Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.655
Filter
1.
Curr Biol ; 34(11): 2387-2402.e5, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38776905

ABSTRACT

The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C. elegans ortholog of the Rac1 GTPase (ced-10) and its GEF complex (ced-5/DOCK180, ced-2/CrkII, ced-12/ELMO) cause gonad migration defects related to directional sensing; we discovered an additional defect class of gonad bifurcation in these mutants. Using genetic approaches, tissue-specific and whole-body RNAi, and in vivo imaging of endogenously tagged proteins and marked cells, we find that loss of Rac1 or its regulators causes the DTC to fragment as it migrates. Both products of fragmentation-the now-smaller DTC and the membranous patch of cellular material-localize important stem cell niche signaling (LAG-2 ligand) and migration (INA-1/integrin subunit alpha) factors to their membranes, but only one retains the DTC nucleus and therefore the ability to maintain gene expression over time. The enucleate patch can lead a bifurcating branch off the gonad arm that grows through germ cell proliferation. Germ cells in this branch differentiate as the patch loses LAG-2 expression. While the nucleus is surprisingly dispensable for aspects of leader cell function, it is required for stem cell niche activity long term. Prior work found that Rac1-/-;Rac2-/- mouse erythrocytes fragment; in this context, our new findings support the conclusion that maintaining a cohesive but deformable cell is a conserved function of this important cytoskeletal regulator.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Movement , Gonads , Organogenesis , Signal Transduction , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Gonads/metabolism , Gonads/growth & development , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Organogenesis/genetics , rac GTP-Binding Proteins/metabolism , rac GTP-Binding Proteins/genetics
2.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38602485

ABSTRACT

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Subject(s)
Cell Differentiation , Hippo Signaling Pathway , Morphogenesis , Myofibroblasts , Protein Serine-Threonine Kinases , Pulmonary Alveoli , Signal Transduction , YAP-Signaling Proteins , Animals , Mice , Myofibroblasts/metabolism , Myofibroblasts/cytology , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/cytology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Morphogenesis/genetics , Mesoderm/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Lung/metabolism , Organogenesis/genetics , Gene Expression Regulation, Developmental
3.
Dev Cell ; 59(10): 1302-1316.e5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38569553

ABSTRACT

The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.


Subject(s)
Cell Polarity , Lung , Mesoderm , Morphogenesis , Nerve Tissue Proteins , Animals , Mesoderm/metabolism , Mice , Lung/metabolism , Lung/pathology , Lung/embryology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Signal Transduction , Organogenesis/genetics , Receptors, G-Protein-Coupled
4.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542412

ABSTRACT

Thousands of lncRNAs have been found in zebrafish embryogenesis and adult tissues, but their identification and organogenesis-related functions have not yet been elucidated. In this study, high-throughput sequencing was performed at three different organogenesis stages of zebrafish embryos that are important for zebrafish muscle development. The three stages were 10 hpf (hours post fertilization) (T1), 24 hpf (T2), and 36 hpf (T3). LncRNA gas5, associated with muscle development, was screened out as the next research target by high-throughput sequencing and qPCR validation. The spatiotemporal expression of lncRNA gas5 in zebrafish embryonic muscle development was studied through qPCR and in situ hybridization, and functional analysis was conducted using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9, CRISPR/Cas9). The results were as follows: (1) A total of 1486 differentially expressed lncRNAs were identified between T2 and T1, among which 843 lncRNAs were upregulated and 643 were downregulated. The comparison with T3 and T2 resulted in 844 differentially expressed lncRNAs, among which 482 lncRNAs were upregulated and 362 lncRNAs were downregulated. A total of 2137 differentially expressed lncRNAs were found between T3 and T1, among which 1148 lncRNAs were upregulated and 989 lncRNAs were downregulated, including lncRNA gas5, which was selected as the target gene. (2) The results of spatiotemporal expression analysis showed that lncRNA gas5 was expressed in almost all detected embryos of different developmental stages (0, 2, 6, 10, 16, 24, 36, 48, 72, 96 hpf) and detected tissues of adult zebrafish. (3) After lncRNA gas5 knockout using CRISPR/Cas9 technology, the expression levels of detected genes related to muscle development and adjacent to lncRNA gas5 were more highly affected in the knockout group compared with the control group, suggesting that lncRNA gas5 may play a role in embryonic muscle development in zebrafish. (4) The results of the expression of the skeletal myogenesis marker myod showed that the expression of myod in myotomes was abnormal, suggesting that skeletal myogenesis was affected after lncRNA gas5 knockout. The results of this study provide an experimental basis for further studies on the role of lncRNA gas5 in the embryonic skeletal muscle development of zebrafish.


Subject(s)
RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Zebrafish/metabolism , Organogenesis/genetics , Embryonic Development/genetics , Muscle Development/genetics
5.
Dis Model Mech ; 17(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38353121

ABSTRACT

The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.


Subject(s)
Branchio-Oto-Renal Syndrome , Kidney Diseases , Humans , Branchio-Oto-Renal Syndrome/genetics , Kidney , Organogenesis/genetics , Embryonic Development
6.
Mol Cell Endocrinol ; 586: 112193, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38401883

ABSTRACT

Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis. This involved complete degeneration of larval epithelium via programmed cell death and de novo formation of adult epithelium, with concurrent maturation of the muscles and connective tissue. Here, we will summarize our current understanding of the underlying molecular mechanisms, with a focus on more recent genetic and genome-wide studies.


Subject(s)
Adult Stem Cells , Triiodothyronine , Animals , Xenopus laevis , Xenopus/genetics , Xenopus/metabolism , Triiodothyronine/metabolism , Gene Expression Regulation, Developmental , Intestines , Thyroid Hormones/metabolism , Metamorphosis, Biological/genetics , Organogenesis/genetics , Mammals/metabolism
7.
STAR Protoc ; 5(1): 102835, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38224493

ABSTRACT

Creating in vitro culture platforms for monkey embryos is crucial for understanding the initial 4 weeks of early primate embryogenesis. Here, we present a protocol to culture cynomolgus monkey embryos in vitro for 25 days post-fertilization and to delineate the key developmental events of gastrulation and early organogenesis. We describe steps for culturing with a 3D system, immunofluorescence analysis, single-cell RNA sequencing, and bioinformatic analysis. For complete details on the use and execution of this protocol, please refer to Gong et al. (2023).1.


Subject(s)
Organogenesis , Single-Cell Gene Expression Analysis , Animals , Macaca fascicularis , Organogenesis/genetics , Embryonic Development/genetics , Computational Biology
8.
Cell Rep ; 43(2): 113703, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38265933

ABSTRACT

Pancreas development is tightly controlled by multilayer mechanisms. Despite years of effort, large gaps remain in understanding how histone modifications coordinate pancreas development. SETD2, a predominant histone methyltransferase of H3K36me3, plays a key role in embryonic stem cell differentiation, whose role in organogenesis remains elusive. Here, by combination of cleavage under targets and tagmentation (CUT&Tag), assay for transposase-accessible chromatin using sequencing (ATAC-seq), and bulk RNA sequencing, we show a dramatic increase in the H3K36me3 level from the secondary transition phase and decipher the related transcriptional alteration. Using single-cell RNA sequencing, we define that pancreatic deletion of Setd2 results in abnormalities in both exocrine and endocrine lineages: hyperproliferative tip progenitor cells lead to abnormal differentiation; Ngn3+ endocrine progenitors decline due to the downregulation of Nkx2.2, leading to insufficient endocrine development. Thus, these data identify SETD2 as a crucial player in embryonic pancreas development, providing a clue to understanding the dysregulation of histone modifications in pancreatic disorders.


Subject(s)
Chromatin , Pancreas , Animals , Mice , Cell Differentiation , Histone-Lysine N-Methyltransferase/genetics , Organogenesis/genetics
9.
Development ; 151(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37982461

ABSTRACT

Early organogenesis represents a key step in animal development, during which pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single-cell transcriptomes from mouse embryos between E8.5 and E9.5 in 6-h intervals and combined this new dataset with our previous atlas (E6.5-E8.5) to produce a densely sampled timecourse of >400,000 cells from early gastrulation to organogenesis. Computational lineage reconstruction identified complex waves of blood and endothelial development, including a new programme for somite-derived endothelium. We also dissected the E7.5 primitive streak into four adjacent regions, performed scRNA-seq and predicted cell fates computationally. Finally, we defined developmental state/fate relationships by combining orthotopic grafting, microscopic analysis and scRNA-seq to transcriptionally determine cell fates of grafted primitive streak regions after 24 h of in vitro embryo culture. Experimentally determined fate outcomes were in good agreement with computationally predicted fates, demonstrating how classical grafting experiments can be revisited to establish high-resolution cell state/fate relationships. Such interdisciplinary approaches will benefit future studies in developmental biology and guide the in vitro production of cells for organ regeneration and repair.


Subject(s)
Gastrulation , Organogenesis , Mice , Animals , Cell Differentiation , Organogenesis/genetics , Primitive Streak , Endothelium , Embryo, Mammalian , Mammals
10.
Science ; 382(6670): eadf1046, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37917687

ABSTRACT

Sexually dimorphic traits are common among mammals and are specified during development through the deployment of sex-specific genetic programs. Because little is known about these programs, we investigated them using a resource of gene expression profiles in males and females throughout the development of five organs in five mammals (human, mouse, rat, rabbit, and opossum) and a bird (chicken). We found that sex-biased gene expression varied considerably across organs and species and was often cell-type specific. Sex differences increased abruptly around sexual maturity instead of increasing gradually during organ development. Finally, sex-biased gene expression evolved rapidly at the gene level, with differences between organs in the evolutionary mechanisms used, but more slowly at the cellular level, with the same cell types being sexually dimorphic across species.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Developmental , Mammals , Organogenesis , Sex Characteristics , Animals , Female , Humans , Male , Mice , Rabbits , Rats , Chickens , Mammals/genetics , Mammals/growth & development , RNA-Seq , Transcriptome , Organogenesis/genetics
11.
Nat Commun ; 14(1): 4599, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524711

ABSTRACT

Mammalian embryos exhibit sophisticated cellular patterning that is intricately orchestrated at both molecular and cellular level. It has recently become apparent that cells within the animal body display significant heterogeneity, both in terms of their cellular properties and spatial distributions. However, current spatial transcriptomic profiling either lacks three-dimensional representation or is limited in its ability to capture the complexity of embryonic tissues and organs. Here, we present a spatial transcriptomic atlas of all major organs at embryonic day 13.5 in the mouse embryo, and provide a three-dimensional rendering of molecular regulation for embryonic patterning with stacked sections. By integrating the spatial atlas with corresponding single-cell transcriptomic data, we offer a detailed molecular annotation of the dynamic nature of organ development, spatial cellular interactions, embryonic axes, and divergence of cell fates that underlie mammalian development, which would pave the way for precise organ engineering and stem cell-based regenerative medicine.


Subject(s)
Organogenesis , Transcriptome , Animals , Mice , Organogenesis/genetics , Gene Expression Profiling , Embryo, Mammalian , Stem Cells , Mammals
12.
Nat Genet ; 55(7): 1176-1185, 2023 07.
Article in English | MEDLINE | ID: mdl-37414952

ABSTRACT

Spatiotemporal orchestration of gene expression is required for proper embryonic development. The use of single-cell technologies has begun to provide improved resolution of early regulatory dynamics, including detailed molecular definitions of most cell states during mouse embryogenesis. Here we used Slide-seq to build spatial transcriptomic maps of complete embryonic day (E) 8.5 and E9.0, and partial E9.5 embryos. To support their utility, we developed sc3D, a tool for reconstructing and exploring three-dimensional 'virtual embryos', which enables the quantitative investigation of regionalized gene expression patterns. Our measurements along the main embryonic axes of the developing neural tube revealed several previously unannotated genes with distinct spatial patterns. We also characterized the conflicting transcriptional identity of 'ectopic' neural tubes that emerge in Tbx6 mutant embryos. Taken together, we present an experimental and computational framework for the spatiotemporal investigation of whole embryonic structures and mutant phenotypes.


Subject(s)
Organogenesis , Transcriptome , Mice , Animals , Transcriptome/genetics , Organogenesis/genetics , Embryonic Development/genetics , Embryo, Mammalian , Phenotype , Gene Expression Regulation, Developmental/genetics , T-Box Domain Proteins/genetics
13.
Nat Cell Biol ; 25(7): 1061-1072, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37322291

ABSTRACT

Traditionally, the mouse has been the favoured vertebrate model for biomedical research, due to its experimental and genetic tractability. However, non-rodent embryological studies highlight that many aspects of early mouse development, such as its egg-cylinder gastrulation and method of implantation, diverge from other mammals, thus complicating inferences about human development. Like the human embryo, rabbits develop as a flat-bilaminar disc. Here we constructed a morphological and molecular atlas of rabbit development. We report transcriptional and chromatin accessibility profiles for over 180,000 single cells and high-resolution histology sections from embryos spanning gastrulation, implantation, amniogenesis and early organogenesis. Using a neighbourhood comparison pipeline, we compare the transcriptional landscape of rabbit and mouse at the scale of the entire organism. We characterize the gene regulatory programmes underlying trophoblast differentiation and identify signalling interactions involving the yolk sac mesothelium during haematopoiesis. We demonstrate how the combination of both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse macaque and human data. The datasets and computational pipelines reported here set a framework for a broader cross-species approach to decipher early mammalian development, and are readily adaptable to deploy single-cell comparative genomics more broadly across biomedical research.


Subject(s)
Gastrulation , Organogenesis , Rabbits , Humans , Animals , Mice , Gastrulation/genetics , Organogenesis/genetics , Embryo Implantation/genetics , Embryo, Mammalian , Cell Differentiation , Embryonic Development/genetics , Mammals
14.
BMC Biol ; 21(1): 55, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941669

ABSTRACT

BACKGROUND: The reactivation of genetic programs from early development is a common mechanism for injury-induced organ regeneration. T-box 3 (TBX3) is a member of the T-box family of transcription factors previously shown to regulate pluripotency and subsequent lineage commitment in a number of tissues, including limb and lung. TBX3 is also involved in lung and heart organogenesis. Here, we provide a comprehensive and thorough characterization of TBX3 and its role during pancreatic organogenesis and regeneration. RESULTS: We interrogated the level and cell specificity of TBX3 in the developing and adult pancreas at mRNA and protein levels at multiple developmental stages in mouse and human pancreas. We employed conditional mutagenesis to determine its role in murine pancreatic development and in regeneration after the induction of acute pancreatitis. We found that Tbx3 is dynamically expressed in the pancreatic mesenchyme and epithelium. While Tbx3 is expressed in the developing pancreas, its absence is likely compensated by other factors after ablation from either the mesenchymal or epithelial compartments. In an adult model of acute pancreatitis, we found that a lack of Tbx3 resulted in increased proliferation and fibrosis as well as an enhanced inflammatory gene programs, indicating that Tbx3 has a role in tissue homeostasis and regeneration. CONCLUSIONS: TBX3 demonstrates dynamic expression patterns in the pancreas. Although TBX3 is dispensable for proper pancreatic development, its absence leads to altered organ regeneration after induction of acute pancreatitis.


Subject(s)
Pancreatitis , Adult , Humans , Animals , Mice , Acute Disease , Pancreatitis/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Pancreas/metabolism , Organogenesis/genetics
15.
Nat Cell Biol ; 25(4): 604-615, 2023 04.
Article in English | MEDLINE | ID: mdl-36928764

ABSTRACT

The early window of human embryogenesis is largely a black box for developmental biologists. Here we probed the cellular diversity of 4-6 week human embryos when essentially all organs are just laid out. On the basis of over 180,000 single-cell transcriptomes, we generated a comprehensive atlas of 313 clusters in 18 developmental systems, which were annotated with a collection of ontology and markers from 157 publications. Together with spatial transcriptome on embryonic sections, we characterized the molecule and spatial architecture of previously unappreciated cell types. Combined with data from other vertebrates, the rich information shed light on spatial patterning of axes, systemic temporal regulation of developmental progression and potential human-specific regulation. Our study provides a compendium of early progenitor cells of human organs, which can serve as the root of lineage analysis in organogenesis.


Subject(s)
Gene Expression Regulation, Developmental , Transcriptome , Animals , Humans , Organogenesis/genetics , Embryo, Mammalian , Stem Cells , Single-Cell Analysis , Gene Expression Profiling
16.
Cell Mol Life Sci ; 80(4): 89, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36920550

ABSTRACT

Vertebrate lonesome kinase (VLK) is the only known secreted tyrosine kinase and responsible for the phosphorylation of a broad range of secretory pathway-resident and extracellular matrix proteins. However, its cell-type specific functions in vivo are still largely unknown. Therefore, we generated mice lacking the VLK gene (protein kinase domain containing, cytoplasmic (Pkdcc)) in mesenchymal cells. Most of the homozygous mice died shortly after birth, most likely as a consequence of their lung abnormalities and consequent respiratory failure. E18.5 embryonic lungs showed a reduction of alveolar type II cells, smaller bronchi, and an increased lung tissue density. Global mass spectrometry-based quantitative proteomics identified 97 proteins with significantly and at least 1.5-fold differential abundance between genotypes. Twenty-five of these had been assigned to the extracellular region and 15 to the mouse matrisome. Specifically, fibromodulin and matrilin-4, which are involved in extracellular matrix organization, were significantly more abundant in lungs from Pkdcc knockout embryos. These results support a role for mesenchyme-derived VLK in lung development through regulation of matrix dynamics and the resulting modulation of alveolar epithelial cell differentiation.


Subject(s)
Extracellular Matrix , Protein Kinases , Animals , Mice , Protein Kinases/genetics , Organogenesis/genetics , Lung , Mesoderm , Vertebrates , Protein-Tyrosine Kinases
18.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L433-L444, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36791060

ABSTRACT

Fibroblast growth factor (FGF) signaling is known to play an important role in lung organogenesis. However, we recently demonstrated that FGF10 fails to induce branching in human fetal lungs as is observed in mouse. Our previous human fetal lung RNA sequencing data exhibited increased FGF18 during the pseudoglandular stage of development, suggestive of its importance in human lung branching morphogenesis. Whereas it has been previously reported that FGF18 is critical during alveologenesis, few studies have described its implication in lung branching, specifically in human. Therefore, we aimed to determine the role of FGF18 in human lung branching morphogenesis. Human fetal lung explants within the pseudoglandular stage of development were treated with recombinant human FGF18 in air-liquid interface culture. Explants were analyzed grossly to assess differences in branching pattern, as well as at the cellular and molecular levels. FGF18 treatment promoted branching in explant cultures and demonstrated increased epithelial proliferation as well as maintenance of the double positive SOX2/SOX9 distal bud progenitor cells, confirming its role in human lung branching morphogenesis. In addition, FGF18 treated explants displayed increased expression of SOX9, FN1, and COL2A1 within the mesenchyme, all factors that are important to chondrocyte differentiation. In humans, cartilaginous airways extend deep into the lung up to the 12th generation of branching whereas in mouse these are restricted to the trachea and main bronchi. Therefore, our data suggest that FGF18 promotes human lung branching morphogenesis through regulating mesenchymal progenitor cells.


Subject(s)
Fibroblast Growth Factors , Mesenchymal Stem Cells , Animals , Humans , Mice , Fibroblast Growth Factors/genetics , Lung/metabolism , Morphogenesis/physiology , Organogenesis/genetics
19.
Proc Biol Sci ; 290(1990): 20221928, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36629110

ABSTRACT

Bats have undergone one of the most drastic limb innovations in vertebrate history, associated with the evolution of powered flight. Knowledge of the genetic basis of limb organogenesis in bats has increased but little has been documented regarding the differences between limb organogenesis in bats and that of other vertebrates. We conducted embryological comparisons of the timelines of limb organogenesis in 24 bat species and 72 non-bat amniotes. In bats, the time invested for forelimb organogenesis has been considerably extended and the appearance timing of the forelimb ridge has been significantly accelerated, whereas the timing of the finger and first appearance of the claw development has been delayed, facilitating the enlargement of the manus. Furthermore, we discovered that bats initiate the development of their hindlimbs earlier than their forelimbs compared with other placentals. Bat neonates are known to be able to cling continuously with their well-developed foot to the maternal bodies or habitat substrates soon after birth. We suggest that this unique life history of neonates, which possibly coevolved with powered flight, has driven the accelerated development of the hindlimb and precocious foot.


Subject(s)
Chiroptera , Animals , Infant, Newborn , Humans , Vertebrates , Forelimb , Organogenesis/genetics , Hindlimb , Eutheria , Flight, Animal
20.
Birth Defects Res ; 115(4): 458-473, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36470842

ABSTRACT

OBJECTIVES: Tris(4-chlorophenyl) methane (TCPM) and tris(4-chlorophenyl)methanol (TCPMOH) are anthropogenic environmental contaminants believed to be manufacturing byproducts of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) due to environmental co-occurrence. TCPM and TCPMOH are persistent, bioaccumulate in the environment, and are detected in human breast milk and adipose tissues. DDT exposures have been previously shown to disrupt insulin signaling and glucoregulation, increasing risk for diabetes. We have previously shown that embryonic exposures organochlorines such as polychlorinated biphenyls disrupted pancreatic development and early embryonic glucoregulatory networks. Here, we determined the impacts of the similar compounds TCPM and TCPMOH on zebrafish pancreatic growth and gene expression following developmental exposures. METHODS: Zebrafish embryos were exposed to 50 nM TCPM or TCPMOH beginning at 24 hr postfertilization (hpf) and exposures were refreshed daily. At 96 hpf, pancreatic growth and islet area were directly visualized in Tg(ptf1a::GFP) and Tg(insulin::GFP) embryos, respectively, using microscopy. Gene expression was assessed at 100 hpf with RNA sequencing. RESULTS: Islet and total pancreas area were reduced by 20.8% and 13% in embryos exposed to 50 nM TCPMOH compared to controls. TCPM did not induce significant morphological changes to the developing pancreas, indicating TCPMOH, but not TCPM, impairs pancreatic development despite similarity in molecular responses. Transcriptomic responses to TCPM and TCPMOH were correlated (R2  = .903), and pathway analysis found downregulation of processes including retinol metabolism, circadian rhythm, and steroid biosynthesis. CONCLUSION: Overall, our data suggest that TCPM and TCPMOH may be hazardous to embryonic growth and development.


Subject(s)
DDT , Zebrafish , Female , Animals , Humans , DDT/metabolism , Methanol , Methane , Organogenesis/genetics , Pancreas , Insulin , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...