and thioflavin T (ThT) embedded in the G4s emitted intense fluorescence to realize sensitive and rapid detection of target miRNA-221. Meanwhile, the specific binding of ThT to G4 with a weak background fluorescence response was utilized to enhance the signal-to-noise ratio of the label-free assay straightforwardly and cost-effectively. The proposed FLDW system could realize sensitive detection of the target miRNA-221 in the range of 1 pM to 10 nM with a detection limit of 0.19 pM by employing catalytic hairpin assembly (CHA) to improve the conversion of the target. Furthermore, by harnessing the abundant ATP present in the tumor microenvironment, FLDW achieved rapid and accurate imaging of miRNA-221 in cancer cells. This strategy provides an innovative and high-speed label-free approach for the detection and imaging of biomarkers in cancer cells and is expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.


Subject(s)
Adenosine Triphosphate , Biosensing Techniques , DNA , MicroRNAs , MicroRNAs/analysis , MicroRNAs/metabolism , Humans , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , DNA/chemistry , Biosensing Techniques/methods , Optical Imaging , G-Quadruplexes , Fluorescence , Fluorescent Dyes/chemistry , Limit of Detection , Gold/chemistry
18.
J Mater Chem B ; 12(22): 5350-5359, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38738315

ABSTRACT

An organelle-selective vision provides insights into the physiological response of plants and crops to environmental stresses in sustainable agriculture ecosystems. Biological applications often require two-photon excited fluorophores with low phototoxicity, high brightness, deep penetration, and tuneable cell entry. We obtained three aniline-based squaraines (SQs) tuned from hydrophobic to hydrophilic characteristics by modifying terminal pendant groups and substituents, and investigated their steady-state absorption and far-red-emitting fluorescence properties. The SQs exhibited two-photon absorption (2PA) ranging from 750 to 870 nm within the first biological spectral window; their structure-property relationships, corresponding to the 2PA cross sections (δ2PA), and structure differences were demonstrated. The maximum δ2PA value was ∼1220 GM at 800 nm for hydrophilic SQ3. Distinct biological staining efficiency and selective SQ bioimaging were evaluated utilizing the onion epidermal cell model. Contrary to the hydrophobic SQ1 results in the onion epidermal cell wall, amphiphilic SQ2 tagged the vacuole and nucleus and SQ3 tagged the vacuole. Distinguishable staining profiles in the roots and leaves were achieved. We believe that this study is the first to demonstrate distinct visualisation efficiency induced by the structure differences of two-photon excited SQs. Our results can help establish the versatile roles of novel near-infrared-emitting SQs in biological applications.


Subject(s)
Aniline Compounds , Cyclobutanes , Fluorescent Dyes , Onions , Phenols , Structure-Activity Relationship , Aniline Compounds/chemistry , Aniline Compounds/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Onions/chemistry , Phenols/chemistry , Phenols/pharmacology , Cyclobutanes/chemistry , Cyclobutanes/chemical synthesis , Photons , Molecular Structure , Optical Imaging , Plant Cells
19.
Mikrochim Acta ; 191(6): 302, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709346

ABSTRACT

A sensitive and biocompatible N-rich probe for rapid visual uranium detection was constructed by grafting two trianiline groups to 2,6-bis(aminomethyl)pyridine. Possessing excellent aggregation-induced emission (AIE) property and the advantages to form multidentate chelate with U selectively, the probe has been applied successfully to visualize uranium in complex environmental water samples and living cells, demonstrating outstanding anti-interference ability against large equivalent of different ions over a wide effective pH range. A large linear range (1.0 × 10-7-9.0 × 10-7 mol/L) and low detection limit (72.6 nmol/L, 17.28 ppb) were achieved for the visual determination of uranium. The recognition mechanism, photophysical properties, analytical performance and cytotoxicity were systematically investigated, demonstrating high potential for fast risk assessment of uranium pollution in field and in vivo.


Subject(s)
Fluorescent Dyes , Uranium , Uranium/analysis , Uranium/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Humans , Limit of Detection , Biocompatible Materials/chemistry , HeLa Cells , Cell Survival/drug effects , Optical Imaging , Aniline Compounds/chemistry , Aniline Compounds/toxicity , Pyridines/chemistry
20.
J Biomed Opt ; 29(6): 066003, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745983

ABSTRACT

Significance: Necrotizing soft-tissue infections (NSTIs) are life-threatening infections with a cumulative case fatality rate of 21%. The initial presentation of an NSTI is non-specific, frequently leading to misdiagnosis and delays in care. No current strategies yield an accurate, real-time diagnosis of an NSTI. Aim: A first-in-kind, observational, clinical pilot study tested the hypothesis that measurable fluorescence signal voids occur in NSTI-affected tissues following intravenous administration and imaging of perfusion-based indocyanine green (ICG) fluorescence. This hypothesis is based on the established knowledge that NSTI is associated with local microvascular thrombosis. Approach: Adult patients presenting to the Emergency Department of a tertiary care medical center at high risk for NSTI were prospectively enrolled and imaged with a commercial fluorescence imager. Single-frame fluorescence snapshot and first-pass perfusion kinetic parameters-ingress slope (IS), time-to-peak (TTP) intensity, and maximum fluorescence intensity (IMAX)-were quantified using a dynamic contrast-enhanced fluorescence imaging technique. Clinical variables (comorbidities, blood laboratory values), fluorescence parameters, and fluorescence signal-to-background ratios (SBRs) were compared to final infection diagnosis. Results: Fourteen patients were enrolled and imaged (six NSTI, six cellulitis, one diabetes mellitus-associated gangrene, and one osteomyelitis). Clinical variables demonstrated no statistically significant differences between NSTI and non-NSTI patient groups (p-value≥0.22). All NSTI cases exhibited prominent fluorescence signal voids in affected tissues, including tissue features not visible to the naked eye. All cellulitis cases exhibited a hyperemic response with increased fluorescence and no distinct signal voids. Median lesion-to-background tissue SBRs based on snapshot, IS, TTP, and IMAX parameter maps ranged from 3.2 to 9.1, 2.2 to 33.8, 1.0 to 7.5, and 1.5 to 12.7, respectively, for the NSTI patient group. All fluorescence parameters except TTP demonstrated statistically significant differences between NSTI and cellulitis patient groups (p-value<0.05). Conclusions: Real-time, accurate discrimination of NSTIs compared with non-necrotizing infections may be possible with perfusion-based ICG fluorescence imaging.


Subject(s)
Indocyanine Green , Optical Imaging , Soft Tissue Infections , Humans , Indocyanine Green/chemistry , Female , Male , Soft Tissue Infections/diagnostic imaging , Middle Aged , Optical Imaging/methods , Pilot Projects , Aged , Prospective Studies , Adult , Necrosis/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...