Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Sci Rep ; 14(1): 7690, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565870

ABSTRACT

Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.


Subject(s)
Ciona intestinalis , Animals , Humans , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexins/genetics , Orexins/metabolism , Ciona intestinalis/genetics , Ciona intestinalis/metabolism , HEK293 Cells , Signal Transduction , Vertebrates/metabolism , Carrier Proteins/metabolism
2.
J Autoimmun ; 146: 103234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663202

ABSTRACT

Narcolepsy is a rare cause of hypersomnolence and may be associated or not with cataplexy, i.e. sudden muscle weakness. These forms are designated narcolepsy-type 1 (NT1) and -type 2 (NT2), respectively. Notable characteristics of narcolepsy are that most patients carry the HLA-DQB1*06:02 allele and NT1-patients have strongly decreased levels of hypocretin-1 (synonym orexin-A) in the cerebrospinal fluid (CSF). The pathogenesis of narcolepsy is still not completely understood but the strong HLA-bias and increased frequencies of CD4+ T cells reactive to hypocretin in the peripheral blood suggest autoimmune processes in the hypothalamus. Here we analyzed the transcriptomes of CSF-cells from twelve NT1 and two NT2 patients by single cell RNAseq (scRNAseq). As controls, we used CSF cells from patients with multiple sclerosis, radiologically isolated syndrome, and idiopathic intracranial hypertension. From 27,255 CSF cells, we identified 20 clusters of different cell types and found significant differences in three CD4+ T cell and one monocyte clusters between narcolepsy and multiple sclerosis patients. Over 1000 genes were differentially regulated between patients with NT1 and other diseases. Surprisingly, the most strongly upregulated genes in narcolepsy patients as compared to controls were coding for the genome-encoded MTRNR2L12 and MTRNR2L8 peptides, which are homologous to the mitochondria-encoded HUMANIN peptide that is known playing a role in other neurological diseases including Alzheimer's disease.


Subject(s)
Narcolepsy , Single-Cell Analysis , Transcriptome , Humans , Narcolepsy/genetics , Narcolepsy/cerebrospinal fluid , Male , Female , Adult , Orexins/cerebrospinal fluid , Orexins/genetics , Gene Expression Profiling , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , HLA-DQ beta-Chains/genetics , Middle Aged , Young Adult
3.
Life Sci ; 344: 122581, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38514004

ABSTRACT

Hypocretin is synthesized exclusively in the hypothalamus and distributes inputs to several areas of the brain, which may play an important role in depression. Our previous study showed that hypocretin-1 was increased in the lateral hypothalamus in female patients with depression compared to female controls. Estrogen acts through estrogen receptor (ER)α and ERß. We studied the possibility of a direct action of estrogen receptors on the expression of human hypocretin. We found that hypocretin-1 plasma levels were significantly higher in female patients with depression than in female controls. Female depression estrogen receptors and hypocretin are colocalized in the human lateral hypothalamus, PC12, and SK-N-SH cells. The estrogen receptor response elements (ERE) that exist in the hypocretin promoter region may directly regulate the gene expression of hypocretin. The synchronicity of change of hypocretin and estradiol both in hypothalamus and plasma was verified in female rats. In the presence of estradiol, specific binding occurs between the recombinant human ER and hypocretin-ERE. Expression of ER combined with estradiol repressed hypocretin promoter activity via the ERE. In conclusion, we found that estradiol may directly affect hypocretin neurons in the human hypothalamus via ER binding to the hypocretin-ERE, which may lead to the sex-specific pathogenesis of depression.


Subject(s)
Estrogens , Receptors, Estrogen , Male , Humans , Rats , Female , Animals , Orexins/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estradiol/metabolism , Estrogen Receptor beta/metabolism
4.
Curr Biol ; 34(7): 1532-1540.e4, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38490200

ABSTRACT

The Hypocretin/Orexin signaling pathway suppresses sleep and promotes arousal, whereas the loss of Hypocretin/Orexin results in narcolepsy, including the involuntary loss of muscle tone (cataplexy).1 Here, we show that the South Asian fish species Chromobotia macracanthus exhibits a sleep-like state during which individuals stop swimming and rest on their side. Strikingly, we discovered that the Hypocretin/Orexin system is pseudogenized in C. macracanthus, but in contrast to Hypocretin-deficient mammals, C. macracanthus does not suffer from sudden behavioral arrests. Similarly, zebrafish mutations in hypocretin/orexin show no evident signs of cataplectic-like episodes. Notably, four additional species in the Botiidae family also lack a functional Hypocretin/Orexin system. These findings identify the first vertebrate family that does not rely on a functional Hypocretin/Orexin system for the regulation of sleep and arousal.


Subject(s)
Cataplexy , Fishes , Narcolepsy , Neuropeptides , Animals , Arousal/physiology , Mammals , Neuropeptides/genetics , Neuropeptides/metabolism , Orexins/genetics , Zebrafish/genetics , Zebrafish/metabolism
5.
Nat Commun ; 15(1): 1249, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341419

ABSTRACT

Lateral hypothalamic (LH) hypocretin/orexin neurons (HONs) control brain-wide electrical excitation. Abnormally high excitation produces epileptic seizures, which affect millions of people and need better treatments. HON population activity spikes from minute to minute, but the role of this in seizures is unknown. Here, we describe correlative and causal links between HON activity spikes and seizures. Applying temporally-targeted HON recordings and optogenetic silencing to a male mouse model of acute epilepsy, we found that pre-seizure HON activity predicts and controls the electrophysiology and behavioral pathology of subsequent seizures. No such links were detected for HON activity during seizures. Having thus defined the time window where HONs influence seizures, we targeted it with LH deep brain stimulation (DBS), which inhibited HON population activity, and produced seizure protection. Collectively, these results uncover a feature of brain activity linked to seizures, and demonstrate a proof-of-concept treatment that controls this feature and alleviates epilepsy.


Subject(s)
Epilepsy , Seizures , Mice , Animals , Male , Humans , Orexins/genetics , Seizures/prevention & control , Epilepsy/genetics , Epilepsy/therapy , Neurons/physiology , Hypothalamus
6.
Sci Rep ; 14(1): 3021, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321123

ABSTRACT

The initiation of alcohol use early in life is one of the strongest predictors of developing a future alcohol use disorder. Clinical studies have identified specific behaviors during early childhood that predict an increased risk for excess alcohol consumption later in life. These behaviors, including increased hyperactivity, anxiety, novelty-seeking, exploratory behavior, impulsivity, and alcohol-seeking, are similarly stimulated in children and adolescent offspring of mothers who drink alcohol during pregnancy. Here we tested larval zebrafish in addition to young pre-weanling rats and found this repertoire of early behaviors along with the overconsumption of alcohol during adolescence to be increased by embryonic ethanol exposure. With hypocretin/orexin (Hcrt) neurons known to be stimulated by ethanol and involved in mediating these alcohol-related behaviors, we tested their function in larval zebrafish and found optogenetic activation of Hcrt neurons to stimulate these same early alcohol-related behaviors and later alcohol intake, suggesting that these neurons have an important role in producing these behaviors. Together, these results show zebrafish to be an especially useful animal model for investigating the diverse neuronal systems mediating behavioral changes at young ages that are produced by embryonic ethanol exposure and predict an increased risk for developing alcohol use disorder.


Subject(s)
Alcoholism , Ethanol , Child, Preschool , Humans , Pregnancy , Female , Child , Animals , Rats , Adolescent , Orexins/genetics , Zebrafish , Optogenetics , Alcohol Drinking , Neurons
7.
Sleep ; 47(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38227834

ABSTRACT

Narcolepsy type 1 (NT1), characterized by the loss of hypocretin/orexin (HCRT) production in the lateral hypothalamus, has been linked to Pandemrix vaccination during the 2009 H1N1 pandemic, especially in children and adolescents. It is still unknown why this vaccination increased the risk of developing NT1. This study investigated the effects of Pandemrix vaccination during adolescence on Hcrt mRNA expression in mice. Mice received a primary vaccination (50 µL i.m.) during prepubescence and a booster vaccination during peri-adolescence. Hcrt expression was measured at three-time points after the vaccinations. Control groups included both a saline group and an undisturbed group of mice. Hcrt expression was decreased after both Pandemrix and saline injections, but 21 days after the second injection, the saline group no longer showed decreased Hcrt expression, while the Pandemrix group still exhibited a significant reduction of about 60% compared to the undisturbed control group. This finding suggests that Pandemrix vaccination during adolescence influences Hcrt expression in mice into early adulthood. The Hcrt mRNA level did not reach the low levels known to induce NT1 symptoms, instead, our finding supports the multiple-hit hypothesis of NT1 that states that several insults to the HCRT system may be needed to induce NT1 and that Pandemrix could be one such insult.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Narcolepsy , Orexins , Animals , Mice , Down-Regulation , Influenza Vaccines/adverse effects , Narcolepsy/etiology , Orexins/genetics , Orexins/metabolism , RNA, Messenger , Vaccination/adverse effects
8.
Neurogenetics ; 25(2): 79-83, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240911

ABSTRACT

Narcolepsy with cataplexy is a complex disease with both genetic and environmental risk factors. To gain further insight into the homozygous HCRT-related narcolepsy, we present a case series of five patients from two consanguineous families, each harboring a novel homozygous variant of HCRT c.17_18del. All affected individuals exhibited severe cataplexy accompanied by narcolepsy symptoms during infancy. Additionally, cataplexy symptoms improved or disappeared in the majority of patients over time. Pathogenic variants in HCRT cause autosomal recessive narcolepsy with cataplexy. Genetic testing of the HCRT gene should be conducted in specific subgroups of narcolepsy, particularly those with early onset, familial cases, and a predominantly cataplexy phenotype.


Subject(s)
Narcolepsy , Pedigree , Adolescent , Adult , Child , Female , Humans , Male , Alleles , Cataplexy/genetics , Consanguinity , Genes, Recessive , Homozygote , Mutation/genetics , Narcolepsy/genetics , Orexins/genetics , Phenotype
9.
Front Immunol ; 14: 1249405, 2023.
Article in English | MEDLINE | ID: mdl-38077397

ABSTRACT

Background: Narcolepsy Type I (NT1) is a rare, life-long sleep disorder arising as a consequence of the extensive destruction of orexin-producing hypothalamic neurons. The mechanisms involved in the destruction of orexin neurons are not yet elucidated but the association of narcolepsy with environmental triggers and genetic susceptibility (strong association with the HLA, TCRs and other immunologically-relevant loci) implicates an immuno-pathological process. Several studies in animal models and on human samples have suggested that T-cells are the main pathogenic culprits. Methods: RNA sequencing was performed on four CD4 and CD8 T-cell subsets (naive, effector, effector memory and central memory) sorted by flow cytometry from peripheral blood mononuclear cells (PBMCs) of NT1 patients and HLA-matched healthy donors as well as (age- and sex-) matched individuals suffering from other sleep disorders (OSD). The RNAseq analysis was conducted by comparing the transcriptome of NT1 patients to that of healthy donors and other sleep disorder patients (collectively referred to as the non-narcolepsy controls) in order to identify NT1-specific genes and pathways. Results: We determined NT1-specific differentially expressed genes, several of which are involved in tubulin arrangement found in CD4 (TBCB, CCT5, EML4, TPGS1, TPGS2) and CD8 (TTLL7) T cell subsets, which play a role in the immune synapse formation and TCR signaling. Furthermore, we identified genes (GZMB, LTB in CD4 T-cells and NLRP3, TRADD, IL6, CXCR1, FOXO3, FOXP3 in CD8 T-cells) and pathways involved in various aspects of inflammation and inflammatory response. More specifically, the inflammatory profile was identified in the "naive" subset of CD4 and CD8 T-cell. Conclusion: We identified NT1-specific differentially expressed genes, providing a cell-type and subset specific catalog describing their functions in T-cells as well as their potential involvement in NT1. Several genes and pathways identified are involved in the formation of the immune synapse and TCR activation as well as inflammation and the inflammatory response. An inflammatory transcriptomic profile was detected in both "naive" CD4 and CD8 T-cell subsets suggesting their possible involvement in the development or progression of the narcoleptic process.


Subject(s)
Leukocytes, Mononuclear , Narcolepsy , Animals , Humans , Orexins/genetics , Orexins/metabolism , Leukocytes, Mononuclear/metabolism , CD8-Positive T-Lymphocytes , Narcolepsy/genetics , Receptors, Antigen, T-Cell/genetics , Gene Expression Profiling , Inflammation
10.
Proc Natl Acad Sci U S A ; 120(41): e2301951120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37796986

ABSTRACT

Narcolepsy is a sleep disorder caused by deficiency of orexin signaling. However, the neural mechanisms by which deficient orexin signaling causes the abnormal rapid eye movement (REM) sleep characteristics of narcolepsy, such as cataplexy and frequent transitions to REM states, are not fully understood. Here, we determined the activity dynamics of orexin neurons during sleep that suppress the abnormal REM sleep architecture of narcolepsy. Orexin neurons were highly active during wakefulness, showed intermittent synchronous activity during non-REM (NREM) sleep, were quiescent prior to the transition from NREM to REM sleep, and a small subpopulation of these cells was active during REM sleep. Orexin neurons that lacked orexin peptides were less active during REM sleep and were mostly silent during cataplexy. Optogenetic inhibition of orexin neurons established that the activity dynamics of these cells during NREM sleep regulate NREM-REM sleep transitions. Inhibition of orexin neurons during REM sleep increased subsequent REM sleep in "orexin intact" mice and subsequent cataplexy in mice lacking orexin peptides, indicating that the activity of a subpopulation of orexin neurons during the preceding REM sleep suppresses subsequent REM sleep and cataplexy. Thus, these results identify how deficient orexin signaling during sleep results in the abnormal REM sleep architecture characteristic of narcolepsy.


Subject(s)
Cataplexy , Narcolepsy , Orexins , Animals , Mice , Orexins/deficiency , Orexins/genetics , Sleep , Sleep, REM/physiology , Wakefulness/physiology
11.
Neuromolecular Med ; 25(4): 632-643, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37843792

ABSTRACT

Orexin and its receptors are closely related to the pathogenesis of Alzheimer's disease (AD). Although the expression of orexin system genes under physiological condition has circadian rhythm, the diurnal characteristics of orexin system genes, and its potential role in the pathogenesis in AD are unknown. In the present study, we hope to elucidate the diurnal characteristics of orexin system genes at the early stage of AD, and to investigate its potential role in the development of AD neuropathology. We firstly detected the mRNA levels of orexin system genes, AD risk genes and core clock genes (CCGs) in hypothalamus and hippocampus in 6-month-old male 3xTg-AD mice and C57BL/6J (wild type, WT) control mice, then analyzed diurnal expression profiles of all genes using JTK_CYCLE algorithm, and did the correlation analysis between expression of orexin system genes and AD risk genes or CCGs. In addition, the expression of ß-amyloid protein (Aß) and phosphorylated tau (p-tau) protein were measured. The results showed that the diurnal mRNA expression profiles of PPO, OX1R, OX2R, Bace2, Bmal1, Per1, Per2 and Cry1 in the hypothalamus, and gene expression of OX1R, OX2R, Bace1, Bmal1, Per1 and Cry2 in the hippocampus in 3xTg-AD mice were different from that in WT mice. Furthermore, there is positive correlation between orexin system genes and AD risk genes or CCGs in the brain in 3xTg-AD mice. In addition, the expression of Aß and p-tau in hippocampus in 3xTg-AD mice were significantly increased, and the expression of p-tau is higher in night than in day. These results indicate that the abnormal expression profiles of orexin system genes and its interaction with AD risk genes or CCGs might exert important role in the pathogenesis of AD, which will increase the expression of Aß and p-tau, and accelerate the development of AD.


Subject(s)
Alzheimer Disease , Orexins , Animals , Male , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , ARNTL Transcription Factors/metabolism , Aspartic Acid Endopeptidases/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Mice, Transgenic , Orexins/genetics , RNA, Messenger/genetics , tau Proteins/genetics , tau Proteins/metabolism
12.
J Clin Sleep Med ; 19(12): 2053-2057, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37539640

ABSTRACT

STUDY OBJECTIVES: We report data collected from 2 reference European sleep centers on a series of patients with narcolepsy with hypocretin-1 deficiency and absence of the human leukocyte antigens (HLA) DQB1*06:02 allele. METHODS: Clinical data, HLA DQ markers, and cerebrospinal fluid assessments were collected retrospectively from Caucasian patients with a diagnosis of narcolepsy type 1 with cerebrospinal fluid hypocretin-1 deficiency (< 110 pg/ml) and absence of the HLA DQB1*06:02 allele, with follow-up with at least 1 visit within the last 4 years, consecutively admitted to 2 European sleep centers (Lugano, Switzerland and Montpellier, France). RESULTS: Seven patients (3 of 29 patients in Lugano and 4 of 328 in Montpellier) were diagnosed with narcolepsy with hypocretin-1 deficiency and absence of HLA DQB1*06:02 (ie, 2% of patients with narcolepsy type 1). Regarding the HLA-DQB1 genotyping, 4 cases were positive for HLA DQB1*03:01, 1 for DQB1*03:02, and 3 for DQB1*02:01. Three patients had atypical cataplexy and 1 had no cataplexy. Only 2 patients had both a mean sleep latency of less than 8 minutes and more than 2 sleep onset rapid eye movement periods on the Multiple Sleep Latency Test, indicative of a less severe condition. CONCLUSIONS: Although rare, this series of 7 cases confirms that hypocretin-deficient narcolepsy should not be excluded in the absence of HLA DQB1*06:02, especially if patients are carriers of other high-risk HLA-DQB1 alleles (DQB1*03:01, *03:02, *02:01). These data support the hypothesis that narcolepsy type 1 is a wider disease spectrum linked to the loss of hypocretin peptide. CITATION: Miano S, Barateau L, De Pieri M, et al. A series of 7 cases of patients with narcolepsy with hypocretin deficiency without the HLA DQB1*06:02 allele. J Clin Sleep Med. 2023;19(12):2053-2057.


Subject(s)
Cataplexy , Narcolepsy , Neuropeptides , Humans , Orexins/genetics , Alleles , Neuropeptides/cerebrospinal fluid , Retrospective Studies , Narcolepsy/complications , Narcolepsy/genetics , Narcolepsy/diagnosis , HLA-DQ beta-Chains/genetics , Cataplexy/complications , Cataplexy/genetics
13.
Mol Biol Rep ; 50(7): 6107-6120, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37155018

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease (NDD) caused by dopaminergic neuron degeneration in the substantia nigra (SN). Orexin is a neuropeptide that plays a role in the pathogenesis of PD. Orexin has neuroprotective properties in dopaminergic neurons. In PD neuropathology, there is also degeneration of orexinergic neurons in the hypothalamus, in addition to dopaminergic neurons. However, the loss of orexinergic neurons in PD began after the degeneration of dopaminergic neurons. Reduced activity of orexinergic neurons has been linked to developing and progressing motor and non-motor symptoms in PD. In addition, the dysregulation of the orexin pathway is linked to the development of sleep disorders. The hypothalamic orexin pathway regulates various aspects of PD neuropathology at the cellular, subcellular, and molecular levels. Finally, non-motor symptoms, particularly insomnia and disturbed sleep, promote neuroinflammation and the accumulation of neurotoxic proteins as a result of defects in autophagy, endoplasmic reticulum (ER) stress, and the glymphatic system. As a result, this review aimed to highlight the potential role of orexin in PD neuropathology.


Subject(s)
Neurodegenerative Diseases , Neuropeptides , Parkinson Disease , Humans , Orexins/genetics , Orexins/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Neurodegenerative Diseases/metabolism , Neuropeptides/metabolism , Dopaminergic Neurons/metabolism
14.
Proc Natl Acad Sci U S A ; 120(20): e2220353120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155875

ABSTRACT

Early-life stress has long-term impacts on the structure and function of the anterior cingulate cortex (ACC), and raises the risk of adult neuropsychiatric disorders including social dysfunction. The underlying neural mechanisms, however, are still uncertain. Here, we show that, in female mice, maternal separation (MS) during the first three postnatal weeks results in social impairment accompanied with hypoactivity in pyramidal neurons (PNs) of the ACC. Activation of ACC PNs ameliorates MS-induced social impairment. Neuropeptide Hcrt, which encodes hypocretin (orexin), is the top down-regulated gene in the ACC of MS females. Activating ACC orexin terminals enhances the activity of ACC PNs and rescues the diminished sociability observed in MS females via an orexin receptor 2 (OxR2)-dependent mechanism. Our results suggest orexin signaling in the ACC is critical in mediating early-life stress-induced social impairment in females.


Subject(s)
Neuropeptides , Stress, Psychological , Animals , Female , Mice , Gyrus Cinguli , Maternal Deprivation , Neuropeptides/metabolism , Orexin Receptors/genetics , Orexins/genetics , Orexins/metabolism
15.
Curr Biol ; 33(8): 1550-1564.e5, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37044089

ABSTRACT

Waking behaviors such as sitting or standing require suitable levels of muscle tone. But it is unclear how arousal and motor circuits communicate with one another so that appropriate motor tone occurs during wakefulness. Cataplexy is a peculiar condition in which muscle tone is involuntarily lost during normal periods of wakefulness. Cataplexy therefore provides a unique opportunity for identifying the signaling mechanisms that synchronize motor and arousal behaviors. Cataplexy occurs when hypothalamic orexin neurons are lost in narcolepsy; however, it is unclear if motor-arousal decoupling in cataplexy is directly or indirectly caused by orexin cell loss. Here, we used genomic, proteomic, chemogenetic, electrophysiological, and behavioral assays to determine if grafting orexin cells into the brain of cataplectic (i.e., orexin-/-) mice restores normal motor-arousal behaviors by preventing cataplexy. First, we engineered immortalized orexin cells and found that they not only produce and release orexin but also exhibit a gene profile that mimics native orexin neurons. Second, we show that engineered orexin cells thrive and integrate into host tissue when transplanted into the brain of mice. Next, we found that grafting only 200-300 orexin cells into the dorsal raphe nucleus-a region densely innervated by native orexin neurons-reduces cataplexy. Last, we show that real-time chemogenetic activation of orexin cells restores motor-arousal synchrony by preventing cataplexy. We suggest that orexin signaling is critical for arousal-motor synchrony during wakefulness and that the dorsal raphe plays a pivotal role in coupling arousal and motor behaviors.


Subject(s)
Cataplexy , Mice , Animals , Cataplexy/therapy , Orexins/genetics , Orexins/metabolism , Proteomics , Arousal/physiology , Wakefulness/physiology , Dorsal Raphe Nucleus , Cell Transplantation
16.
J Pharmacol Exp Ther ; 385(3): 193-204, 2023 06.
Article in English | MEDLINE | ID: mdl-37001988

ABSTRACT

Loss of orexin neurons is associated with narcolepsy type 1 (NT1), which is characterized by multiple symptoms including excessive daytime sleepiness and cataplexy. Orexin 2 receptor (OX2R) knockout (KO) mice, but not orexin 1 receptor (OX1R) KO mice, show narcolepsy-like phenotypes, thus OX2R agonists are potentially promising for treating NT1. In fact, in early proof-of-concept studies, intravenous infusion of danavorexton, an OX2R-selective agonist, significantly increased wakefulness in individuals with NT1. However, danavorexton has limited oral availability. Here, we report pharmacological characteristics of a novel OX2R agonist, TAK-994 [N-{(2S,3S)-1-(2-hydroxy-2-methylpropanoyl)-2-[(2,3',5'-trifluorobiphenyl-3-yl)methyl]pyrrolidin-3-yl}methanesulfonamide sesquihydrate]. TAK-994 activated recombinant human OX2R (EC50 value of 19 nM) with > 700-fold selectivity against OX1R and activated OX2R-downstream signaling similar to those by orexin peptides in vitro. Oral administration of TAK-994 promoted wakefulness in normal mice but not in OX2R KO mice. TAK-994 also ameliorated narcolepsy-like symptoms in two mouse models of narcolepsy: orexin/ataxin-3 mice and orexin-tTA;TetO diphtheria toxin A mice. The wake-promoting effects of TAK-994 in orexin/ataxin-3 mice were maintained after chronic dosing for 14 days. These data suggest that overall in vitro and in vivo properties, except oral availability, are very similar between TAK-994 and danavorexton. Preclinical characteristics of TAK-994 shown here, together with upcoming clinical study results, can improve our understanding for orally available OX2R agonists as new therapeutic drugs for NT1 and other hypersomnia disorders. SIGNIFICANCE STATEMENT: Narcolepsy type 1 (NT1) is caused by a loss of orexin neurons, and thus an orexin 2 receptor (OX2R) agonist is considered to address the underlying pathophysiology of NT1. Oral administration of TAK-994, a novel OX2R agonist, promoted wakefulness in normal mice, but not in OX2R knockout mice, and ameliorated fragmentation of wakefulness and cataplexy-like episodes in mouse models of narcolepsy. These findings indicate that TAK-994 is an orally available brain-penetrant OX2R-selective agonist with potential to improve narcolepsy-like symptoms.


Subject(s)
Cataplexy , Narcolepsy , Mice , Humans , Animals , Cataplexy/drug therapy , Wakefulness , Ataxin-3 , Sleep/genetics , Narcolepsy/drug therapy , Narcolepsy/genetics , Orexins/genetics , Orexins/metabolism , Orexins/pharmacology , Brain/metabolism , Mice, Knockout , Orexin Receptors/agonists , Orexin Receptors/genetics , Orexin Receptors/therapeutic use
17.
Peptides ; 164: 171002, 2023 06.
Article in English | MEDLINE | ID: mdl-36963505

ABSTRACT

Hypocretins/Orexins (Hcrt/Ox) are hypothalamic neuropeptides implicated in diverse functions, including body temperature regulation through modulation of sympathetic vasoconstrictor tone. In the current study, we measured subcutaneous (Tsc) and core (Tb) body temperature as well as activity in a conditional transgenic mouse strain that allows the inducible ablation of Hcrt/Ox-containing neurons by removal of doxycycline (DOX) from their diet (orexin-DTA mice). Measurements were made during a baseline, when mice were being maintained on food containing DOX, and over 42 days while the mice were fed normal chow which resulted in Hcrt/Ox neuron degeneration. The home cages of the orexin-DTA mice were equipped with running wheels that were either locked or unlocked. In the presence of a locked running wheel, Tsc progressively decreased on days 28 and 42 in the DOX(-) condition, primarily during the dark phase (the major active period for rodents). This nocturnal reduction in Tsc was mitigated when mice had access to unlocked running wheels. In contrast to Tsc, Tb was largely maintained until day 42 in the DOX(-) condition even when the running wheel was locked. Acute changes in both Tsc and Tb were observed preceding, during, and following cataplexy. Our results suggest that ablation of Hcrt/Ox-containing neurons results in elevated heat loss, likely through reduced sympathetic vasoconstrictor tone, and that exercise may have some therapeutic benefit to patients with narcolepsy, a disorder caused by Hcrt/Ox deficiency. Acute changes in body temperature may facilitate prediction of cataplexy onset and lead to interventions to mitigate its occurrence.


Subject(s)
Cataplexy , Narcolepsy , Mice , Animals , Orexins/genetics , Body Temperature , Narcolepsy/drug therapy , Mice, Transgenic , Neurons/physiology , Body Temperature Regulation
18.
J Am Heart Assoc ; 12(6): e028987, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36892078

ABSTRACT

Background The hypocretin/orexin system has been shown to play a role in heart failure. Whether it also influences myocardial infarction (MI) outcomes is unknown. We evaluated the effect of the rs7767652 minor allele T associated with decreased transcription of the hypocretin/orexin receptor-2 and circulating orexin A concentrations on mortality risk after MI. Methods and Results Data from a single-center, prospectively designed registry of consecutive patients hospitalized for MI at a large tertiary cardiology center were analyzed. Patients without previous history of MI or heart failure were included. A random population sample was used to compare allele frequencies in the general population. Out of 1009 patients (aged 64±12 years, 74.6% men) after MI, 6.1% were homozygotes (TT) and 39.4% heterozygotes (CT) for minor allele. Allele frequencies in the MI group did not differ from 1953 subjects from general population (χ2 P=0.62). At index hospitalization, MI size was the same, but ventricular fibrillation and the need for cardiopulmonary resuscitation were more prevalent in the TT allele variant. Among patients with ejection fraction ≤40% at discharge, the TT variant was associated with a lower increase in left ventricular ejection fraction during follow-up (P=0.03). During the 27-month follow-up, there was a statistically significant association of the TT variant with increased mortality risk (hazard ratio [HR], 2.83; P=0.001). Higher circulating orexin A was associated with a lower mortality risk (HR, 0.41; P<0.05). Conclusions Attenuation of hypocretin/orexin signaling is associated with increased mortality risk after MI. This effect may be partially explained by the increased arrhythmic risk and the effect on the left ventricular systolic function recovery.


Subject(s)
Heart Failure , Myocardial Infarction , Male , Humans , Female , Orexins/genetics , Stroke Volume , Ventricular Function, Left , Orexin Receptors/genetics
19.
Peptides ; 164: 170979, 2023 06.
Article in English | MEDLINE | ID: mdl-36841281

ABSTRACT

The orexins (OXs) were first reported in hypothalamus of rat, and they play an important role in diverse physiological actions. The OXs consist of orexin A (OXA) and orexin B (OXB) peptides and their actions are mediated via two G-protein-coupled receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R), respectively. Presence of OXA and OX1R has been also reported in peripheral organs like reproductive tissues. These findings, therefore, highlight a possible role of OXs and their receptors in male reproductive health. Though, expression and localization of OXB and OX2R in the testis and their role in spermatogenesis are not finally clarified. Herein, we elucidated the localization and the patterns of expression of OXB and OX2R in Parkes mice testes during postnatal development. Results suggest that the precursor prepro-orexin (PPO), OXB and OX2R are expressed at the transcript and protein levels in mouse testis throughout the postnatal development. Immunostaining further showed the localization of OXB and OX2R both in interstitium and tubular compartments of the testis. On 7 day postpartum (7 dpp), only spermatogonia showed immunoreactivity of OXB and OX2R, while at 14, 28, 42 and 90 dpp, immunolocalization of OXB and OX2R were noted in the seminiferous tubules, especially in leptotene, pachytene spermatocytes, round and elongating spermatids, and in Leydig cells and Sertoli cells. The immunoreactivity of OXB and OX2R appeared to be stage-specific in adult mouse testis. The results suggest the expression of OXB and OX2R in mouse testis and their possible regulatory role in spermatogenesis and steroidogenesis.


Subject(s)
Spermatids , Testis , Animals , Male , Mice , Leydig Cells/metabolism , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexins/genetics , Orexins/metabolism , Spermatids/metabolism , Testis/metabolism
20.
Trends Mol Med ; 29(1): 61-69, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36400667

ABSTRACT

Excessive daytime sleepiness (EDS) is a complex symptom characterized by a strong urge to sleep during daytime accompanied by problems such as attention deficits, anxiety, and lower cognitive performance. The efficacy of treatments for EDS is determined by their ability to decrease sleepiness, and less attention has been given to the effects these compounds have on the quality of the wake itself. Hypocretin (HCRT; orexin) signalling is implicated in narcolepsy, and hypocretin receptor 2 (HCRTR2) agonists are in clinical trials for treating EDS in narcolepsy. Here, we review preclinical research to determine how HCRTR2 agonists may affect attention and anxiety compared with other EDS treatment strategies. We conclude that such compounds may improve not only the quantity but also the quality of wake, and we hope that they will create opportunities for more nuanced treatment strategies in narcolepsy.


Subject(s)
Narcolepsy , Humans , Intracellular Signaling Peptides and Proteins , Narcolepsy/diagnosis , Narcolepsy/drug therapy , Narcolepsy/genetics , Neuropeptides/therapeutic use , Orexin Receptors/therapeutic use , Orexins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...