Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.847
Filter
1.
Anal Chim Acta ; 1312: 342762, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834277

ABSTRACT

Mucin1 (MUC1) is an extensively glycosylated transmembrane protein that is widely distributed and overexpressed on the surface of cancer cells, playing an important role in tumor occurrence and metastasis. Therefore, highly sensitive detection of MUC1 is of great significance for early diagnosis, treatment monitoring, and prognosis of cancer. Here, an ultra-sensitive photoelectrochemical (PEC) sensing platform was developed based on an aptamer amplification strategy for highly selective and sensitive detection of MUC1 overexpressed in serum and on cancer cell surfaces. The sensing platform utilized copper phthalocyanine to fabricate porous organic polymers (CuPc POPs), and was effectively integrated with g-C3N4/MXene to form a ternary heterojunction material (g-C3N4/MXene/CuPc POPs). This material effectively improved electron transfer capability, significantly enhanced light utilization, and greatly enhanced photoelectric conversion efficiency, resulting in a dramatic increase in photocurrent response. MUC1 aptamer 1 was immobilized on a chitosan-modified photoelectrode for the selective capture of MUC1 or MCF-7 cancer cells. When the target substance was present, MUC1 aptamer 2 labeled with methylene blue (MB) was specifically adsorbed on the electrode surface, leading to enhanced photocurrent. The concentration of MUC1 directly correlated with the number of MB molecules attracted to the electrode surface, establishing a linear relationship between photocurrent intensity and MUC1 concentration. The PEC biosensor exhibited excellent sensitivity for MUC1 detection with a wide detection range from 1 × 10-7 to 10 ng/mL and a detection limit of 8.1 ag/mL. The detection range for MCF-7 cells was from 2 × 101 to 2 × 106 cells/mL, with the capability for detecting single MCF-7 cells. The aptamer amplification strategy significantly enhanced PEC performance, and open up a promising platform to establish high selectivity, stability, and ultrasensitive analytical techniques.


Subject(s)
Aptamers, Nucleotide , Electrochemical Techniques , Mucin-1 , Polymers , Mucin-1/analysis , Humans , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , MCF-7 Cells , Porosity , Polymers/chemistry , Limit of Detection , Biosensing Techniques/methods , Indoles/chemistry , Photochemical Processes , Organometallic Compounds/chemistry
2.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791580

ABSTRACT

A series of novel thio-derivatives of d-glucosamine has been synthesized using double inversion procedures at the C3 atom. New compounds were applied as ligands for the diethylzinc addition to benzaldehyde and the products of the addition were obtained with a low to good enantiomeric ratio. The direction and the level of the asymmetric induction were highly dependent on the type of protecting groups on the nitrogen and sulfur atoms.


Subject(s)
Benzaldehydes , Glucosamine , Benzaldehydes/chemistry , Ligands , Glucosamine/chemistry , Glucosamine/analogs & derivatives , Stereoisomerism , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Molecular Structure
3.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692166

ABSTRACT

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Subject(s)
Indoles , Infrared Rays , Isoindoles , Lysosomes , Mitochondria , Nanoparticles , Organometallic Compounds , Photochemotherapy , Zinc Compounds , Zinc Compounds/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Indoles/chemistry , Indoles/pharmacology , Lysosomes/metabolism , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Nanoparticles/chemistry , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Singlet Oxygen/metabolism , Female , Folic Acid/chemistry
4.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675664

ABSTRACT

The integration of a multidimensional treatment dominated by active ingredients of traditional Chinese medicine (TCM), including enhanced chemotherapy and synergistically amplification of oxidative damage, into a nanoplatform would be of great significance for furthering accurate and effective cancer treatment with the active ingredients of TCM. Herein, in this study, we designed and synthesized four matrine-proteolysis-targeting chimeras (PROTACs) (depending on different lengths of the chains named LST-1, LST-2, LST-3, and LST-4) based on PROTAC technology to overcome the limitations of matrine. LST-4, with better anti-tumor activity than matrine, still degrades p-Erk and p-Akt proteins. Moreover, LST-4 NPs formed via LST-4 self-assembly with stronger anti-tumor activity and glutathione (GSH) depletion ability could be enriched in lysosomes through their outstanding enhanced permeability and retention (EPR) effect. Then, we synthesized LST-4@ZnPc NPs with a low-pH-triggered drug release property that could release zinc(II) phthalocyanine (ZnPc) in tumor sites. LST-4@ZnPc NPs combine the application of chemotherapy and phototherapy, including both enhanced chemotherapy from LST-4 NPs and the synergistic amplification of oxidative damage, through increasing the reactive oxygen species (ROS) by photodynamic therapy (PDT), causing an GSH decrease via LST-4 mediation to effectively kill tumor cells. Therefore, multifunctional LST-4@ZnPc NPs are a promising method for killing cancer cells, which also provides a new paradigm for using natural products to kill tumors.


Subject(s)
Alkaloids , Glutathione , Indoles , Isoindoles , Matrines , Quinolizines , Reactive Oxygen Species , Alkaloids/chemistry , Alkaloids/pharmacology , Reactive Oxygen Species/metabolism , Quinolizines/chemistry , Quinolizines/pharmacology , Glutathione/metabolism , Humans , Animals , Indoles/chemistry , Indoles/pharmacology , Mice , Cell Line, Tumor , Zinc Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Photochemotherapy/methods , Proteolysis , Nanoparticles/chemistry
5.
Biomaterials ; 308: 122571, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636132

ABSTRACT

The abuse and overuse of antibiotics let drug-resistant bacteria emerges. Antibacterial photodynamic therapy (APDT) has shown outstanding merits to eliminate the drug-resistant bacteria via cytotoxic reactive oxygen species produced by irradiating photosensitizer. However, most of photosensitizers are not effective for Gram-negative bacteria elimination. Herein conjugates of NBS, a photosensitizer, linked with one (NBS-DPA-Zn) or two (NBS-2DPA-Zn) equivalents of zinc-dipicolylamine (Zn-DPA) have been designed to achieve the functional recognition of different bacteria. Due to the cationic character of NBS and metal transfer channel effect of Zn-DPA, NBS-DPA-Zn exhibited the first regent to distinguish P. aeruginosa from other Gram-negative bacteria. Whereas NBS-2DPA-Zn showed broad-spectrum antibacterial effect because the two arm of double Zn-DPA enhanced interactions with anionic membranes of bacteria, led the bacteria aggregation and thus provided the efficacy of APDT to bacteria and corresponding biofilm. In combination with a hydrogel of Pluronic, NBS-2DPA-Zn@gel shows promising clinical application in mixed bacterial diabetic mouse model infection. This might propose a new method that can realize functional identification and elimination of bacteria through intelligent regulation of Zn-DPA, and shows excellent potential for antibacterial application.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Photochemotherapy , Photosensitizing Agents , Picolines , Picolinic Acids , Animals , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Mice , Picolinic Acids/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Biofilms/drug effects , Zinc/chemistry , Pseudomonas aeruginosa/drug effects , Microbial Sensitivity Tests , Gram-Negative Bacterial Infections/drug therapy
6.
IUCrJ ; 11(Pt 3): 359-373, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639558

ABSTRACT

Metal-based complexes with their unique chemical properties, including multiple oxidation states, radio-nuclear capabilities and various coordination geometries yield value as potential pharmaceuticals. Understanding the interactions between metals and biological systems will prove key for site-specific coordination of new metal-based lead compounds. This study merges the concepts of target coordination with fragment-based drug methodologies, supported by varying the anomalous scattering of rhenium along with infrared spectroscopy, and has identified rhenium metal sites bound covalently with two amino acid types within the model protein. A time-based series of lysozyme-rhenium-imidazole (HEWL-Re-Imi) crystals was analysed systematically over a span of 38 weeks. The main rhenium covalent coordination is observed at His15, Asp101 and Asp119. Weak (i.e. noncovalent) interactions are observed at other aspartic, asparagine, proline, tyrosine and tryptophan side chains. Detailed bond distance comparisons, including precision estimates, are reported, utilizing the diffraction precision index supplemented with small-molecule data from the Cambridge Structural Database. Key findings include changes in the protein structure induced at the rhenium metal binding site, not observed in similar metal-free structures. The binding sites are typically found along the solvent-channel-accessible protein surface. The three primary covalent metal binding sites are consistent throughout the time series, whereas binding to neighbouring amino acid residues changes through the time series. Co-crystallization was used, consistently yielding crystals four days after setup. After crystal formation, soaking of the compound into the crystal over 38 weeks is continued and explains these structural adjustments. It is the covalent bond stability at the three sites, their proximity to the solvent channel and the movement of residues to accommodate the metal that are important, and may prove useful for future radiopharmaceutical development including target modification.


Subject(s)
Muramidase , Organometallic Compounds , Rhenium , Rhenium/chemistry , Muramidase/chemistry , Muramidase/metabolism , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Drug Development/methods , Crystallography, X-Ray , Binding Sites , Coordination Complexes/chemistry , Imidazoles/chemistry , Imidazoles/metabolism , Models, Molecular
7.
Parasitol Int ; 101: 102899, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663799

ABSTRACT

Herein, innovative biocides are designed for the treatment of Trichinella spiralis muscle larvae (ML) and adult worms. Samarium-doped ZnO nanorods (Sm-doped ZnO) are stabilized onto the laminar structure of cuttlefish bone (CB) matrix and adorned by either Ag NPs or cobalt phthalocyanine (CoPc) species. Physicochemical characteristics of such nanocomposites are scrutinised. Adorning of Sm-doped ZnO/CB with Ag NPs shortens rod-like shaped Sm-doped ZnO nanoparticles and accrues them, developing large-sized detached patches over CB moiety. Meanwhile, adorning of Sm-doped ZnO/CB by CoPc species degenerates CB lamellae forming semi-rounded platelets and encourages invading of Sm-doped ZnO nanorods deeply inside gallery spacings of CB. Both nanocomposites possess advanced parasiticidal activity, displaying quite intoxication for ML and adult worms (≥88% mortality) within an incubation period of <48 h at concentrations around 200 µg/ml. CoPc@Sm-doped ZnO/CB nanocomposite exhibits faster killing efficiency of adult worms than that of Ag@Sm-doped ZnO/CB at a concentration of ∼75 µg/ml showing entire destruction of parasite after 24 h incubation with the former nanocomposite and just 60% worm mortality after 36 h exposure to the later one. Morphological studies of the treated ML and adult worms show that CoPc@Sm-doped ZnO/CB exhibits a destructive impact on the parasite body, creating featureless and sloughed fragments enriched with intensive vacuoles. Hybridization of cuttlefish bone lamellae by CoPc species is considered a springboard for fabrication of futuristic aggressive drugs against various food- and water-borne parasites.


Subject(s)
Indoles , Larva , Nanotubes , Organometallic Compounds , Silver , Trichinella spiralis , Zinc Oxide , Animals , Zinc Oxide/pharmacology , Indoles/pharmacology , Trichinella spiralis/drug effects , Nanotubes/chemistry , Silver/pharmacology , Larva/drug effects , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , Metal Nanoparticles , Decapodiformes/parasitology , Anthelmintics/pharmacology , Nanocomposites , Bone and Bones/drug effects , Bone and Bones/parasitology , Muscles/parasitology , Muscles/drug effects
8.
Chem Biol Interact ; 395: 110998, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38614317

ABSTRACT

Complement component 8gamma (C8γ), a member of the lipocalin protein family, is suggested to act as a carrier protein for various chemicals. Although C8γ has been identified in both humans and rodents for some time, our understanding of the species differences in its chemical binding properties remains limited. In the present study, with the aim to elucidate the potential role of C8γ as a carrier protein in both humans and mice, we conducted a radioligand binding assay to examine the chemical binding properties of human C8γ (hC8γ) and mouse C8γ (mC8γ). Scatchard analysis revealed that [14C]TPT bound to hC8γ with an equilibrium dissociation constant (Kd) of 64.2 ± 32.4 nM, comparable to that of [14C]TPT to mC8γ. Competitive ligand-binding assays demonstrated binding of TPT and TBT to hC8γ, while diphenyltin, dibutyltin, monophenyltin, monobutyltin, and tetrabutyltin did not exhibit binding. These results suggest that for effective binding to C8γ, chemicals must possess substituents of appropriate bulkiness. Further analyses with other group 14 compounds with triphenyl substituents revealed that a central metal atom, rather than a central non-metal or semi-metal atom, is crucial for specific binding to both hC8γ and mC8γ. Overall our findings imply that C8γ may play a role in the physiological or toxicological actions of group 14 metal compounds with tributyl or triphenyl substituents by binding to these chemicals in both humans and mice.


Subject(s)
Protein Binding , Animals , Humans , Mice , Complement C8/metabolism , Complement C8/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Binding, Competitive
9.
Analyst ; 149(10): 3041-3051, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38625079

ABSTRACT

Herein, we introduce a novel method for tryptophan detection via a reduction reaction facilitated by its interaction with a copper(II) phthalocyanine (CuPc) electrocatalytic electrode. This method addresses challenges associated with the susceptibility of the oxidation response to interference from various species when measuring tryptophan in bodily fluids. The reduction currents exhibit a linear increase with tryptophan concentrations in two ranges: 0.0013-0.10 mM and 0.10-1.20 mM, with the sensitivities of 14.7 ± 0.5 µA mM-1 and 3.5 ± 0.1 µA mM-1, respectively. The limit of detection (LOD, 3SB/m) is determined to be 0.39 µM. The sensor exhibits excellent reproducibility, with the relative standard deviation of <5%. Application of the sensor to authentic urine samples yields a % recovery of 101 ± 4%.


Subject(s)
Electrochemical Techniques , Electrodes , Indoles , Limit of Detection , Organometallic Compounds , Tryptophan , Tryptophan/urine , Tryptophan/chemistry , Indoles/chemistry , Humans , Organometallic Compounds/chemistry , Catalysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Oxidation-Reduction , Isoindoles
10.
J Vis Exp ; (205)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38526085

ABSTRACT

The surface area and pore volume of a metal-organic framework (MOF) can provide insight into its structure and potential applications. Both parameters are commonly determined using the data from nitrogen sorption experiments; commercial instruments to perform these measurements are also widely available. These instruments will calculate structural parameters, but it is essential to understand how to select input data and when calculation methods apply to the sample MOF. This article outlines the use of the Brunauer-Emmett-Teller (BET) method and Barrett-Joyner-Halenda (BJH) method for the calculation of surface area and pore volume, respectively. Example calculations are performed on the representative MOF UiO-66. Although widely applicable to MOFs, sample materials and adsorption data must meet certain criteria for the calculated results to be considered accurate, in addition to proper sample preparation. The assumptions and limitations of these methods are also discussed, along with alternative and complementary techniques for the MOF pore space characterization.


Subject(s)
Metal-Organic Frameworks , Organometallic Compounds , Organometallic Compounds/chemistry , Nitrogen/chemistry
11.
J Inorg Biochem ; 255: 112538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547785

ABSTRACT

A novel hexadentate bishydrazone ligand, 1,10-bis(di(2-pyridyl)ketone) adipic acid dihydrazone (H2L1) is synthesized and characterized. With copper perchlorate as a catalytic oxidant, the ligand undergoes oxidative cyclisation and resulted in the formation of an unusual copper complex [Cu(L1a)2Cl]ClO4 (1), where L1a is 3-(2-pyridyl)triazolo[1,5-a]-pyridine. The Cu(II) complex was characterized physicochemically, while the molecular structure was confirmed by single crystal X- ray diffraction. In the complex cation, copper(II) is in a distorted trigonal bipyramidal coordination environment, surrounded by two triazolo nitrogen atoms and two pyridyl nitrogen atoms of L1a and a chloride atom. The relevant non covalent intermolecular interactions of the complex quantified using Hirshfeld surface analysis reveals that the O···H/ H···O (27.2%) contacts has the highest contribution. The solution phase bandgaps of the compounds were calculated using Tauc plot, whereas the solid-state band gaps were calculated by Kubelka-Munk model. DFT studies of the compounds indicate that the theoretical calculations corroborate with the experimental data. DPPH antioxidant activity assay of the synthesized compounds showed that the proligand H2L1 has a lower IC50 value (24.1 µM) than that of complex 1 (29.7 µM). The in vitro antibacterial activity was evaluated against Escherichia coli and Staphylococcus aureus, which revealed that complex 1 have excellent activity against E. coli, much as the standard ciprofloxacin. The cytotoxic efficacy investigation of the compounds against A549 (lung) adenocarcinoma cells suggested that H2L1 has more anticancer activity (IC50 value of 149.08 µM) than that of complex 1(IC50 value of 176.70 µM).


Subject(s)
Copper , Organometallic Compounds , Copper/chemistry , Organometallic Compounds/chemistry , Ligands , Perchlorates , Escherichia coli , Nitrogen , Oxidative Stress , Crystallography, X-Ray
12.
Chemistry ; 30(28): e202400344, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38469901

ABSTRACT

[Gd(HP-DO3A)] (gadoteridol) as an active compound of ProHance® is a widely employed contrast agent in clinical MRI scans in the last 30 years. Recent concerns about the long-term retention of gadolinium-based contrast agents (GBCAs) led to a deeper investigation of the structural features underlying the integrity of the paramagnetic metal complex. Several human and nonclinical studies have noted marked differences among the macrocyclic GBCAs, with the least retention of Gd traces and most rapid elimination consistently being reported for [Gd(HP-DO3A)]. It was deemed of interest to assess how minor structural/electronic changes associated to the ligand structure may affect basic properties of the metal complex with several [Gd(HP-DO3A)] analogues synthesized and characterized in the last years. We recently reported that the closest homolog of [Gd(HP-DO3A)], i. e.: [Gd(HB-DO3A)], in which a (±)-2-hydroxy-1-propyl pendant arm is replaced by a (±)-2-hydroxy-1-butyl moiety, showed a significantly different retention behaviour in the model interaction with collagen, despite the apparently very minor structural difference. In this paper we report a comprehensive study of the structural, thermodynamic, kinetic and relaxation properties of [Gd(HB-DO3A)], compared to the parent [Gd(HP-DO3A)] and to other closely related macrocyclic GBCAs to assess whether very minor structural changes can modulate the physico-chemical properties of Gd3+ complexes.


Subject(s)
Contrast Media , Coordination Complexes , Gadolinium , Organometallic Compounds , Gadolinium/chemistry , Kinetics , Contrast Media/chemistry , Coordination Complexes/chemistry , Organometallic Compounds/chemistry , Ligands , Heterocyclic Compounds/chemistry , Magnetic Resonance Imaging , Humans
13.
Nucl Med Biol ; 132-133: 108905, 2024.
Article in English | MEDLINE | ID: mdl-38555651

ABSTRACT

DOTATATE is a somatostatin peptide analog used in the clinic to detect somatostatin receptors which are highly expressed on neuroendocrine tumors. Somatostatin receptors are found naturally in the intestines, pancreas, lungs, and brain (mainly cortex). In vivo measurement of the somatostatin receptors in the cortex has been challenging because available tracers cannot cross the blood-brain barrier (BBB) due to their intrinsic polarity. A peptide called melittin, a main component of honeybee venom, has been shown to disrupt plasma membranes and increase the permeability of biological membranes. In this study, we assessed the feasibility of using melittin to facilitate the passage of [64Cu]Cu-DOTATATE through the BBB and its binding to somatostatin receptors in the cortex. Evaluation included in vitro autoradiography on Long Evans rat brains to estimate the binding affinity of [64Cu]Cu-DOTATATE to the somatostatin receptors in the cortex and an in vivo evaluation of [64Cu]Cu-DOTATATE binding in NMRI mice after injection of melittin. This study found an in vitro Bmax = 89 ± 4 nM and KD = 4.5 ± 0.6 nM in the cortex, resulting in a theoretical binding potential (BP) calculated as Bmax/KD ≈ 20, which is believed suitable for in vivo brain PET imaging. However, the in vivo results showed no significant difference between the control and melittin injected mice, indicating that the honeybee venom failed to open the BBB. Additional experiments, potentially involving faster injection rates are required to verify that melittin can increase brain uptake of non-BBB permeable PET tracers. Furthermore, an evaluation of whether a venom with a narrow therapeutic range can be used for clinical purposes needs to be considered.


Subject(s)
Blood-Brain Barrier , Feasibility Studies , Melitten , Organometallic Compounds , Positron-Emission Tomography , Receptors, Somatostatin , Animals , Receptors, Somatostatin/metabolism , Melitten/chemistry , Melitten/metabolism , Rats , Positron-Emission Tomography/methods , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Organometallic Compounds/pharmacokinetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/diagnostic imaging , Male , Mice , Copper Radioisotopes , Octreotide/analogs & derivatives
14.
Int J Pharm ; 655: 124004, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38492899

ABSTRACT

Photodynamic therapy (PDT) is a suitable alternative to currently employed cancer treatments. However, the hydrophobicity of most photosensitizers (e.g., zinc phthalocyanine (ZnPC)) leads to their aggregation in blood. Moreover, non-specific accumulation in skin and low clearance rate of ZnPC leads to long-lasting skin photosensitization, forcing patients with a short life expectancy to remain indoors. Consequently, the clinical implementation of these photosensitizers is limited. Here, benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) micelles encapsulating ZnPC (ZnPC-M) were investigated to increase the solubility of ZnPC and its specificity towards cancers cells. Asymmetric flow field-flow fractionation was used to characterize micelles with different ZnPC-to-polymer ratios and their stability in human plasma. The ZnPC-M with the lowest payload (0.2 and 0.4% ZnPC w/w) were the most stable in plasma, exhibiting minimal ZnPC transfer to lipoproteins, and induced the highest phototoxicity in three cancer cell lines. Nanobodies (Nbs) with binding specificity towards hepatocyte growth factor receptor (MET) or epidermal growth factor receptor (EGFR) were conjugated to ZnPC-M to facilitate cell targeting and internalization. MET- and EGFR-targeting micelles enhanced the association and the phototoxicity in cells expressing the target receptor. Altogether, these results indicate that ZnPC-M decorated with Nbs targeting overexpressed proteins on cancer cells may provide a better alternative to currently approved formulations.


Subject(s)
Isoindoles , Organometallic Compounds , Photochemotherapy , Humans , Photosensitizing Agents/chemistry , Micelles , Polymers , Photochemotherapy/methods , Zinc Compounds , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , ErbB Receptors , Cell Line, Tumor
15.
J Am Chem Soc ; 146(8): 5108-5117, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38367279

ABSTRACT

Enzymes are natural catalysts for a wide range of metabolic chemical transformations, including selective hydrolysis, oxidation, and phosphorylation. Herein, we demonstrate a strategy for the encapsulation of enzymes within a highly stable zirconium-based metal-organic framework. UiO-66-F4 was synthesized under mild conditions using an enzyme-compatible amino acid modulator, serine, at a modest temperature in an aqueous solution. Enzyme@UiO-66-F4 biocomposites were then formed by an in situ encapsulation route in which UiO-66-F4 grows around the enzymes and, consequently, provides protection for the enzymes. A range of enzymes, namely, lysozyme, horseradish peroxidase, and amano lipase, were successfully encapsulated within UiO-66-F4. We further demonstrate that the resulting biocomposites are stable under conditions that could denature many enzymes. Horseradish peroxidase encapsulated within UiO-66-F4 maintained its biological activity even after being treated with the proteolytic enzyme pepsin and heated at 60 °C. This strategy expands the toolbox of potential metal-organic frameworks with different topologies or functionalities that can be used as enzyme encapsulation hosts. We also demonstrate that this versatile process of in situ encapsulation of enzymes under mild conditions (i.e., submerged in water and at a modest temperature) can be generalized to encapsulate enzymes of various sizes within UiO-66-F4 while protecting them from harsh conditions (i.e., high temperatures, contact with denaturants or organic solvents).


Subject(s)
Metal-Organic Frameworks , Organometallic Compounds , Phthalic Acids , Metal-Organic Frameworks/chemistry , Zirconium/chemistry , Biomimetics , Organometallic Compounds/chemistry , Horseradish Peroxidase
16.
Dalton Trans ; 53(11): 4984-5000, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38406993

ABSTRACT

In this study, we present the synthesis, characterization and in vitro cytotoxicity of six organometallic [Ru(II)(η6-p-cymene)(N,N)Cl]Cl, [Rh(III)(η5-C5Me5)(N,N)Cl]Cl and [Re(I)(CO)3(N,N)Cl] complexes, in which the (N,N) ligands are sterane-based 2,2'-bipyridine derivatives (4-Me-bpy-St-OH, 4-Ph-bpy-St-OH). The solution chemical behavior of the ligands and the complexes was explored by UV-visible spectrophotometry and 1H NMR spectroscopy. The ligands and their Re(I) complexes are neutral at pH = 7.40; this contributes to their highly lipophilic character (log D7.40 > +3). The Ru(II) and Rh(III) half-sandwich complexes are much more hydrophilic, and this property is greatly affected by the actual chloride ion content of the medium. The half-sandwich Ru and Rh complexes are highly stable in 30% (v/v) DMSO/water (<5% dissociation at pH = 7.40); this is further increased in water. The Rh(III)(η5-C5Me5) complexes were characterized by higher water/chloride exchange and pKa constants compared to their Ru(II)(η6-p-cymene) counterparts. The Re(I)(CO)3 complexes are also stable in solution over a wide pH range (2-12) without the release of the bidentate ligand; only the chlorido co-ligand can be replaced with OH- at higher pH values. A comprehensive discussion of the binding affinity of the half-sandwich Ru(II) and Rh(III) complexes toward human serum albumin and calf-thymus DNA is also provided. The Ru(II)(η6-p-cymene) complexes interact with human serum albumin via intermolecular forces, while for the Rh(III)(η5-C5Me5) complexes the coordinative binding mode is suggested as well. They are also able to interact with calf-thymus DNA, most likely via the coordination of the guanine nitrogen. The Ru(II)(η6-p-cymene) complexes were found to be the most promising among the tested compounds as they exhibited moderate-to-strong cytotoxic activity (IC50 = 3-11 µM) in LNCaP as well as in PC3 prostate cells in an androgen receptor-independent manner. They were also significantly cytotoxic in breast and colon adenocarcinoma cancer cell lines and showed good selectivity for cancer cells.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Coordination Complexes , Cymenes , Organometallic Compounds , Ruthenium , Humans , Coordination Complexes/chemistry , Cell Line, Tumor , Ligands , Chlorides/chemistry , Antineoplastic Agents/chemistry , DNA/chemistry , Serum Albumin, Human , Water , Ruthenium/pharmacology , Ruthenium/chemistry , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry
17.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339097

ABSTRACT

The experimental study of the DNA interaction with three cadmium coordination compounds [Cd(phen)3](CH3CO2)2, [Cd(phen)2(H2O)2](CH3CO2)2, and [Cd2(phen)4(H2O)2](CH3CO2)4 was carried out using spectrophotometry, viscosity, and dynamic light scattering methods. The role of the solution ionic strength (concentration of NaCl) was analyzed. All compounds can penetrate (fully or partly) to the major or minor DNA grooves. It was shown that, in addition to the important role of electrostatic interactions in the formation of the complex, intercalation of the 1,10-phenanthroline ligand occurs for compounds [Cd(phen)2(H2O)2](CH3CO2)2 and [Cd2(phen)4(H2O)2](CH3CO2)4. Compound [Cd(phen)3](CH3CO2)2 binds to DNA externally. The coordination bond between cadmium and DNA was formed in DNA complexes with [Cd2(phen)4(H2O)2](CH3CO2)4. Preliminary computer modeling of the DNA interaction with the compounds used was performed.


Subject(s)
Coordination Complexes , Organometallic Compounds , Cadmium , Carbon Dioxide , DNA/chemistry , Spectrophotometry , Phenanthrolines/chemistry , Ligands , Coordination Complexes/chemistry , Organometallic Compounds/chemistry
18.
Adv Mater ; 36(16): e2311437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174785

ABSTRACT

The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Organometallic Compounds , Humans , Coordination Complexes/therapeutic use , Organometallic Compounds/chemistry , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Drug Delivery Systems
19.
Angew Chem Int Ed Engl ; 63(13): e202318863, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38271265

ABSTRACT

The grooves of DNA provide recognition sites for many nucleic acid binding proteins and anticancer drugs such as the covalently binding cisplatin. Here we report a crystal structure showing, for the first time, groove selectivity by an intercalating ruthenium complex. The complex Λ-[Ru(phen)2 phi]2+ , where phi=9,10-phenanthrenediimine, is bound to the DNA decamer duplex d(CCGGTACCGG)2 . The structure shows that the metal complex is symmetrically bound in the major groove at the central TA/TA step, and asymmetrically bound in the minor groove at the adjacent GG/CC steps. A third type of binding links the strands, in which each terminal cytosine base stacks with one phen ligand. The overall binding stoichiometry is four Ru complexes per duplex. Complementary biophysical measurements confirm the binding preference for the Λ-enantiomer and show a high affinity for TA/TA steps and, more generally, TA-rich sequences. A striking enantiospecific elevation of melting temperatures is found for oligonucleotides which include the TATA box sequence.


Subject(s)
Coordination Complexes , Organometallic Compounds , Ruthenium , Organometallic Compounds/chemistry , DNA/chemistry , Oligonucleotides/chemistry , Coordination Complexes/chemistry , Temperature , Ruthenium/chemistry
20.
J Chem Inf Model ; 64(3): 775-784, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38259142

ABSTRACT

Zr metallocenes have significant potential to be highly tunable polyethylene catalysts through modification of the aromatic ligand framework. Here we report the development of multiple machine learning models using a large library (>700 systems) of DFT-calculated zirconocene properties and barriers for ethylene polymerization. We show that very accurate machine learning models are possible for HOMO-LUMO gaps of precatalysts but the performance significantly depends on the machine learning algorithm and type of featurization, such as fingerprints, Coulomb matrices, smooth overlap of atomic positions, or persistence images. Surprisingly, the description of the bonding hapticity, the number of direct connections between Zr and the ligand aromatic carbons, only has a moderate influence on the performance of most models. Despite robust models for HOMO-LUMO gaps, these types of machine learning models based on structure connectivity type features perform poorly in predicting ethylene migratory insertion barrier heights. Therefore, we developed several relatively robust and accurate machine learning models for barrier heights that are based on quantum-chemical descriptors (QCDs). The quantitative accuracy of these models depends on which potential energy surface structure QCDs were harvested from. This revealed a Hammett-type principle to naturally emerge showing that QCDs from the π-coordination complexes provide much better descriptions of the transition states than other potential-energy structures. Feature importance analysis of the QCDs provides several fundamental principles that influence zirconocene catalyst reactivity.


Subject(s)
Organometallic Compounds , Zirconium , Ligands , Organometallic Compounds/chemistry , Ethylenes/chemistry , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...