Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Pharm Bull ; 43(11): 1653-1659, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32863294

ABSTRACT

Hyperuricemia is mainly the result of relative underexcretion of urate. Urate is mainly eliminated by kidney and several important transporters expressed on the membrane of renal tubular cells involved in urate excretion. Olsalazine sodium was screened from 3167 authorized small compounds/drugs, targeting xanthine oxidoreductase. In previous study, we reported that olsalazine sodium significantly reduced the serum urate levels, and the anti-hyperuricemic activity linked with inhibiting urate formation by reducing the activity of xanthine oxidoreductase. The current research aimed to assess olsalazine sodium renal urate excretion and likely molecular mechanism. The results showed that administration of olsalazine sodium 5.0 mg/kg decreased the levels of serum urate in hyperuricemic rats, and noticeably improved the fractional excretion of urate and urate clearance, exhibiting an uricosuric action. Moreover, olsalazine sodium (2.5, 5.0, 10.0 mg/kg) reduced the level of blood urea nitrogen in rats. Further study showed that olsalazine sodium reduced the mRNA expression of urate reabsorptive transporter glucose transporter 9 (GLUT9), increased the mRNA expression of urate secretory transporters, organic anion transporter 1 (OAT1), OAT3 and type 1 sodium-dependent phosphate transporter (NPT1) as well as the protein expression of OAT3 in the kidney in hyperuricemic mice. In conclusion, olsalazine sodium exhibited a promotion of urate excretion in kidney by increasing the expression of OAT3.


Subject(s)
Aminosalicylic Acids/pharmacology , Hyperuricemia/drug therapy , Organic Anion Transporters, Sodium-Independent/agonists , Renal Elimination/drug effects , Uric Acid/metabolism , Aminosalicylic Acids/therapeutic use , Animals , Blood Urea Nitrogen , Creatinine/blood , Creatinine/urine , Disease Models, Animal , Dose-Response Relationship, Drug , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/metabolism , Humans , Hyperuricemia/blood , Hyperuricemia/physiopathology , Hyperuricemia/urine , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/physiopathology , Male , Mice , Monosaccharide Transport Proteins/antagonists & inhibitors , Monosaccharide Transport Proteins/metabolism , Organic Anion Transport Protein 1/agonists , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Rats , Rats, Sprague-Dawley , Renal Elimination/physiology , Renal Reabsorption/drug effects , Renal Reabsorption/physiology , Sodium-Phosphate Cotransporter Proteins, Type I/agonists , Sodium-Phosphate Cotransporter Proteins, Type I/metabolism , Uric Acid/blood , Uric Acid/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...