Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51.910
Filter
1.
Sci Adv ; 10(20): eado1463, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758782

ABSTRACT

A ketogenic diet (KD) is a high-fat, low-carbohydrate diet that leads to the generation of ketones. While KDs improve certain health conditions and are popular for weight loss, detrimental effects have also been reported. Here, we show mice on two different KDs and, at different ages, induce cellular senescence in multiple organs, including the heart and kidney. This effect is mediated through adenosine monophosphate-activated protein kinase (AMPK) and inactivation of mouse double minute 2 (MDM2) by caspase-2, leading to p53 accumulation and p21 induction. This was established using p53 and caspase-2 knockout mice and inhibitors to AMPK, p21, and caspase-2. In addition, senescence-associated secretory phenotype biomarkers were elevated in serum from mice on a KD and in plasma samples from patients on a KD clinical trial. Cellular senescence was eliminated by a senolytic and prevented by an intermittent KD. These results have important clinical implications, suggesting that the effects of a KD are contextual and likely require individual optimization.


Subject(s)
Cellular Senescence , Diet, Ketogenic , Mice, Knockout , Tumor Suppressor Protein p53 , Animals , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice , Humans , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , AMP-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Male , Organ Specificity
2.
Hum Mol Genet ; 33(R1): R3-R11, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38779777

ABSTRACT

Mutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected. Organ involvement can vary between different mtDNA mutations, and also between patients carrying the same disease-causing variant. The clinical features frequently overlap with other non-mitochondrial diseases, both rare and common, adding to the diagnostic challenge. Building on previous findings, recent technological advances have cast further light on the mechanisms which underpin the organ vulnerability in mtDNA diseases, but our understanding is far from complete. In this review we explore the origins, current knowledge, and future directions of research in this area.


Subject(s)
DNA, Mitochondrial , Mitochondrial Diseases , Mutation , Organ Specificity , Humans , DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Diseases/diagnosis , Organ Specificity/genetics , Mitochondria/genetics , Animals
3.
Nature ; 629(8010): 174-183, 2024 May.
Article in English | MEDLINE | ID: mdl-38693412

ABSTRACT

Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood1-3. Here, the Molecular Transducers of Physical Activity Consortium4 profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female Rattus norvegicus over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository ( https://motrpac-data.org/ ).


Subject(s)
Endurance Training , Multiomics , Physical Conditioning, Animal , Physical Endurance , Animals , Female , Humans , Male , Rats , Acetylation , Blood/immunology , Blood/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Databases, Factual , Epigenome , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Internet , Lipidomics , Metabolome , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Organ Specificity/physiology , Phosphorylation , Physical Conditioning, Animal/physiology , Physical Endurance/genetics , Physical Endurance/physiology , Proteome/metabolism , Proteomics , Time Factors , Transcriptome/genetics , Ubiquitination , Wounds and Injuries/genetics , Wounds and Injuries/immunology , Wounds and Injuries/metabolism
4.
Nat Immunol ; 25(6): 1110-1122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698086

ABSTRACT

Lung-resident macrophages, which include alveolar macrophages and interstitial macrophages (IMs), exhibit a high degree of diversity, generally attributed to different activation states, and often complicated by the influx of monocytes into the pool of tissue-resident macrophages. To gain a deeper insight into the functional diversity of IMs, here we perform comprehensive transcriptional profiling of resident IMs and reveal ten distinct chemokine-expressing IM subsets at steady state and during inflammation. Similar IM subsets that exhibited coordinated chemokine signatures and differentially expressed genes were observed across various tissues and species, indicating conserved specialized functional roles. Other macrophage types shared specific IM chemokine profiles, while also presenting their own unique chemokine signatures. Depletion of CD206hi IMs in Pf4creR26EYFP+DTR and Pf4creR26EYFPCx3cr1DTR mice led to diminished inflammatory cell recruitment, reduced tertiary lymphoid structure formation and fewer germinal center B cells in models of allergen- and infection-driven inflammation. These observations highlight the specialized roles of IMs, defined by their coordinated chemokine production, in regulating immune cell influx and organizing tertiary lymphoid tissue architecture.


Subject(s)
Chemokines , Macrophages , Animals , Mice , Chemokines/metabolism , Macrophages/immunology , Macrophages/metabolism , Lung/immunology , Mice, Inbred C57BL , Inflammation/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Organ Specificity/immunology , Gene Expression Profiling , Mice, Transgenic , Tertiary Lymphoid Structures/immunology , Transcriptome
5.
Sci Rep ; 14(1): 12454, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816574

ABSTRACT

Housekeeping protein-coding genes are stably expressed genes in cells and tissues that are thought to be engaged in fundamental cellular biological functions. They are often utilized as normalization references in molecular biology research and are especially important in integrated bioinformatic investigations. Prior studies have examined human housekeeping protein-coding genes by analyzing various gene expression datasets. The inclusion of different tissue types significantly impacted the discovery of housekeeping genes. In this report, we investigated particularly individual human subject expression differences in protein-coding genes across different tissue types. We used GTEx V8 gene expression datasets obtained from more than 16,000 human normal tissue samples. Furthermore, the Gini index is utilized to investigate the expression variations of protein-coding genes between tissue and individual donor subjects. Housekeeping protein-coding genes found using Gini index profiles may vary depending on the tissue subtypes investigated, particularly given the diverse sample size collections across the GTEx tissue subtypes. We subsequently selected major tissues and identified subsets of housekeeping genes with stable expression levels among human donors within those tissues. In this work, we provide alternative sets of housekeeping protein-coding genes that show more consistent expression patterns in human subjects across major solid organs. Weblink: https://hpsv.ibms.sinica.edu.tw .


Subject(s)
Genes, Essential , Humans , Gene Expression Profiling/methods , Computational Biology/methods , Organ Specificity/genetics , Databases, Genetic
6.
Sci Adv ; 10(22): eadl0320, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820160

ABSTRACT

Translation of mRNAs is a fundamental process that occurs in all cell types of multicellular organisms. Conventionally, it has been considered a default step in gene expression, lacking specific regulation. However, recent studies have documented that certain mRNAs exhibit cell type-specific translation. Despite this, it remains unclear whether global translation is controlled in a cell type-specific manner. By using human cell lines and mouse models, we found that deletion of the ribosome-associated protein ribonuclease inhibitor 1 (RNH1) decreases global translation selectively in hematopoietic-origin cells but not in the non-hematopoietic-origin cells. RNH1-mediated cell type-specific translation is mechanistically linked to angiogenin-induced ribosomal biogenesis. Collectively, this study unravels the existence of cell type-specific global translation regulators and highlights the complex translation regulation in vertebrates.


Subject(s)
Protein Biosynthesis , Ribonuclease, Pancreatic , Ribosomes , Ribonuclease, Pancreatic/metabolism , Ribonuclease, Pancreatic/genetics , Humans , Animals , Mice , Ribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation , Cell Line , Organ Specificity , Carrier Proteins
8.
Nat Commun ; 15(1): 4521, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806452

ABSTRACT

Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation - a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.


Subject(s)
Chromatin , Fibroblasts , Mast Cells , Melanocytes , Proto-Oncogene Proteins c-kit , Animals , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Mice , Mast Cells/metabolism , Melanocytes/metabolism , Fibroblasts/metabolism , Chromatin/metabolism , Chromatin/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Promoter Regions, Genetic/genetics , Enhancer Elements, Genetic/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Epigenesis, Genetic , Genetic Loci , Mice, Inbred C57BL , Organ Specificity/genetics , Gene Editing , Ectopic Gene Expression , Male
9.
Front Immunol ; 15: 1373537, 2024.
Article in English | MEDLINE | ID: mdl-38812520

ABSTRACT

Sex-based differences in immune cell composition and function can contribute to distinct adaptive immune responses. Prior work has quantified these differences in peripheral blood, but little is known about sex differences within human lymphoid tissues. Here, we characterized the composition and phenotypes of adaptive immune cells from male and female ex vivo tonsils and evaluated their responses to influenza antigens using an immune organoid approach. In a pediatric cohort, female tonsils had more memory B cells compared to male tonsils direct ex vivo and after stimulation with live-attenuated but not inactivated vaccine, produced higher influenza-specific antibody responses. Sex biases were also observed in adult tonsils but were different from those measured in children. Analysis of peripheral blood immune cells from in vivo vaccinated adults also showed higher frequencies of tissue homing CD4 T cells in female participants. Together, our data demonstrate that distinct memory B and T cell profiles are present in male vs. female lymphoid tissues and peripheral blood respectively and suggest that these differences may in part explain sex biases in response to vaccines and viruses.


Subject(s)
Palatine Tonsil , Humans , Female , Male , Child , Palatine Tonsil/immunology , Adult , Influenza Vaccines/immunology , Influenza, Human/immunology , Sex Characteristics , Child, Preschool , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Memory B Cells/immunology , Organ Specificity/immunology , Young Adult , Sex Factors , CD4-Positive T-Lymphocytes/immunology , B-Lymphocytes/immunology , Immunologic Memory
10.
Proc Natl Acad Sci U S A ; 121(21): e2319060121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753516

ABSTRACT

Multicellular organisms are composed of many tissue types that have distinct morphologies and functions, which are largely driven by specialized proteomes and interactomes. To define the proteome and interactome of a specific type of tissue in an intact animal, we developed a localized proteomics approach called Methionine Analog-based Cell-Specific Proteomics and Interactomics (MACSPI). This method uses the tissue-specific expression of an engineered methionyl-tRNA synthetase to label proteins with a bifunctional amino acid 2-amino-5-diazirinylnonynoic acid in selected cells. We applied MACSPI in Caenorhabditis elegans, a model multicellular organism, to selectively label, capture, and profile the proteomes of the body wall muscle and the nervous system, which led to the identification of tissue-specific proteins. Using the photo-cross-linker, we successfully profiled HSP90 interactors in muscles and neurons and identified tissue-specific interactors and stress-related interactors. Our study demonstrates that MACSPI can be used to profile tissue-specific proteomes and interactomes in intact multicellular organisms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Proteome , Proteomics , Animals , Caenorhabditis elegans/metabolism , Proteomics/methods , Caenorhabditis elegans Proteins/metabolism , Proteome/metabolism , Methionine-tRNA Ligase/metabolism , Methionine-tRNA Ligase/genetics , HSP90 Heat-Shock Proteins/metabolism , Organ Specificity , Muscles/metabolism , Neurons/metabolism
11.
PLoS Biol ; 22(5): e3002620, 2024 May.
Article in English | MEDLINE | ID: mdl-38743647

ABSTRACT

Animals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer. By comparing gene expression in 7 somatic tissues procured from wild COTS sampled on the Great Barrier Reef, we identified more than 2,000 protein-coding genes that change significantly between summer and winter. COTS genes that appear to mediate conspecific communication, including both signalling factors released into the surrounding sea water and cell surface receptors, are up-regulated in external secretory and sensory tissues in the summer, often in a sex-specific manner. Sexually dimorphic gene expression appears to be underpinned by sex- and season-specific transcription factors (TFs) and gene regulatory programs. There are over 100 TFs that are seasonally expressed, 87% of which are significantly up-regulated in the summer. Six nuclear receptors are up-regulated in all tissues in the summer, suggesting that systemic seasonal changes are hormonally controlled, as in vertebrates. Unexpectedly, there is a suite of stress-related chaperone proteins and TFs, including HIFa, ATF3, C/EBP, CREB, and NF-κB, that are uniquely and widely co-expressed in gravid females. The up-regulation of these stress proteins in the summer suggests the demands of oogenesis in this highly fecund starfish affects protein stability and turnover in somatic cells. Together, these circannual changes in gene expression provide novel insights into seasonal changes in this coral reef pest and have the potential to identify vulnerabilities for targeted biocontrol.


Subject(s)
Reproduction , Seasons , Starfish , Animals , Starfish/genetics , Starfish/metabolism , Starfish/physiology , Reproduction/genetics , Female , Male , Stress, Physiological/genetics , Gene Expression Regulation , Transcription Factors/metabolism , Transcription Factors/genetics , Organ Specificity/genetics , Coral Reefs
12.
Proc Natl Acad Sci U S A ; 121(18): e2322751121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652750

ABSTRACT

Organ-specific gene expression datasets that include hundreds to thousands of experiments allow the reconstruction of organ-level gene regulatory networks (GRNs). However, creating such datasets is greatly hampered by the requirements of extensive and tedious manual curation. Here, we trained a supervised classification model that can accurately classify the organ-of-origin for a plant transcriptome. This K-Nearest Neighbor-based multiclass classifier was used to create organ-specific gene expression datasets for the leaf, root, shoot, flower, and seed in Arabidopsis thaliana. A GRN inference approach was used to determine the: i. influential transcription factors (TFs) in each organ and, ii. most influential TFs for specific biological processes in that organ. These genome-wide, organ-delimited GRNs (OD-GRNs), recalled many known regulators of organ development and processes operating in those organs. Importantly, many previously unknown TF regulators were uncovered as potential regulators of these processes. As a proof-of-concept, we focused on experimentally validating the predicted TF regulators of lipid biosynthesis in seeds, an important food and biofuel trait. Of the top 20 predicted TFs, eight are known regulators of seed oil content, e.g., WRI1, LEC1, FUS3. Importantly, we validated our prediction of MybS2, TGA4, SPL12, AGL18, and DiV2 as regulators of seed lipid biosynthesis. We elucidated the molecular mechanism of MybS2 and show that it induces purple acid phosphatase family genes and lipid synthesis genes to enhance seed lipid content. This general approach has the potential to be extended to any species with sufficiently large gene expression datasets to find unique regulators of any trait-of-interest.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Gene Regulatory Networks , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Organ Specificity/genetics , Transcriptome/genetics , Seeds/genetics , Seeds/metabolism , Gene Expression Profiling/methods
13.
Biochem Biophys Res Commun ; 712-713: 149960, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38640734

ABSTRACT

An essential ketone body, ß-hydroxybutyrate (BOHB), plays various roles in physiological regulations via protein acylations such as lysine acetylation and ß-hydroxybutyrylation. Here, to understand how BOHB systemically regulates acylations from an overarching perspective, we administered a ketogenic diet to mice to increase BOHB concentration and examined acylations. We found that global acetylation and ß-hydroxybutyrylation dramatically increase in various organs except for the brains, where the increase was much smaller than in the other organs. Interestingly, we observe no increase in histone acetylation in the organs where significant global protein acetylation occurs despite a substantial rise in histone ß-hydroxybutyrylation. Finally, we compared the transcriptome data of the mice's liver after the ketogenic diet to the public databases, showing that upregulated genes are enriched in those related to histone ß-hydroxybutyrylation in starvation. Our data indicate that a ketogenic diet induces diverse patterns of acylations depending on organs and protein localizations, suggesting that different mechanisms regulate acylations and that the ketogenic diet is associated with starvation in terms of protein modifications.


Subject(s)
3-Hydroxybutyric Acid , Diet, Ketogenic , Histones , Mice, Inbred C57BL , Animals , Histones/metabolism , Mice , 3-Hydroxybutyric Acid/metabolism , Male , Acylation , Liver/metabolism , Acetylation , Organ Specificity , Proteins/metabolism , Proteins/genetics , Transcriptome
14.
DNA Res ; 31(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38566577

ABSTRACT

Pacific saury (Cololabis saira) is an important fish in several countries. Notably, the catch of this fish has markedly decreased recently, which might be due to environmental changes, including feeding habitat changes. However, no clear correlation has been observed. Therefore, the physiological basis of Pacific saury in relation to possible environmental factors must be understood. We sequenced the genome of Pacific saury and extracted RNA from nine tissues (brain, eye, gill, anterior/posterior guts, kidney, liver, muscle, and ovary). In 1.09 Gb assembled genome sequences, a total of 26,775 protein-coding genes were predicted, of which 26,241 genes were similar to known genes in a public database. Transcriptome analysis revealed that 24,254 genes were expressed in at least one of the nine tissues, and 7,495 were highly expressed in specific tissues. Based on the similarity of the expression profiles to those of model organisms, the transcriptome obtained was validated to reflect the characteristics of each tissue. Thus, the present genomic and transcriptomic data serve as useful resources for molecular studies on Pacific saury. In particular, we emphasize that the gene expression data, which serve as the tissue expression panel of this species, can be employed in comparative transcriptomics on marine environmental responses.


Subject(s)
Genome , Transcriptome , Animals , Gene Expression Profiling , Fishes/genetics , Fishes/metabolism , Organ Specificity
15.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673775

ABSTRACT

Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors. It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion transporter, SLC26A4 is involved in the maintenance of hearing function, renal function, blood pressure, and hormone and pH regulation. In this review, we have summarized the various functions of SLC26A4 in multiple tissues and organs. Moreover, the relationships between SLC26A4 and other channels, such as cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and sodium chloride cotransporter, are highlighted. Although the modulation of SLC26A4 is critical for recovery from malfunctions of various organs, development of specific inducers or agonists of SLC26A4 remains challenging. This review contributes to providing a better understanding of the role of SLC26A4 and development of therapeutic approaches for the SLC26A4-associated hearing loss and SLC26A4-related dysfunction of various organs.


Subject(s)
Sulfate Transporters , Humans , Sulfate Transporters/metabolism , Sulfate Transporters/genetics , Animals , Kidney/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Chloride-Bicarbonate Antiporters/genetics , Organ Specificity , Chlorides/metabolism , Ion Transport
16.
Nature ; 628(8009): 863-871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570687

ABSTRACT

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Subject(s)
Brain , Neovascularization, Physiologic , Animals , Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/cytology , Brain/cytology , Brain/blood supply , Brain/metabolism , Cell Movement , Collagen Type IV/metabolism , CRISPR-Cas Systems/genetics , Endothelial Cells/metabolism , Endothelial Cells/cytology , Meninges/cytology , Meninges/blood supply , Meninges/metabolism , Organ Specificity , Wnt Proteins/metabolism , Wnt Signaling Pathway , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
17.
Immunol Rev ; 323(1): 8-18, 2024 May.
Article in English | MEDLINE | ID: mdl-38628147

ABSTRACT

Cells of the mammalian innate immune system have evolved to protect the host from various environmental or internal insults and injuries which perturb the homeostatic state of the organism. Among the lymphocytes of the innate immune system are natural killer (NK) cells, which circulate and survey host tissues for signs of stress, including infection or transformation. NK cells rapidly eliminate damaged cells in the blood or within tissues through secretion of cytolytic machinery and production of proinflammatory cytokines. To perform these effector functions while traversing between the blood and tissues, patrolling NK cells require sufficient fuel to meet their energetic demands. Here, we highlight the ability of NK cells to metabolically adapt across tissues, during times of nutrient deprivation and within tumor microenvironments. Whether at steady state, or during viral infection and cancer, NK cells readily shift their nutrient uptake and usage in order to maintain metabolism, survival, and function.


Subject(s)
Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Immunity, Innate , Organ Specificity/immunology , Neoplasms/immunology , Neoplasms/metabolism , Energy Metabolism , Tumor Microenvironment/immunology , Homeostasis , Cytokines/metabolism , Metabolic Reprogramming
18.
Article in English | MEDLINE | ID: mdl-38663672

ABSTRACT

Major depressive disorder (MDD) is a clinically and genetically heterogeneous disorder. To reduce heterogeneity, large-scale genome-wide association studies have recently identified genome-wide significant loci associated with seven MDD subtypes. However, it was unclear in which tissues the genes near those loci are specifically expressed. We investigated whether genes related to specific MDD subtypes would be preferably expressed in a specific tissue. At 14 novel subtype-specific loci related to seven MDD subtypes-(1) non-atypical-like features MDD, (2) early-onset MDD, (3) recurrent MDD, (4) MDD with suicidal thoughts, (5) MDD without suicidal thoughts, (6) MDD with moderate impairment, and (7) postpartum depression, we investigated whether 22 genome-wide significant genetic variant-mapped genes were tissue-specifically expressed in brain, female reproductive, male specific, cardiovascular, gastrointestinal, or urinary tissues in the Genotype-Tissue Expression (GTEx) subjects (n ≤ 948). To confirm the tissue-specific expression in the GTEx, we used independent Human Protein Atlas (HPA) RNA-seq subjects (n ≤ 95). Of 22 genes, nine and five genes were tissue-specifically expressed in brain and female reproductive tissues, respectively (p < 2.27 × 10-3). RTN1, ERBB4, and AMIGO1 related to early-onset MDD, recurrent MDD, or MDD with suicidal thoughts were highly expressed in brain tissues (d = 1.19-2.71), while OAS1, LRRC9, DHRS7, PSMA5, SYPL2, and GULP1 related to non-atypical-like features MDD, early-onset MDD, MDD with suicidal thoughts, or postpartum depression were expressed at low levels in brain tissues (d = -0.17--1.48). DFNA5, CTBP2, PCNX4, SDCCAG8, and GULP1, which are related to early-onset MDD, MDD with moderate impairment, or postpartum depression, were highly expressed in female reproductive tissues (d = 0.80-2.08). Brain and female reproductive tissue-specific expression was confirmed in the HPA RNA-seq subjects. Our findings suggest that brain and female reproductive tissue-specific expression might contribute to the pathogenesis of MDD subtypes.


Subject(s)
Depressive Disorder, Major , Genome-Wide Association Study , Humans , Depressive Disorder, Major/genetics , Female , Male , Adult , Brain/metabolism , Gene Expression , Organ Specificity , Suicidal Ideation , Middle Aged , Depression, Postpartum/genetics
19.
Immunol Rev ; 323(1): 54-60, 2024 May.
Article in English | MEDLINE | ID: mdl-38568046

ABSTRACT

Natural killer (NK) cells are the prototype innate effector lymphocyte population that plays an important role in controlling viral infections and tumors. Studies demonstrating that NK cells form long-lived memory populations, akin to those generated by adaptive immune cells, prompted a revaluation of the potential functions of NK cells. Recent data demonstrating that NK cells are recruited from the circulation into tissues where they form long-lived memory-like populations further emphasize that NK cells have properties that mirror those of adaptive immune cells. NK cells that localize in non-lymphoid tissues are heterogeneous, and there is a growing appreciation that immune responses occurring within tissues are subject to tissue-specific regulation. Here we discuss both the immune effector and immunoregulatory functions of NK cells, with a particular emphasis on the role of NK cells within non-lymphoid tissues and how the tissue microenvironment shapes NK cell-dependent outcomes.


Subject(s)
Immunologic Memory , Killer Cells, Natural , Killer Cells, Natural/immunology , Humans , Animals , Organ Specificity/immunology , Adaptive Immunity , Cellular Microenvironment , Immunity, Innate
20.
BMC Genomics ; 25(1): 429, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689208

ABSTRACT

BACKGROUND: Expression quantitative trait loci (eQTL) studies aim to understand the influence of genetic variants on gene expression. The colocalization of eQTL mapping and GWAS strategy could help identify essential candidate genes and causal DNA variants vital to complex traits in human and many farm animals. However, eQTL mapping has not been conducted in ducks. It is desirable to know whether eQTLs within GWAS signals contributed to duck economic traits. RESULTS: In this study, we conducted an eQTL analysis using publicly available RNA sequencing data from 820 samples, focusing on liver, muscle, blood, adipose, ovary, spleen, and lung tissues. We identified 113,374 cis-eQTLs for 12,266 genes, a substantial fraction 39.1% of which were discovered in at least two tissues. The cis-eQTLs of blood were less conserved across tissues, while cis-eQTLs from any tissue exhibit a strong sharing pattern to liver tissue. Colocalization between cis-eQTLs and genome-wide association studies (GWAS) of 50 traits uncovered new associations between gene expression and potential loci influencing growth and carcass traits. SRSF4, GSS, and IGF2BP1 in liver, NDUFC2 in muscle, ELF3 in adipose, and RUNDC1 in blood could serve as the candidate genes for duck growth and carcass traits. CONCLUSIONS: Our findings highlight substantial differences in genetic regulation of gene expression across duck primary tissues, shedding light on potential mechanisms through which candidate genes may impact growth and carcass traits. Furthermore, this availability of eQTL data offers a valuable resource for deciphering further genetic association signals that may arise from ongoing extensive endeavors aimed at enhancing duck production traits.


Subject(s)
Ducks , Genome-Wide Association Study , Quantitative Trait Loci , Animals , Ducks/genetics , Ducks/growth & development , Ducks/metabolism , Phenotype , Organ Specificity/genetics , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...