Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.220
Filter
1.
Stem Cell Res Ther ; 15(1): 132, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702808

ABSTRACT

BACKGROUND: Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS: Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS: We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION: Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.


Subject(s)
Apoptosis , Cell Differentiation , Induced Pluripotent Stem Cells , Kidney , Monocytes , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Organoids/cytology , Organoids/metabolism , Organoids/drug effects , Apoptosis/drug effects , Cell Differentiation/drug effects , Kidney/cytology , Kidney/metabolism , Monocytes/metabolism , Monocytes/cytology , Monocytes/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology , Sirolimus/pharmacology , Autophagy/drug effects , Coculture Techniques/methods , Macrophages/metabolism , Macrophages/cytology , Macrophages/drug effects
2.
Cells ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786037

ABSTRACT

Intestinal homeostasis results from the proper interplay among epithelial cells, the enteric nervous system (ENS), interstitial cells of Cajal (ICCs), smooth muscle cells, the immune system, and the microbiota. The disruption of this balance underpins the onset of gastrointestinal-related diseases. The scarcity of models replicating the intricate interplay between the ENS and the intestinal epithelium highlights the imperative for developing novel methods. We have pioneered a sophisticated tridimensional in vitro technique, coculturing small intestinal organoids with myenteric and submucosal neurons. Notably, we have made significant advances in (1) refining the isolation technique for culturing the myenteric plexus, (2) enhancing the isolation of the submucosal plexus-both yielding mixed cultures of enteric neurons and glial cells from both plexuses, and (3) subsequently co-culturing myenteric and submucosal neurons with small intestinal organoids. This co-culture system establishes neural innervations with intestinal organoids, allowing for the investigation of regulatory interactions in the context of gastrointestinal diseases. Furthermore, we have developed a method for microinjecting the luminal space of small intestinal organoids with fluorescently labeled compounds. This technique possesses broad applicability such as the assessment of intestinal permeability, transcytosis, and immunocytochemical and immunofluorescence applications. This microinjection method could be extended to alternative experimental setups, incorporating bacterial species, or applying treatments to study ENS-small intestinal epithelium interactions. Therefore, this technique serves as a valuable tool for evaluating the intricate interplay between neuronal and intestinal epithelial cells (IECs) and shows great potential for drug screening, gene editing, the development of novel therapies, the modeling of infectious diseases, and significant advances in regenerative medicine. The co-culture establishment process spans twelve days, making it a powerful asset for comprehensive research in this critical field.


Subject(s)
Coculture Techniques , Intestine, Small , Myenteric Plexus , Organoids , Animals , Organoids/cytology , Coculture Techniques/methods , Mice , Myenteric Plexus/cytology , Intestine, Small/cytology , Submucous Plexus/cytology , Gastrointestinal Tract/innervation , Gastrointestinal Tract/cytology , Neurons/cytology , Neurons/metabolism
3.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767378

ABSTRACT

Ultrashort self-assembling peptides (SAPs) can spontaneously form nanofibers that resemble the extracellular matrix. These fibers allow the formation of hydrogels that are biocompatible, biodegradable, and non-immunogenic. We have previously proven that SAPs, when biofunctionalized with protein-derived motifs, can mimic the extracellular matrix characteristics that support colorectal organoid formation. These biofunctional peptide hydrogels retain the original parent peptide's mechanical properties, tunability, and printability while incorporating cues that allow cell-matrix interactions to increase cell adhesion. This paper presents the protocols needed to evaluate and characterize the effects of various biofunctional peptide hydrogels on cell adhesion and lumen formation using an adenocarcinoma cancer cell line able to form colorectal cancer organoids cost-effectively. These protocols will help evaluate biofunctional peptide hydrogel effects on cell adhesion and luminal formation using immunostaining and fluorescence image analysis. The cell line used in this study has been previously utilized for generating organoids in animal-derived matrices.


Subject(s)
Colorectal Neoplasms , Hydrogels , Organoids , Peptides , Organoids/cytology , Humans , Colorectal Neoplasms/pathology , Cell Line, Tumor , Hydrogels/chemistry , Peptides/chemistry , Nanofibers/chemistry , Adenocarcinoma/pathology , Extracellular Matrix/chemistry , Cell Adhesion/physiology
4.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1309-1322, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783799

ABSTRACT

In recent years, organoids have become a crucial model for studying the physiopathological processes in tissues and organs. The emergence of organoids has promoted the research on the mechanisms of the occurrence and clinical translation of diseases. Among these organoid models, colorectal organoid models are increasingly mature. Colorectal cancer is a common gastrointestinal malignant tumor worldwide, posing a serious threat to human health. Colorectal organoids provide a new model for studying the pathophysiology, drug sensitivity, and precision medicine of colorectal cancer. The conventional culture systems of colorectal organoids focus more on the role of biochemical factors, neglecting the fact that the gut is also influenced by biophysical signals in vivo. Therefore, in this review, we discuss the theories related to colorectal organoids and biomechanics and expound the effects of biomechanics on colorectal organoid culture.


Subject(s)
Colorectal Neoplasms , Organoids , Organoids/cytology , Humans , Biomechanical Phenomena , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colon/cytology , Cell Culture Techniques/methods , Rectum/cytology , Tissue Culture Techniques/methods
5.
Nat Cell Biol ; 26(5): 710-718, 2024 May.
Article in English | MEDLINE | ID: mdl-38714853

ABSTRACT

During brain development, neural progenitors expand through symmetric divisions before giving rise to differentiating cell types via asymmetric divisions. Transition between those modes varies among individual neural stem cells, resulting in clones of different sizes. Imaging-based lineage tracing allows for lineage analysis at high cellular resolution but systematic approaches to analyse clonal behaviour of entire tissues are currently lacking. Here we implement whole-tissue lineage tracing by genomic DNA barcoding in 3D human cerebral organoids, to show that individual stem cell clones produce progeny on a vastly variable scale. By using stochastic modelling we find that variable lineage sizes arise because a subpopulation of lineages retains symmetrically dividing cells. We show that lineage sizes can adjust to tissue demands after growth perturbation via chemical ablation or genetic restriction of a subset of cells in chimeric organoids. Our data suggest that adaptive plasticity of stem cell populations ensures robustness of development in human brain organoids.


Subject(s)
Cell Lineage , Neural Stem Cells , Organoids , Organoids/cytology , Organoids/metabolism , Humans , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Brain/cytology , Brain/growth & development , Brain/metabolism , Cell Differentiation , Cell Proliferation , Clone Cells , Neurogenesis/genetics , DNA Barcoding, Taxonomic , Animals
7.
PLoS One ; 19(5): e0303260, 2024.
Article in English | MEDLINE | ID: mdl-38743670

ABSTRACT

The nail matrix containing stem cell populations produces nails and may contribute to fingertip regeneration. Nails are important tissues that maintain the functions of the hand and foot for handling objects and locomotion. Tumor chemotherapy impairs nail growth and, in many cases, loses them, although not permanently. In this report, we have achieved the successful differentiation of nail stem (NS)-like cells from human-induced pluripotent stem cells (iPSCs) via digit organoids by stepwise stimulation, tracing the molecular processes involved in limb development. Comprehensive mRNA sequencing analysis revealed that the digit organoid global gene expression profile fits human finger development. The NS-like cells expressed Lgr6 mRNA and protein and produced type-I keratin, KRT17, and type-II keratin, KRT81, which are abundant in nails. Furthermore, we succeeded in producing functional Lgr6-reporter human iPSCs. The reporter iPSC-derived Lgr6-positive cells also produced KRT17 and KRT81 proteins in the percutaneously transplanted region. To the best of our knowledge, this is the first report of NS-like cell differentiation from human iPSCs. Our differentiation method and reporter construct enable the discovery of drugs for nail repair and possibly fingertip-regenerative therapy.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Nails , Receptors, G-Protein-Coupled , Humans , Nails/metabolism , Nails/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Organoids/metabolism , Organoids/cytology , Animals , Cells, Cultured
8.
Nat Commun ; 15(1): 3940, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750036

ABSTRACT

Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.


Subject(s)
Cell Dedifferentiation , Cell Differentiation , Epithelial Cells , Hepatocytes , Animals , Hepatocytes/cytology , Hepatocytes/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Mice , Organoids/cytology , Organoids/metabolism , Epithelial-Mesenchymal Transition , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Cells, Cultured , Signal Transduction , Vimentin/metabolism , Hippo Signaling Pathway , Liver/cytology , Liver/metabolism , Mice, Inbred C57BL , Male , Cell Culture Techniques/methods
9.
Sci Rep ; 14(1): 10846, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38736008

ABSTRACT

Human liver organoids are in vitro three dimensionally (3D) cultured cells that have a bipotent stem cell phenotype. Translational research of human liver organoids for drug discovery has been limited by the challenge of their low hepatic function compared to primary human hepatocytes (PHHs). Various attempts have been made to develop functional hepatocyte-like cells from human liver organoids. However, none have achieved the same level of hepatic functions as PHHs. We here attempted to culture human liver organoids established from cryopreserved PHHs (PHH-derived organoids), using HYDROX, a chemically defined 3D nanofiber. While the proliferative capacity of PHH-derived organoids was lost by HYDROX-culture, the gene expression levels of drug-metabolizing enzymes were significantly improved. Enzymatic activities of cytochrome P450 3A4 (CYP3A4), CYP2C19, and CYP1A2 in HYDROX-cultured PHH-derived organoids (Org-HYDROX) were comparable to those in PHHs. When treated with hepatotoxic drugs such as troglitazone, amiodarone and acetaminophen, Org-HYDROX showed similar cell viability to PHHs, suggesting that Org-HYDROX could be applied to drug-induced hepatotoxicity tests. Furthermore, Org-HYDROX maintained its functions for up to 35 days and could be applied to chronic drug-induced hepatotoxicity tests using fialuridine. Our findings demonstrated that HYDROX could possibly be a novel biomaterial for differentiating human liver organoids towards hepatocytes applicable to pharmaceutical research.


Subject(s)
Cell Differentiation , Hepatocytes , Nanofibers , Organoids , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/cytology , Organoids/drug effects , Organoids/metabolism , Organoids/cytology , Cell Differentiation/drug effects , Nanofibers/chemistry , Cells, Cultured , Liver/cytology , Liver/drug effects , Liver/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Cell Survival/drug effects , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics
10.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732014

ABSTRACT

Fetal organs and organoids are important tools for studying organ development. Recently, porcine organs have garnered attention as potential organs for xenotransplantation because of their high degree of similarity to human organs. However, to meet the prompt demand for porcine fetal organs by patients and researchers, effective methods for producing, retrieving, and cryopreserving pig fetuses are indispensable. Therefore, in this study, to collect fetuses for kidney extraction, we employed cesarean sections to preserve the survival and fertility of the mother pig and a method for storing fetal kidneys by long-term cryopreservation. Subsequently, we evaluated the utility of these two methods. We confirmed that the kidneys of pig fetuses retrieved by cesarean section that were cryopreserved for an extended period could resume renal growth when grafted into mice and were capable of forming renal organoids. These results demonstrate the usefulness of long-term cryopreserved fetal pig organs and strongly suggest the effectiveness of our comprehensive system of pig fetus retrieval and fetal organ preservation, thereby highlighting its potential as an accelerator of xenotransplantation research and clinical innovation.


Subject(s)
Cryopreservation , Fetus , Kidney Transplantation , Kidney , Organoids , Animals , Cryopreservation/methods , Swine , Kidney/cytology , Organoids/cytology , Organoids/transplantation , Mice , Kidney Transplantation/methods , Fetus/cytology , Female , Transplantation, Heterologous/methods , Organ Preservation/methods
11.
Biofabrication ; 16(3)2024 May 15.
Article in English | MEDLINE | ID: mdl-38697093

ABSTRACT

Organoids have emerged as crucial platforms in tissue engineering and regenerative medicine but confront challenges in faithfully mimicking native tissue structures and functions. Bioprinting technologies offer a significant advancement, especially when combined with organoid bioinks-engineered formulations designed to encapsulate both the architectural and functional elements of specific tissues. This review provides a rigorous, focused examination of the evolution and impact of organoid bioprinting. It emphasizes the role of organoid bioinks that integrate key cellular components and microenvironmental cues to more accurately replicate native tissue complexity. Furthermore, this review anticipates a transformative landscape invigorated by the integration of artificial intelligence with bioprinting techniques. Such fusion promises to refine organoid bioink formulations and optimize bioprinting parameters, thus catalyzing unprecedented advancements in regenerative medicine. In summary, this review accentuates the pivotal role and transformative potential of organoid bioinks and bioprinting in advancing regenerative therapies, deepening our understanding of organ development, and clarifying disease mechanisms.


Subject(s)
Bioprinting , Organoids , Regenerative Medicine , Tissue Engineering , Organoids/cytology , Humans , Bioprinting/methods , Tissue Engineering/methods , Animals , Regenerative Medicine/methods , Ink
12.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38727809

ABSTRACT

Binucleated polyploid cells are common in many animal tissues, where they arise by endomitosis, a non-canonical cell cycle in which cells enter M phase but do not undergo cytokinesis. Different steps of cytokinesis have been shown to be inhibited during endomitosis M phase in rodents, but it is currently unknown how human cells undergo endomitosis. In this study, we use fetal-derived human hepatocyte organoids (Hep-Orgs) to investigate how human hepatocytes initiate and execute endomitosis. We find that cells in endomitosis M phase have normal mitotic timings, but lose membrane anchorage to the midbody during cytokinesis, which is associated with the loss of four cortical anchoring proteins, RacGAP1, Anillin, SEPT9, and citron kinase (CIT-K). Moreover, reduction of WNT activity increases the percentage of binucleated cells in Hep-Orgs, an effect that is dependent on the atypical E2F proteins, E2F7 and E2F8. Together, we have elucidated how hepatocytes undergo endomitosis in human Hep-Orgs, providing new insights into the mechanisms of endomitosis in mammals.


Subject(s)
Cytokinesis , Hepatocytes , Mitosis , Organoids , Humans , Hepatocytes/metabolism , Organoids/cytology , Organoids/metabolism , Polyploidy
13.
J Cell Sci ; 137(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38700490

ABSTRACT

Hepatocyte organoids (HOs) generated in vitro are powerful tools for liver regeneration. However, previously reported HOs have mostly been fetal in nature with low expression levels of metabolic genes characteristic of adult liver functions, hampering their application in studies of metabolic regulation and therapeutic testing for liver disorders. Here, we report development of novel culture conditions that combine optimized levels of triiodothyronine (T3) with the removal of growth factors to enable successful generation of mature hepatocyte organoids (MHOs) of both mouse and human origin with metabolic functions characteristic of adult livers. We show that the MHOs can be used to study various metabolic functions including bile and urea production, zonal metabolic gene expression, and metabolic alterations in both alcoholic liver disease and non-alcoholic fatty liver disease, as well as hepatocyte proliferation, injury and cell fate changes. Notably, MHOs derived from human fetal hepatocytes also show improved hepatitis B virus infection. Therefore, these MHOs provide a powerful in vitro model for studies of human liver physiology and diseases. The human MHOs are potentially also a robust research tool for therapeutic development.


Subject(s)
Hepatocytes , Liver , Organoids , Hepatocytes/metabolism , Hepatocytes/cytology , Organoids/metabolism , Organoids/cytology , Humans , Animals , Mice , Liver/metabolism , Liver/cytology , Mice, Inbred C57BL , Cell Differentiation
14.
Biofabrication ; 16(3)2024 May 28.
Article in English | MEDLINE | ID: mdl-38749417

ABSTRACT

Accurate simulation of different cell type interactions is crucial for physiological and precisein vitrodrug testing. Human tissue-resident macrophages are critical for modulating disease conditions and drug-induced injuries in various tissues; however, their limited availability has hindered their use inin vitromodeling. Therefore, this study aimed to create macrophage-containing organoid co-culture models by directly incorporating human-induced pluripotent stem cell (hiPSC)-derived pre-macrophages into organoid and scaffold cell models. The fully differentiated cells in these organoids exhibited functional characteristics of tissue-resident macrophages with enriched pan-macrophage markers and the potential for M1/M2 subtype specialization upon cytokine stimulation. In a hepatic organoid model, the integrated macrophages replicated typical intrinsic properties, including cytokine release, polarization, and phagocytosis, and the co-culture model was more responsive to drug-induced liver injury than a macrophage-free model. Furthermore, alveolar organoid models containing these hiPSC-derived macrophages also showed increased drug and chemical sensitivity to pulmonary toxicants. Moreover, 3D adipocyte scaffold models incorporating macrophages effectively simulated in vivo insulin resistance observed in adipose tissue and showed improved insulin sensitivity on exposure to anti-diabetic drugs. Overall, the findings demonstrated that incorporating hiPSC-derived macrophages into organoid culture models resulted in more physiological and sensitivein vitrodrug evaluation and screening systems.


Subject(s)
Coculture Techniques , Induced Pluripotent Stem Cells , Macrophages , Organoids , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Humans , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Cell Differentiation/drug effects , Liver/cytology , Liver/drug effects , Models, Biological , Animals
15.
Biofabrication ; 16(3)2024 May 28.
Article in English | MEDLINE | ID: mdl-38749420

ABSTRACT

Understanding the complexities of the human brain's function in health and disease is a formidable challenge in neuroscience. While traditional models like animals offer valuable insights, they often fall short in accurately mirroring human biology and drug responses. Moreover, recent legislation has underscored the need for more predictive models that more accurately represent human physiology. To address this requirement, human-derived cell cultures have emerged as a crucial alternative for biomedical research. However, traditional static cell culture models lack the dynamic tissue microenvironment that governs human tissue function. Advancedin vitrosystems, such as organoids and microphysiological systems (MPSs), bridge this gap by offering more accurate representations of human biology. Organoids, which are three-dimensional miniaturized organ-like structures derived from stem cells, exhibit physiological responses akin to native tissues, but lack essential tissue-specific components such as functional vascular structures and immune cells. Recent endeavors have focused on incorporating endothelial cells and immune cells into organoids to enhance vascularization, maturation, and disease modeling. MPS, including organ-on-chip technologies, integrate diverse cell types and vascularization under dynamic culture conditions, revolutionizing brain research by bridging the gap betweenin vitroandin vivomodels. In this review, we delve into the evolution of MPS, with a particular focus on highlighting the significance of vascularization in enhancing the viability, functionality, and disease modeling potential of organoids. By examining the interplay of vasculature and neuronal cells within organoids, we can uncover novel therapeutic targets and gain valuable insights into disease mechanisms, offering the promise of significant advancements in neuroscience and improved patient outcomes.


Subject(s)
Brain , Organoids , Humans , Organoids/cytology , Brain/cytology , Models, Biological , Animals , Tissue Engineering
16.
Nat Commun ; 15(1): 4047, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744873

ABSTRACT

Human hippocampal organoids (hHOs) derived from human induced pluripotent stem cells (hiPSCs) have emerged as promising models for investigating neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. However, obtaining the electrical information of these free-floating organoids in a noninvasive manner remains a challenge using commercial multi-electrode arrays (MEAs). The three-dimensional (3D) MEAs developed recently acquired only a few neural signals due to limited channel numbers. Here, we report a hippocampal cyborg organoid (cyb-organoid) platform coupling a liquid metal-polymer conductor (MPC)-based mesh neuro-interface with hHOs. The mesh MPC (mMPC) integrates 128-channel multielectrode arrays distributed on a small surface area (~2*2 mm). Stretchability (up to 500%) and flexibility of the mMPC enable its attachment to hHOs. Furthermore, we show that under Wnt3a and SHH activator induction, hHOs produce HOPX+ and PAX6+ progenitors and ZBTB20+PROX1+ dentate gyrus (DG) granule neurons. The transcriptomic signatures of hHOs reveal high similarity to the developing human hippocampus. We successfully detect neural activities from hHOs via the mMPC from this cyb-organoid. Compared with traditional planar devices, our non-invasive coupling offers an adaptor for recording neural signals from 3D models.


Subject(s)
Hippocampus , Induced Pluripotent Stem Cells , Organoids , Humans , Organoids/metabolism , Organoids/cytology , Hippocampus/cytology , Hippocampus/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Neurons/cytology , Metals/chemistry , Transcriptome , Dentate Gyrus/cytology , Dentate Gyrus/metabolism
17.
Sci Data ; 11(1): 514, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769371

ABSTRACT

Brain organoids represent a useful tool for modeling of neurodevelopmental disorders and can recapitulate brain volume alterations such as microcephaly. To monitor organoid growth, brightfield microscopy images are frequently used and evaluated manually which is time-consuming and prone to observer-bias. Recent software applications for organoid evaluation address this issue using classical or AI-based methods. These pipelines have distinct strengths and weaknesses that are not evident to external observers. We provide a dataset of more than 1,400 images of 64 trackable brain organoids from four clones differentiated from healthy and diseased patients. This dataset is especially powerful to test and compare organoid analysis pipelines because of (1) trackable organoids (2) frequent imaging during development (3) clone diversity (4) distinct clone development (5) cross sample imaging by two different labs (6) common imaging distractors, and (6) pixel-level ground truth organoid annotations. Therefore, this dataset allows to perform differentiated analyses to delineate strengths, weaknesses, and generalizability of automated organoid analysis pipelines as well as analysis of clone diversity and similarity.


Subject(s)
Brain , Organoids , Organoids/cytology , Brain/diagnostic imaging , Brain/cytology , Humans
18.
Biomater Adv ; 160: 213847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657288

ABSTRACT

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Subject(s)
Cell Culture Techniques, Three Dimensional , Collagen , Drug Combinations , Epithelial Cells , Hydrogels , Laminin , Peptides , Proteoglycans , Laminin/pharmacology , Laminin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Proteoglycans/pharmacology , Proteoglycans/chemistry , Collagen/chemistry , Collagen/pharmacology , Peptides/pharmacology , Peptides/chemistry , Epithelial Cells/drug effects , Epithelial Cells/cytology , Humans , Female , Cell Culture Techniques, Three Dimensional/methods , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Mammary Glands, Human/cytology , Organoids/drug effects , Organoids/cytology , Cell Culture Techniques/methods
19.
BMC Mol Cell Biol ; 25(1): 14, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689222

ABSTRACT

BACKGROUND: Emerging evidence underscores the responsiveness of the mammalian intestine to dietary cues, notably through the involvement of LGR5 + intestinal stem cells in orchestrating responses to diet-driven signals. However, the effects of high-fat diet (HFD) on these cellular dynamics and their impact on gut integrity remain insufficiently understood. Our study aims to assess the multifaceted interactions between palmitic acid (PA), cell proliferation, and the intestinal epithelial barrier using a canine colonoid model. Canine models, due to their relevance in simulating human intestinal diseases, offer a unique platform to explore the molecular mechanisms underlying HFD derived intestinal dysfunction. RESULTS: Canine colonoids were subjected to PA exposure, a surrogate for the effects of HFD. This intervention revealed a remarkable augmentation of cell proliferative activity. Furthermore, we observed a parallel reduction in transepithelial electrical resistance (TEER), indicating altered epithelium barrier integrity. While E-cadherin exhibited consistency, ZO-1 displayed a noteworthy reduction in fluorescence intensity within the PA-exposed group. CONCLUSIONS: By employing canine intestinal organoid systems, we provide compelling insights into the impact of PA on intestinal physiology. These findings underscore the importance of considering both cell proliferative activity and epithelial integrity in comprehending the repercussions of HFDs on intestinal health. Our study contributes to a deeper understanding of the consequences of HFD on intestinal homeostasis, utilizing valuable translational in vitro models derived from dogs.


Subject(s)
Cell Proliferation , Diet, High-Fat , Intestinal Mucosa , Organoids , Palmitic Acid , Permeability , Animals , Dogs , Diet, High-Fat/adverse effects , Organoids/metabolism , Organoids/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Intestines/cytology , Intestines/physiology , Intestinal Barrier Function
20.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673812

ABSTRACT

Here, we report on the development of a cost-effective, well-characterized three-dimensional (3D) model of bone homeostasis derived from commonly available stocks of immortalized murine cell lines and laboratory reagents. This 3D murine-cell-derived bone organoid model (3D-mcBOM) is adaptable to a range of contexts and can be used in conjunction with surrogates of osteoblast and osteoclast function to study cellular and molecular mechanisms that affect bone homeostasis in vitro or to augment in vivo models of physiology or disease. The 3D-mcBOM was established using a pre-osteoblast murine cell line, which was seeded into a hydrogel extracellular matrix (ECM) and differentiated into functional osteoblasts (OBs). The OBs mineralized the hydrogel ECM, leading to the deposition and consolidation of hydroxyapatite into bone-like organoids. Fourier-transform infrared (FTIR) spectroscopy confirmed that the mineralized matrix formed in the 3D-mcBOM was bone. The histological staining of 3D-mcBOM samples indicated a consistent rate of ECM mineralization. Type I collagen C-telopeptide (CTX1) analysis was used to evaluate the dynamics of OC differentiation and activity. Reliable 3D models of bone formation and homeostasis align with current ethical trends to reduce the use of animal models. This functional model of bone homeostasis provides a cost-effective model system using immortalized cell lines and easily procured supplemental compounds, which can be assessed by measuring surrogates of OB and OC function to study the effects of various stimuli in future experimental evaluations of bone homeostasis.


Subject(s)
Cell Differentiation , Extracellular Matrix , Organoids , Osteoblasts , Osteogenesis , Animals , Mice , Organoids/cytology , Organoids/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Extracellular Matrix/metabolism , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Line , Collagen Type I/metabolism , Hydrogels/chemistry , Calcification, Physiologic , Cell Culture Techniques, Three Dimensional/methods , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...