Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Neurosci ; 41(21): 4550-4555, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33926994

ABSTRACT

Cholinergic regulation of hippocampal circuit activity has been an active area of neurophysiological research for decades. The prominent cholinergic innervation of intrinsic hippocampal circuitry, potent effects of cholinomimetic drugs, and behavioral responses to cholinergic modulation of hippocampal circuitry have driven investigators to discover diverse cellular actions of acetylcholine in distinct sites within hippocampal circuitry. Further research has illuminated how these actions organize circuit activity to optimize encoding of new information, promote consolidation, and coordinate this with recall of prior memories. The development of the hippocampal slice preparation was a major advance that accelerated knowledge of how hippocampal circuits functioned and how acetylcholine modulated these circuits. Using this preparation in the early 1980s, we made a serendipitous finding of a novel presynaptic inhibitory effect of acetylcholine on Schaffer collaterals, the projections from CA3 pyramidal neurons to dendrites of CA1 pyramidal cells. We characterized this effect at cellular and pharmacological levels, published the findings in the first volume of the Journal of Neuroscience, and proceeded to pursue other scientific directions. We were surprised and thrilled to see that, nearly 40 years later, the paper is still being cited and downloaded because the data became an integral piece of the foundation of the science of cholinergic regulation of hippocampal function in learning and memory. This Progressions article is a story of how single laboratory findings evolve through time to be confirmed, challenged, and reinterpreted by other laboratories to eventually become part of the basis of fundamental concepts related to important brain functions.


Subject(s)
Acetylcholine/metabolism , Hippocampus/physiology , Neurology/history , Organ Culture Techniques/history , History, 20th Century , History, 21st Century , Humans , Organ Culture Techniques/methods
2.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33710255

ABSTRACT

In a 1937 issue of JEM, Carrel (1937. J. Exp. Med.https://doi.org/10.1084/jem.65.4.515) described a technique for culturing whole living organs outside the body. Here, Ingber reviews how this work led to a series of scientific, engineering, and medical breakthroughs that continue to this day.


Subject(s)
Organ Culture Techniques/history , Organ Transplantation/history , Animals , History, 20th Century , Humans , Infusion Pumps/history , Lab-On-A-Chip Devices/history , Male , Mice , Models, Animal
3.
Infect Immun ; 86(11)2018 11.
Article in English | MEDLINE | ID: mdl-30181350

ABSTRACT

Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, and physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review selected 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip (OAC) models. Collectively, these technologies provide a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe, and their local microenvironments.


Subject(s)
Cellular Microenvironment , Host-Pathogen Interactions , Intestinal Mucosa/physiology , Organ Culture Techniques/methods , Organoids , Tissue Engineering/methods , History, 20th Century , History, 21st Century , Humans , Models, Biological , Organ Culture Techniques/history , Tissue Engineering/history
5.
Gynecol Obstet Fertil ; 41(9): 548-50, 2013 Sep.
Article in French | MEDLINE | ID: mdl-23972917

ABSTRACT

The survival of the young boy after cancer has considerably progressed in recent years due to the efficiency of chemo/radiotherapy against the tumor cells. However, this treatment causes adverse effects on healthy tissues, including fertility. Freezing testicular tissue before highly gonadotoxic treatment is a prerequisite for preserving fertility in prepubertal boys that do not produce sperm yet. But which strategy proposes to restore fertility from frozen-thawed testicular tissue? One potential solution would be to consider an in vitro maturation of spermatogonial stem cells. In this article we trace the chronological development of in vitro spermatogenesis that resulted in mouse sperm production in vitro and give an overview of new challenges for the future.


Subject(s)
Adult Stem Cells/physiology , Fertility Preservation/methods , Spermatogenesis , Animals , History, 20th Century , History, 21st Century , Male , Mice , Organ Culture Techniques/history , Organ Culture Techniques/methods
8.
Neurobiol Dis ; 18(1): 2-18, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15649692

ABSTRACT

Tissue culture has been and continues to be widely used in medical research. Since the beginning of central nervous system (CNS) tissue culture nearly 100 years ago, the scientific community has contributed innumerable protocols and materials leading to the current wide variety of culture systems. While nonhuman cultures have traditionally been more widely used, interest in human CNS tissue culture techniques has accelerated since the middle of the last century. This has been fueled largely by the desire to model human physiology and disease in vitro with human cells. We review the history of human CNS tissue culture summarizing advances that have led to the current breadth of options available. The review addresses tissue sources, culture initiation, formats, culture ware, media, supplements and substrates, and maintenance. All of these variables have been influential in the development of culturing options and the optimization of culture survival and propagation.


Subject(s)
Cell Culture Techniques/history , Central Nervous System/cytology , Cell Culture Techniques/methods , Cell Culture Techniques/trends , Cell Survival/physiology , Central Nervous System/physiology , Culture Media , History, 20th Century , History, 21st Century , Humans , Organ Culture Techniques/history , Organ Culture Techniques/methods , Organ Culture Techniques/trends , Stem Cells/cytology , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...