Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 655
Filter
1.
Mol Biol Rep ; 51(1): 669, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787465

ABSTRACT

BACKGROUND: The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is a major pathological hallmark of Parkinson's disease (PD). Orexin B (OXB) has been reported to promote the growth of DA neurons. However, the roles of OXB in the degeneration of DA neurons still remained not fully clear. METHODS: An in vivo PD model was constructed by administrating 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Pole test was performed to investigate the motor function of mice and the number of DA neurons was detected by immunofluorescence (IF). A PD cell model was established by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+). OXB was added to the culture medium 2 h after MPP + treatment. Microscopic analysis was carried out to investigate the function of OXB in the cell model of PD 24 h after MPP + challenge. RNA-Seq analysis of the PD cell model was performed to explore the possible mechanisms. Western blot was used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK). RESULTS: OXB significantly decreased the DA neurons death caused by MPTP, alleviated MPP+-induced neurotoxicity in SH-SY5Y cells, and robustly enhanced the weight and motor ability of PD mice. Besides, RNA-Seq analysis demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the pathology of PD. Furthermore, MPP + led to increased levels of phosphorylation of ERK (p-ERK), OXB treatment significantly decreased the levels of p-ERK in MPP+-treated SH-SY5Y cells. CONCLUSIONS: This study demonstrated that OXB exerts a neuroprotective role associated with reduced ERK phosphorylation in the PD model. This suggests that OXB may have therapeutic potential for treatment of PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Dopaminergic Neurons , Extracellular Signal-Regulated MAP Kinases , Orexins , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Animals , Mice , Phosphorylation/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Orexins/metabolism , Orexins/pharmacology , Humans , Male , Cell Line, Tumor , Disease Models, Animal , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/pathology , 1-Methyl-4-phenylpyridinium/toxicity , MAP Kinase Signaling System/drug effects
2.
Expert Opin Drug Discov ; 19(6): 755-768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747534

ABSTRACT

INTRODUCTION: Narcolepsy is a chronic and rare neurological disorder characterized by disordered sleep. Based on animal models and further research in humans, the dysfunctional orexin system was identified as a contributing factor to the pathophysiology of narcolepsy. Animal models played a larger role in the discovery of some of the pharmacological agents with established benefit/risk profiles. AREAS COVERED: In this review, the authors examine the phenotypes observed in animal models of narcolepsy and the characteristics of clinically used pharmacological agents in these animal models. Additionally, the authors compare the effects of clinically used pharmacological agents on the phenotypes in animal models with those observed in narcolepsy patients. EXPERT OPINION: Research in canine and mouse models have linked narcolepsy to the O×R2mutation and orexin deficiency, leading to new diagnostic criteria and a drug development focus. Advancements in pharmacological therapies have significantly improved narcolepsy management, with insights from both clinical experience and from animal models having led to new treatments such as low sodium oxybate and solriamfetol. However, challenges persist in addressing symptoms beyond excessive daytime sleepiness and cataplexy, highlighting the need for further research, including the development of diurnal animal models to enhance understanding and treatment options for narcolepsy.


Subject(s)
Disease Models, Animal , Drug Development , Drug Discovery , Narcolepsy , Orexins , Narcolepsy/drug therapy , Narcolepsy/physiopathology , Animals , Humans , Dogs , Drug Discovery/methods , Mice , Orexins/metabolism , Phenotype
3.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791416

ABSTRACT

Alzheimer's disease (AD) remains a significant health challenge, with an increasing prevalence globally. Recent research has aimed to deepen the understanding of the disease pathophysiology and to find potential therapeutic interventions. In this regard, G protein-coupled receptors (GPCRs) have emerged as novel potential therapeutic targets to palliate the progression of neurodegenerative diseases such as AD. Orexin and cannabinoid receptors are GPCRs capable of forming heteromeric complexes with a relevant role in the development of this disease. On the one hand, the hyperactivation of the orexins system has been associated with sleep-wake cycle disruption and Aß peptide accumulation. On the other hand, cannabinoid receptor overexpression takes place in a neuroinflammatory environment, favoring neuroprotective effects. Considering the high number of interactions between cannabinoid and orexin systems that have been described, regulation of this interplay emerges as a new focus of research. In fact, in microglial primary cultures of APPSw/Ind mice model of AD there is an important increase in CB2R-OX1R complex expression, while OX1R antagonism potentiates the neuroprotective effects of CB2R. Specifically, pretreatment with the OX1R antagonist has been shown to strongly potentiate CB2R signaling in the cAMP pathway. Furthermore, the blockade of OX1R can also abolish the detrimental effects of OX1R overactivation in AD. In this sense, CB2R-OX1R becomes a new potential therapeutic target to combat AD.


Subject(s)
Alzheimer Disease , Cannabinoids , Orexins , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Animals , Humans , Cannabinoids/pharmacology , Cannabinoids/metabolism , Cannabinoids/therapeutic use , Orexins/metabolism , Orexin Receptors/metabolism , Receptors, Cannabinoid/metabolism , Signal Transduction , Amyloid beta-Peptides/metabolism
4.
Aging (Albany NY) ; 16(9): 7946-7960, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38713160

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and emerging evidence indicates that trigeminal nerve electrical stimulation (TNS) is a promising therapeutic intervention for neurological impairment following TBI. However, the precise mechanisms underlying the neuroprotective effects of TNS in TBI are poorly understood. Thus, the objective of this study was to investigate the potential involvement of the orexin-A (OX-A)/orexin receptor 1 (OX1R) mediated TLR4/NF-κB/NLRP3 signaling pathway in the neuroprotective effects of TNS in rats with TBI. METHODS: Sprague-Dawley rats were randomly assigned to four groups: sham, TBI, TBI+TNS+SB334867, and TBI+TNS. TBI was induced using a modified Feeney's method, and subsequent behavioral assessments were conducted to evaluate neurological function. The trigeminal nerve trunk was isolated, and TNS was administered following the establishment of the TBI model. The levels of neuroinflammation, brain tissue damage, and proteins associated with the OX1R/TLR4/NF-κB/NLRP3 signaling pathway were assessed using hematoxylin-eosin staining, Nissl staining, western blot analysis, quantitative real-time polymerase chain reaction, and immunofluorescence techniques. RESULTS: The findings of our study indicate that TNS effectively mitigated tissue damage, reduced brain edema, and alleviated neurological deficits in rats with TBI. Furthermore, TNS demonstrated the ability to attenuate neuroinflammation levels and inhibit the expression of proteins associated with the TLR4/NF-κB/NLRP3 signaling pathway. However, it is important to note that the aforementioned effects of TNS were reversible upon intracerebroventricular injection of an OX1R antagonist. CONCLUSION: TNS may prevent brain damage and relieve neurological deficits after a TBI by inhibiting inflammation, possibly via the TLR4/NF-κB/NLRP3 signaling pathway mediated by OX-A/OX1R.


Subject(s)
Brain Injuries, Traumatic , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Orexin Receptors , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Trigeminal Nerve , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/therapy , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Orexin Receptors/metabolism , Orexin Receptors/genetics , Rats , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Trigeminal Nerve/metabolism , Orexins/metabolism , Electric Stimulation Therapy/methods , Disease Models, Animal
5.
J Neuroinflammation ; 21(1): 131, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760784

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS: A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1ß, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS: Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1ß and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION: This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.


Subject(s)
Mice, Inbred C57BL , Orexins , Sepsis-Associated Encephalopathy , Animals , Mice , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Orexins/metabolism , Male , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Disease Models, Animal , Administration, Intranasal
6.
Discov Med ; 36(183): 842-852, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665032

ABSTRACT

BACKGROUND: Following traumatic brain injury (TBI), an imbalance arises in the central nervous system within the hippocampus region, resulting in the proliferation of mossy cell fibers, causing abnormal membrane discharge. Moreover, disruptions in cellular neurotransmitter secretion induce post-traumatic epilepsy. Extensive experimental and clinical data indicate that the orexin system plays a regulatory role in the hippocampal central nervous system, but the specific regulatory effects are unclear. Therefore, further experimental evaluation of its relevance is needed. OBJECTIVE: This study aims to investigate the effects of orexin receptor agonists (OXA) on the seizure threshold and intensity in controlled cortical impact (CCI) mice, and to understand the role of the orexin system in post-traumatic epilepsy (PTE). METHODS: Male C57BL/6 mice weighing 18-22 g were randomly divided into three groups: Sham, CCI, and CCI+OXA. The three groups of mice were sequentially constructed with models, implanted with electrodes, and established drug-delivery cannulas. After a 30-day recovery, the Sham and CCI groups were injected with physiological saline through the administration cannulas, while the CCI+OXA group was injected with OXA. Subsequently, all mice underwent electrical stimulation every 30 minutes for a total of 15 times. Epileptic susceptibility, duration, intensity, and cognitive changes were observed. Concurrently, the expression levels and changes of GABAergic neurons in the hippocampus of each group were examined by immunofluorescence. RESULTS: Injecting OXA into hippocampal CA1 reduces the threshold of post-traumatic seizures, prolongs the post-discharge duration, prolongs seizure duration, reduces cognitive ability, and exacerbates the loss of GABAergic neurons in the hippocampal region. CONCLUSIONS: Based on the results, we can find that injecting OXA antagonists into the CA1 region of the hippocampus can treat or prevent the occurrence and progression of post-traumatic epilepsy.


Subject(s)
Brain Injuries, Traumatic , Mice, Inbred C57BL , Orexins , Animals , Male , Mice , Orexins/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Orexin Receptors/metabolism , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/metabolism , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Epilepsy/etiology , Epilepsy/metabolism , Seizures/etiology , Seizures/metabolism
7.
J Cell Mol Med ; 28(9): e18318, 2024 May.
Article in English | MEDLINE | ID: mdl-38685674

ABSTRACT

Glioblastoma (GBM) represents a prevalent form of primary malignant tumours in the central nervous system, but the options for effective treatment are extremely limited. Ferroptosis, as the most enriched programmed cell death process in glioma, makes a critical difference in glioma progression. Consequently, inducing ferroptosis has become an appealing strategy for tackling gliomas. Through the utilization of multi-omics sequencing data analysis, flow cytometry, MDA detection and transmission electron microscopy, the impact of orexin-A on ferroptosis in GBM was assessed. In this report, we provide the first evidence that orexin-A exerts inhibitory effects on GBM proliferation via the induction of ferroptosis. This induction is achieved by instigating an unsustainable increase in iron levels and depletion of GPX4. Moreover, the regulation of TFRC, FTH1 and GPX4 expression through the targeting of NFE2L2 appears to be one of the potential mechanisms underlying orexin-A-induced ferroptosis.


Subject(s)
Cell Proliferation , Ferroptosis , Glioblastoma , Iron , Orexins , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Humans , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Iron/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Orexins/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
8.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 254-259, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38686723

ABSTRACT

Dopamine,a neurotransmitter ubiquitous in the body fluids,blood,and urine of mammals and humans,is responsible for regulating their functions and metabolism.The dopamine system is involved in the neurobiological mechanisms of narcolepsy in animals and humans.However,researchers have drawn different or even opposite conclusions when measuring the dopamine level in the cerebrospinal fluid of narcolepsy patients.Studies have confirmed that the occurrence of narcolepsy is related to the irreversible loss of orexins.The autoimmune reaction caused by the interactions of environmental factors with genetic factors destroys the hypothalamic orexin neurons and reduces orexin secretion,thereby lowering the level of arousal.We introduce the research progress and current status of dopamine and clinical characterization of narcolepsy by reviewing more than 40 articles published from 1982 to 2023,aiming to provide a reference for studying the relationship between the dopamine level and clinical characterization of narcolepsy and searching for the biomarkers of type 2 narcolepsy.


Subject(s)
Dopamine , Narcolepsy , Animals , Humans , Dopamine/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Narcolepsy/metabolism , Narcolepsy/diagnosis , Neuropeptides/metabolism , Orexins/metabolism , Orexins/cerebrospinal fluid
9.
Neurology ; 102(10): e209326, 2024 May.
Article in English | MEDLINE | ID: mdl-38669634

ABSTRACT

BACKGROUND AND OBJECTIVES: Narcolepsy type 1 (NT1) is due to the loss of hypothalamic neurons that produce orexin (ORX), by a suspected immune-mediated process. Rare postmortem studies are available and failed to detect any inflammation in the hypothalamic region, but these brains were collected years after the first symptoms. In vivo studies close to disease onset are lacking. We aimed to explore microglia density in the hypothalamus and thalamus in NT1 compared with controls using [18F]DPA-714 PET and to study in NT1 the relationships between microglia density in the hypothalamus and in other regions of interest (ROIs) with disease duration, severity, and ORX levels. METHODS: Patients with NT1 and controls underwent a standardized clinical evaluation and [18F]DPA-714 PET imaging using a radiolabeled ligand specific to the 18 kDa translocator protein (TSPO). TSPO genotyping determined receptor affinity. Images were processed on peripheral module interface using standard uptake value (SUV) on ROIs: hypothalamus, thalamus, frontal area, cerebellum, and the whole brain. SUV ratios (SUVr) were calculated by normalizing SUV with cerebellum uptake. RESULTS: A total of 41 patients with NT1 (21 adults, 20 children, 10 with recent disease onset <1 year) and 35 controls were included, with no significant difference between groups for [18F]DPA-714 binding (SUV/SUVr) in the hypothalamus and thalamus. Unexpectedly, significantly lower SUVr in the whole brain was found in NT1 compared with controls (0.97 ± 0.06 vs 1.08 ± 0.22, p = 0.04). The same finding between NT1 and controls in the whole brain was observed in those with high or mixed TSPO affinity (p = 0.03 and p = 0.04). Similar trend was observed in the frontal area in NT1 (0.96 ± 0.09 vs 1.09 ± 0.25, p = 0.05). In NT1, no association was found between SUVr in different ROIs and age, disease duration, severity, or ORX levels. DISCUSSION: We found no evidence of in vivo increased microglia density in NT1 compared with controls, even close to disease onset, and even unexpectedly a decrease in the whole brain of these patients. These findings do not support the presence of neuroinflammation in the destruction process of ORX neurons. TRIAL REGISTRATION INFORMATION: ClinicalTrials.org NCT03754348.


Subject(s)
Microglia , Narcolepsy , Orexins , Positron-Emission Tomography , Humans , Male , Female , Microglia/metabolism , Narcolepsy/metabolism , Narcolepsy/genetics , Narcolepsy/diagnostic imaging , Orexins/metabolism , Adult , Young Adult , Thalamus/metabolism , Thalamus/diagnostic imaging , Pyrazoles , Hypothalamus/metabolism , Hypothalamus/diagnostic imaging , Hypothalamus/pathology , Severity of Illness Index , Middle Aged , Pyrimidines , Adolescent , Receptors, GABA/metabolism , Receptors, GABA/genetics
10.
Proc Natl Acad Sci U S A ; 121(16): e2316150121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593074

ABSTRACT

For nearly a century, evidence has accumulated indicating that the lateral hypothalamus (LH) contains neurons essential to sustain wakefulness. While lesion or inactivation of LH neurons produces a profound increase in sleep, stimulation of inhibitory LH neurons promotes wakefulness. To date, the primary wake-promoting cells that have been identified in the LH are the hypocretin/orexin (Hcrt) neurons, yet these neurons have little impact on total sleep or wake duration across the 24-h period. Recently, we and others have identified other LH populations that increase wakefulness. In the present study, we conducted microendoscopic calcium imaging in the LH concomitant with EEG and locomotor activity (LMA) recordings and found that a subset of LH neurons that express Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) are preferentially active during wakefulness. Chemogenetic activation of these neurons induced sustained wakefulness and greatly increased LMA even in the absence of Hcrt signaling. Few LH CaMKIIα-expressing neurons are hypocretinergic or histaminergic while a small but significant proportion are GABAergic. Ablation of LH inhibitory neurons followed by activation of the remaining LH CaMKIIα neurons induced similar levels of wakefulness but blunted the LMA increase. Ablated animals showed no significant changes in sleep architecture but both spontaneous LMA and high theta (8 to 10 Hz) power during wakefulness were reduced. Together, these findings indicate the existence of two subpopulations of LH CaMKIIα neurons: an inhibitory population that promotes locomotion without affecting sleep architecture and an excitatory population that promotes prolonged wakefulness even in the absence of Hcrt signaling.


Subject(s)
Hypothalamic Area, Lateral , Wakefulness , Animals , Wakefulness/physiology , Hypothalamic Area, Lateral/physiology , Orexins/metabolism , Sleep/physiology , Neurons/metabolism , Signal Transduction
11.
Sci Rep ; 14(1): 7690, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565870

ABSTRACT

Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.


Subject(s)
Ciona intestinalis , Animals , Humans , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexins/genetics , Orexins/metabolism , Ciona intestinalis/genetics , Ciona intestinalis/metabolism , HEK293 Cells , Signal Transduction , Vertebrates/metabolism , Carrier Proteins/metabolism
12.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473854

ABSTRACT

Ever since the discovery of the brain's orexin/hypocretin system, most research was directed toward unveiling its contribution to the normal functioning of individuals. The investigation of reward-seeking behaviors then gained a lot of attention once the distribution of orexinergic neurons was revealed. Here, we discuss findings on the involvement of orexins in social interaction, a natural reward type. While some studies have succeeded in defining the relationship between orexin and social interaction, the controversy regarding its nature (direct or inverse relation) raises questions about what aspects have been overlooked until now. Upon examining the literature, we identified a research gap concerning conditions influencing the impact of orexins on social behavior expression. In this review, we introduce a number of factors (e.g., stress, orexin's source) that must be considered while studying the role of orexins in social interaction. Furthermore, we refer to published research to investigate the stage at which orexins affect social interaction and we highlight the nucleus accumbens (NAc) shell's role in social interaction and other rewarding behaviors. Finally, the underlying orexin molecular pathway influencing social motivation in particular illnesses is proposed. We conclude that orexin's impact on social interaction is multifactorial and depends on specific conditions available at a time.


Subject(s)
Neuropeptides , Humans , Orexins/metabolism , Neuropeptides/metabolism , Motivation , Social Interaction , Nucleus Accumbens/metabolism
13.
Sleep ; 47(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38447008

ABSTRACT

Dynorphin is an endogenous opiate localized in many brain regions and spinal cord, but the activity of dynorphin neurons during sleep is unknown. Dynorphin is an inhibitory neuropeptide that is coreleased with orexin, an excitatory neuropeptide. We used microendoscopy to test the hypothesis that, like orexin, the dynorphin neurons are wake-active. Dynorphin-cre mice (n = 3) were administered rAAV8-Ef1a-Con/Foff 2.0-GCaMP6M into the zona incerta-perifornical area, implanted with a GRIN lens (gradient reflective index), and electrodes to the skull that recorded sleep. One month later, a miniscope imaged calcium fluorescence in dynorphin neurons during multiple bouts of wake, non-rapid-eye movement (NREM), and rapid-eye movement (REM) sleep. Unbiased data analysis identified changes in calcium fluorescence in 64 dynorphin neurons. Most of the dynorphin neurons (72%) had the highest fluorescence during bouts of active and quiet waking compared to NREM or REM sleep; a subset (20%) were REM-max. Our results are consistent with the emerging evidence that the activity of orexin neurons can be classified as wake-max or REM-max. Since the two neuropeptides are coexpressed and coreleased, we suggest that dynorphin-cre-driven calcium sensors could increase understanding of the role of this endogenous opiate in pain and sleep.


Subject(s)
Dynorphins , Neurons , Sleep, REM , Wakefulness , Zona Incerta , Animals , Mice , Dynorphins/metabolism , Dynorphins/physiology , Neurons/physiology , Zona Incerta/physiology , Zona Incerta/physiopathology , Sleep, REM/physiology , Wakefulness/physiology , Male , Orexins/metabolism , Orexins/physiology
14.
Psychopharmacology (Berl) ; 241(6): 1213-1225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427059

ABSTRACT

RATIONALE: Prepulse inhibition (PPI) impairment reflects sensorimotor gating problems, i.e. in schizophrenia. This study aims to enlighten the role of orexinergic regulation on PPI in a psychosis-like model. OBJECTIVES: In order to understand the impact of orexinergic innervation on PPI and how it is modulated by age and baseline PPI (bPPI), chronic orexin A (OXA) injections was carried on non-sleep-deprived and sleep-deprived rats that are grouped by their bPPI. METHODS: bPPI measurements were carried on male Wistar rats on P45 or P90 followed by grouping into low-PPI and high-PPI rats. The rats were injected with OXA twice per day for four consecutive days starting on P49 or P94, while the control groups received saline injections. 72 h REMSD was carried on via modified multiple platform technique on P94 and either OXA or saline was injected during REMSD. PPI tests were carried out 30 min. after the last injection. RESULTS: Our previous study with acute OXA injection after REMSD without bPPI grouping revealed that low OXA doses might improve REMSD-induced PPI impairment. Our current results present three important conclusions: (1) The effect of OXA on PPI is bPPI-dependent and age-dependent. (2) The effect of REMSD is bPPI-dependent. (3) The effect of OXA on PPI after REMSD also depends on bPPI. CONCLUSION: Orexinergic regulation of PPI response with and without REMSD can be predicted by bPPI levels. Our findings provide potential insights into the regulation of sensorimotor gating by sleep/wakefulness systems and present potential therapeutic targets for the disorders, where PPI is disturbed.


Subject(s)
Orexins , Prepulse Inhibition , Rats, Wistar , Sleep Deprivation , Animals , Orexins/pharmacology , Orexins/administration & dosage , Orexins/metabolism , Male , Sleep Deprivation/physiopathology , Rats , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Sleep, REM/drug effects , Sensory Gating/drug effects , Age Factors , Disease Models, Animal
15.
Transl Psychiatry ; 14(1): 149, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493173

ABSTRACT

Chronic stress-induced anxiodepression is a common health problem, however its potential neurocircuitry mechanism remains unclear. We used behavioral, patch-clamp electrophysiology, chemogenetic, and optogenetic approaches to clarify the response of the lateral hypothalamus (LH) and the medial prefrontal cortex (mPFC) to stress, confirmed the structural connections between the LH and mPFC, and investigated the role of the LH-mPFC pathway in chronic stress-induced anxiodepression symptoms. Unpredictable chronic mild stress (UCMS) caused anxiodepression-like behaviors, including anxiety, anhedonia, and despair behaviors. We discovered that the activity of the LH and mPFC was both increased after restraint stress (RS), a stressor of UCMS. Then we found that the orexinergic neurons in the LH predominantly project to the glutamatergic neurons in the mPFC, and the excitability of these neurons were increased after UCMS. In addition, overactivated LH orexinergic terminals in the mPFC induced anhedonia but not anxiety and despair behaviors in naive mice. Moreover, chemogenetically inhibited LH-mPFC orexinergic projection neurons and blocked the orexin receptors in the mPFC alleviated anhedonia but not anxiety and despair behaviors in UCMS-treated mice. Our study identified a new neurocircuit from LH orexinergic neurons to mPFC and revealed its role in regulating anhedonia in response to stress. Overactivation of LHOrx-mPFC pathway selectively mediated chronic stress-induced anhedonia. In normal mice, the LHOrx-mPFC pathway exhibits relatively low activity. However, after chronic stress, the activity of orexinergic neuron in LH is overactivated, leading to an increased release of orexin into the mPFC. This heightened orexin concentration results in increased excitability of the mPFC through OX1R and OX2R, consequently triggering anhedonia.


Subject(s)
Anhedonia , Hypothalamic Area, Lateral , Mice , Animals , Hypothalamic Area, Lateral/metabolism , Orexins/metabolism , Anxiety , Prefrontal Cortex/metabolism
16.
Sci Rep ; 14(1): 7473, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38553555

ABSTRACT

Orexin signaling plays a facilitatory role in respiration. Abnormalities in orexin levels correlate with disordered breathing patterns and impaired central respiratory chemoreception. Nucleus tractus solitarii (NTS) neurons expressing the transcription factor Phox2b contribute to the chemoreceptive regulation of respiration. However, the extent to which orexinergic signaling modulates respiratory activity in these Phox2b-expressing NTS neurons remains unclear. In the present study, the injection of orexin A into the NTS significantly increased the firing rate of the phrenic nerve. Further analysis using fluorescence in situ hybridization and immunohistochemistry revealed that orexin 1 receptors (OX1Rs) were primarily located in the ventrolateral subdivision of the NTS and expressed in 25% of Phox2b-expressing neurons. Additionally, electrophysiological recordings showed that exposure to orexin A increased the spontaneous firing rate of Phox2b-expressing neurons. Immunostaining experiments with cFos revealed that the OX1R-residing Phox2b-expressing neurons were activated by an 8% CO2 stimulus. Crucially, OX1R knockdown in these NTS neurons notably blunted the ventilatory response to 8% CO2, alongside an increase in sigh-related apneas. In conclusion, orexinergic signaling in the NTS facilitates breathing through the activation of OX1Rs, which induces the depolarization of Phox2b-expressing neurons. OX1Rs are essential for the involvement of Phox2b-expressing NTS neurons in the hypercapnic ventilatory response.


Subject(s)
Carbon Dioxide , Solitary Nucleus , Solitary Nucleus/metabolism , Orexins/metabolism , In Situ Hybridization, Fluorescence , Respiration
17.
J Psychiatr Res ; 172: 291-299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428165

ABSTRACT

Treatment of Methamphetamine (METH) use disorder has become a crucial public health issue. The orexin system manipulation has provided promising evidence to attenuate addictive-like behaviors. This study explored the role of the orexin 1 receptor and orexin 2 receptor (OX1R and OX2R) in the CA1 area of the hippocampal formation in the acquisition and expression of METH-induced place preference. Animals were subjected to bilateral administration of different dosages (1, 3, 10, and 30 nmol/0.5 µl DMSO per side) of a selective OX1R antagonist, SB334867, or selective OX2R antagonist, TCS OX2 29 into the CA1 area throughout the conditioning phase or once on the post-conditioning phase in separate control and experimental groups. Behavioral data revealed that both OX1R (10 nmol; P < 0.01 and 30 nmol; P < 0.001) and OX2R (10 nmol; P < 0.05 and 30 nmol; P < 0.001) antagonism during the conditioning phase could block the formation of METH place preference dose-dependently. In addition, intra-CA1 microinjection of SB334867 on the post-conditioning phase attenuated the expression of METH place preference in a dose-dependent manner (3 nmol; P < 0.05, 10 nmol; P < 0.01 and 30 nmol; P < 0.001) whereas intra-CA1 administration of TCS OX2 29 only at the highest dosage (30 nmol) declined the expression of METH place preference (P < 0.01). It was also indicated that the suppressive effects of orexin receptor blockade on the METH-seeking behavior in the CA1 area were anatomically specific to this area. These findings support the possibility of targeting the orexin system to develop novel and successful pharmacological options for the treatment of METH dependence.


Subject(s)
Hippocampus , Methamphetamine , Rats , Animals , Orexin Receptors/metabolism , Orexins/metabolism , Rats, Wistar , Hippocampus/metabolism , Methamphetamine/pharmacology
18.
Brain Res Bull ; 208: 110898, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360152

ABSTRACT

The involvement of androgens in the regulation of energy metabolism has been demonstrated. The main objective of the present research was to study the involvement of androgens in both the programming of energy metabolism and the regulatory peptides associated with feeding. For this purpose, androgen receptors and the main metabolic pathways of testosterone were inhibited during the first five days of postnatal life in male and female Wistar rats. Pups received a daily s.c. injection from the day of birth, postnatal day (P) 1, to P5 of Flutamide (a competitive inhibitor of androgen receptors), Letrozole (an aromatase inhibitor), Finasteride (a 5-alpha-reductase inhibitor) or vehicle. Body weight, food intake and fat pads were measured. Moreover, hypothalamic Agouti-related peptide (AgRP), neuropeptide Y (NPY), orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay. The inhibition of androgenic activity during the first five days of life produced a significant decrease in body weight in females at P90 but did not affect this parameter in males. Moreover, the inhibition of aromatase decreased hypothalamic AgRP mRNA levels in males while the inhibition of 5α-reductase decreased hypothalamic AgRP and orexin mRNA levels in female rats. Finally, food intake and visceral fat, but not subcutaneous fat, were affected in both males and females depending on which testosterone metabolic pathway was inhibited. Our results highlight the differential involvement of androgens in the programming of energy metabolism as well as the AgRP and orexin systems during development in male and female rats.


Subject(s)
Androgens , Receptors, Androgen , Rats , Animals , Male , Female , Orexins/metabolism , Androgens/pharmacology , Androgens/metabolism , Rats, Wistar , Agouti-Related Protein/genetics , Receptors, Androgen/metabolism , Body Weight/physiology , Hypothalamus/metabolism , Pro-Opiomelanocortin/genetics , RNA, Messenger/metabolism , Testosterone/pharmacology , Oxidoreductases/metabolism
19.
Aging (Albany NY) ; 16(4): 3404-3419, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38349868

ABSTRACT

BACKGROUND: Traumatic Brain Injury (TBI) has high disability and mortality rate. Oxidative stress and ferroptosis are important pathophysiological characteristics after TBI. Orexin-A (OXA) can alleviate neuronal damage in diverse neurological disorders. Nevertheless, the role and mechanism of OXA in TBI stay unknown. OBJECTIVES: The research investigated protection influence of OXA on TBI and its potential mechanisms. METHODS: Male Sprague-Dawley rats were randomly grouped into: sham, TBI, TBI + normal saline (NS) and TBI+OXA groups. TBI model was constructed in rat via modified Feeney's approach, and OXA treatment was administered following construction of TBI model. RESULTS: Relative to TBI+NS group, TBI+OXA group displayed greatly recovered tissue damage and neurological deficits. Additionally, OXA eased oxidative stress as well as ferroptosis in cerebral cortex of rats following TBI. Furthermore, OXA increased Nrf2 expression and regulating factors HO-1 and NQO1 in cerebral cortex of TBI rats. CONCLUSIONS: Our research found OXA may restrain ferroptosis via Nrf2/HO-1 signaling pathway activation, thereby reducing brain injury after TBI.


Subject(s)
Brain Injuries, Traumatic , Ferroptosis , Rats , Male , Animals , NF-E2-Related Factor 2/metabolism , Orexins/metabolism , Rats, Sprague-Dawley , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Oxidative Stress/physiology , Signal Transduction/physiology
20.
Int J Mol Sci ; 25(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338864

ABSTRACT

Orexins are neuronal peptides that play a prominent role in sleep behavior and feeding behavior in the central nervous system, though their receptors also exist in peripheral organs, including the adrenal gland. In this study, the effects of orexins on catecholamine synthesis in the rat adrenomedullary cell line PC12 were investigated by focusing on their interaction with the adrenomedullary bone morphogenetic protein (BMP)-4. Orexin A treatment reduced the mRNA levels of key enzymes for catecholamine synthesis, including tyrosine hydroxylase (Th), 3,4-dihydroxyphenylalanie decarboxylase (Ddc) and dopamine ß-hydroxylase (Dbh), in a concentration-dependent manner. On the other hand, treatment with BMP-4 suppressed the expression of Th and Ddc but enhanced that of Dbh with or without co-treatment with orexin A. Of note, orexin A augmented BMP-receptor signaling detected by the phosphorylation of Smad1/5/9 through the suppression of inhibitory Smad6/7 and the upregulation of BMP type-II receptor (BMPRII). Furthermore, treatment with BMP-4 upregulated the mRNA levels of OX1R in PC12 cells. Collectively, the results indicate that orexin and BMP-4 suppress adrenomedullary catecholamine synthesis by mutually upregulating the pathway of each other in adrenomedullary cells.


Subject(s)
Bone Morphogenetic Proteins , Catecholamines , Orexins , Animals , Rats , Bone Morphogenetic Proteins/metabolism , Catecholamines/metabolism , Orexins/pharmacology , Orexins/metabolism , RNA, Messenger , Signal Transduction , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , PC12 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...