Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 883
Filter
1.
Environ Res ; 252(Pt 3): 119059, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38701891

ABSTRACT

Recent studies revealed the un-negligible impact of airborne organophosphate esters (OPEs) on phosphorus (P)-limited ecosystems. Subtropical forests, the global prevalence P-limited ecosystems, contain canopy structures that can effectively sequester OPEs from the atmosphere. However, little is known about the behavior and fate of OPEs in subtropical forest ecosystem, and the impact on the P cycling in this ecosystem. OPE concentrations in the understory air (at two heights), foliage, and litterfall were investigated in a subtropical forest in southern China. The median ∑OPE concentrations were 3149 and 2489 pg/m3 in the upper and bottom air, respectively. Foliage exhibited higher ∑OPE concentrations (median = 386 ng/g dry weight (dw)) compared to litter (median = 267 ng/g dw). The air OPE concentrations were ordered by broadleaved forest > mixed forest > coniferous forest, which corresponds to the results of canopy coverage or leaf area index. The spatial variation of OPEs in foliage and litter was likely caused by the leaf surface functional traits. Higher OPE concentrations were found in the wet season for understory air while in the dry season for foliage and litter, which were attributed to the changes in emission sources and meteorological conditions, respectively. The inverse temporal variation suggests the un-equilibrium partitioning of OPEs between leaf and air. The OPE concentrations during the litter-incubation presented similar temporal trends with those in foliage and litter, indicating the strong interaction of OPEs between the litter layer and the near-soil air, and the efficient buffer of litter layer played in the OPEs partitioning between soil and air. The median OPEs-associated P deposition fluxes through litterfall were 270, 186, and 249 µg P/m2·yr in the broadleaved, mixed, and coniferous forests, respectively. Although the fluxes accounted for approximately 0.2% of the total atmospheric P deposition, their significance to this P-limited ecosystem may not be negligible.


Subject(s)
Air Pollutants , Environmental Monitoring , Forests , Plant Leaves , China , Plant Leaves/chemistry , Air Pollutants/analysis , Organophosphates/analysis , Esters/analysis , Seasons , Spatio-Temporal Analysis , Trees
2.
Environ Sci Pollut Res Int ; 31(24): 35206-35218, 2024 May.
Article in English | MEDLINE | ID: mdl-38720129

ABSTRACT

As alternative substances of PBDEs, organophosphate esters (OPEs), an emerging organic pollutant, were increasingly produced and used in many kinds of industries and consumer products. However, OPEs also have various adverse toxic effects. Information on the pollution levels and exposure to OPEs in related industries is still limited. This study presented data on OPE contamination in the soil, leaf, and river water samples from seven typical industrial parks in Southwest China. Total concentration of seven OPEs (Σ7OPE) including tri-n-butyl phosphate (TnBP), tris-(2-ethylhexyl) phosphate (TEHP), tris-(2-butoxyethyl) phosphate (TBEP), tris-(2-carboxyethyl) phosphine (TCEP), triphenyl phosphate (TPhP), tris-(1,3-dichloro-2-propyl) ester (TDCPP), and tris-(chlorisopropyl) phosphate (TCPP) in the soil samples (36.2 ~ 219.7 ng/g) and the surrounding river water samples (118.9 ~ 287.7 ng/L) were mostly lower than those in other studies, while the Σ7OPE level in the leaves (2053.3 ~ 8152.7 ng/g) was relatively high. There were significant differences in the concentration and distribution of OPEs in the surrounding environment of different industrial parks. TDCPP, TnBP, and TCPP could be used as the characteristic compound in soil samples from auto industrial park, river samples from shoe making industrial park, and leaf samples from logistics park, respectively. The parameter m (the content ratio of chlorinated OPEs to alkyl OPEs) was suggested to distinguish the types of industrial park preliminary. When m ≥ 1, it mainly refers to heavy industries sources such as automobiles, electronics, and machinery, etc. When m<1, it mainly for the light industrial sources such as textile industry, transportation services, and resources processing, etc. For logistics park, furniture park and Wuhou comprehensive industrial park, the volatilization of materials was the main sources of OPEs in the surrounding environment, while more effort was required to strengthen the pollution control and management of the waste water and soil in the pharmacy industrial park, shoe making industrial park and auto industrial park. Risk assessment showed that there was a negligible non-cancer and carcinogenic risk in the soil, while high attention should be paid to the non-cancer risk for children.


Subject(s)
Environmental Monitoring , Esters , Organophosphates , China , Risk Assessment , Organophosphates/analysis , Esters/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 360: 142406, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782132

ABSTRACT

Organophosphate esters (OPEs) are extensively used as additives in various products, including electronic equipment, which becomes e-waste when obsolete. Nevertheless, no study has evaluated OPEs exposure levels and the related health risks among e-waste workers in Hong Kong. Therefore, 201 first-spot morning urine samples were collected from 101 e-waste workers and 100 office workers to compare eight urinary OPE metabolites (mOPEs) levels in these groups. The concentrations of six mOPEs were similar in e-waste workers and office workers, except for significantly higher levels of diphenyl phosphate (DPHP) in e-waste workers and bis(1-chloro-2propyl) phosphate (BCIPP) in office workers. Spearman correlation analysis showed that most non-chlorinated mOPEs were correlated with each other in e-waste workers (i.e., nine out of ten pairs, including di-p-cresyl phosphate (DpCP) and di-o-cresyl phosphate (DoCP), DpCP and bis(2-butoxyethyl) phosphate (BBOEP), DpCP and DPHP, DpCP and dibutyl phosphate (DBP), DoCP and BBOEP, DoCP and DPHP, DoCP and DBP, BBOEP and DPHP, DPHP and DBP), indicating that handling e-waste could be the exposure source of specific OPEs. The median values of estimated daily intake (EDI) and hazard quotient (HQ) suggested that the health risks from OPEs exposures were under the recommended thresholds. However, linear regression models, Quantile g-computation, and Bayesian kernel machine regression found that urinary mOPEs elevated 8-hydroxy-2-deoxyguanosine (8-OhdG) levels individually or as a mixture, in which DPHP contributed prominently. In conclusion, although e-waste might not elevate the internal OPEs levels among the participating Hong Kong e-waste workers, attention should be paid to the potential DNA damage stimulated by OPEs under the currently recommended thresholds.


Subject(s)
DNA Damage , Electronic Waste , Occupational Exposure , Organophosphates , Humans , Hong Kong , Organophosphates/urine , Organophosphates/analysis , Risk Assessment , Occupational Exposure/analysis , Adult , Male , Middle Aged , Esters/analysis , Female , Young Adult
4.
Environ Pollut ; 351: 124085, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697247

ABSTRACT

Organophosphate esters (OPEs) are extensively applied in various materials as flame retardants and plasticizers, and have high biological toxicity. OPEs are detected worldwide, even in distant polar regions and the Tibetan Plateau (TP). However, few studies have been performed to evaluate the distribution patterns and origins of OPEs in different climate systems on the TP. This study investigated the distribution characteristics, possible sources, and ecological risks of OPEs in soils from the different climate systems on the TP and its surroundings. The total concentrations of OPEs in soil varied from 468 to 17,451 pg g-1 dry weight, with greater concentrations in southeast Tibet (monsoon zone), followed by Qinghai (transition zone) and, finally, southern Xingjiang (westerly zone). OPE composition profiles also differed among the three areas with tri-n-butyl phosphate dominant in the westerly zone and tris(2-butoxyethyl) phosphate dominant in the Indian monsoon zone. Correlations between different compounds and altitude, soil organic carbon, or longitude varied in different climate zones, indicating that OPE distribution originates from both long-range atmospheric transport and local emissions. Ecological risk assessment showed that tris(2-chloroethyl) phosphate and tri-phenyl phosphate exhibited medium risks in soil at several sites in southeast Tibet. Considering the sensitivity and vulnerability of TP ecosystems to anthropogenic pollutants, the ecological risks potentially caused by OPEs in this region should be further assessed.


Subject(s)
Climate , Environmental Monitoring , Esters , Organophosphates , Soil Pollutants , Soil , Tibet , Soil Pollutants/analysis , Soil/chemistry , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis
5.
Sci Total Environ ; 937: 173182, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38740192

ABSTRACT

Organophosphate flame retardants (OPFRs) are widely used as alternatives to brominated flame retardants in a variety of consumer products and their consumption has continuously increased in recent years. However, their concentrations and human exposures in indoor microenvironments, particularly in a university environment, have received limited attention. In this study, the concentrations and seasonal variations of 15 OPFRs were assessed in typical microenvironments of two universities, including dormitories, offices, public microenvironments (PMEs: classroom, dining hall, gymnasium and library), and laboratories on the northern coast of China. Analysis of the OPFRs in both air and dust samples indicated widespread distribution in college campuses. The average concentration of ∑15OPFRs in the winter (12,774.4 ng/g and 5.3 ng/m3 for dust and air, respectively) was higher than in the summer (2460.4 ng/g and 4.6 ng/m3 for dust and air, respectively). The dust and air samples collected from PMEs and laboratories exhibited higher concentrations of OPFRs, followed by offices and dormitories. An equilibrium was reached between dust and air in all collected microenvironments. The daily intakes of OPFRs were significantly lower than the reference dose. Dust ingestion was the primary intake pathway in the winter, while inhalation and dust ingestion were the main intake pathways in the summer. The non-carcinogenic hazard quotients fell within the range of 10-7-10-3 in both the summer and winter, which are below the theoretical risk threshold. For the carcinogenic risk, the LCR values ranged from 10-10 to 10-8, indicating no elevated carcinogenic risk due to TnBP, TCEP, and TDCP in indoor dust and air.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Exposure , Environmental Monitoring , Flame Retardants , Organophosphates , Seasons , Flame Retardants/analysis , China , Dust/analysis , Humans , Risk Assessment , Universities , Organophosphates/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Students/statistics & numerical data , Air Pollutants/analysis
6.
Chemosphere ; 355: 141822, 2024 May.
Article in English | MEDLINE | ID: mdl-38561157

ABSTRACT

The environmental occurrence of organophosphorus flame retardants (OPFRs) is receiving increasing attention. However, their distribution in the Xiangjiang River, an important tributary in the middle reaches of the Yangtze River, is still uncharacterized, and the potential factors influencing their distribution have not been adequately surveyed. In this study, the occurrence of OPFRs in the Xiangjiang River was comprehensively investigated from upstream to downstream seasonally. Fourteen OPFRs were detected in the sampling area, with a total concentration (∑OPFRs) ranging from 3.16 to 462 ng/L, among which tris(1-chloro-2-propyl) phosphate was identified as the primary pollutant (ND - 379 ng/L). Specifically, ∑OPFRs were significantly lower in the wet season than in the dry season, which may be due to the dilution effect of river flow and enhanced volatilization caused by higher water temperatures. Additionally, Changsha (during the dry season) and Zhuzhou (during the wet season) exhibited higher pollution levels than other cities. According to the Redundancy analysis, water quality parameters accounted for 35.7% of the variation in the occurrence of OPFRs, in which temperature, ammonia nitrogen content, dissolved oxygen, and chemical oxygen demand were identified as the potential influencing factors, accounting for 28.1%, 27.2%, 24.1%, and 11.5% of the total variation, respectively. The results of the Positive Matrix Factorization analysis revealed that transport and industrial emissions were the major sources of OPFRs in Xiangjiang River. In addition, there were no high-ecological risk cases for any individual OPFRs, although tris(2-ethylhexyl) phosphate and tributoxyethyl phosphate presented a low-to-medium risk level. And the results of mixture risk quotients indicated that medium-risk sites were concentrated in the Chang-Zhu-Tan region. This study enriches the global data of OPFRs pollution and contributes to the scientific management and control of pollution.


Subject(s)
Flame Retardants , Organophosphorus Compounds , Organophosphorus Compounds/analysis , Flame Retardants/analysis , Environmental Exposure/analysis , Phosphates/analysis , Water Quality , Organophosphates/analysis
7.
Chemosphere ; 358: 142095, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663681

ABSTRACT

Exposure to indoor dust is of concern since dust may be contaminated by various toxic chemicals and people spend considerable time indoors. Factors impacting human exposure risks to contaminants in indoor dust may differ from those affecting the loadings of contaminants, but the dominant factors have not yet been well clarified. In this study, the occurrence, human exposure, and related influencing factors of several classes of legacy and emerging contaminants in residential dust across Beijing were investigated, including per- and polyfluoroalkyl substances (PFASs) and three types of flame retardants (FRs), i.e., organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and novel halogenated FRs (NHFRs). OPEs (median: 3847 ng/g) were the most abundant group, followed by PBDEs (1046 ng/g) and NHFRs (520 ng/g). PFASs (14.3 ng/g) were one to two orders of magnitude lower than FRs. The estimated daily intakes of these contaminants were relatively higher for toddlers than other age groups, with oral ingestion being the main exposure pathway compared with dermal contact. Higher human exposure risks were found in new buildings or newly finished homes due to the elevated intake of emerging contaminants (such as OPEs). Furthermore, higher risks were also found in homes with wooden floors, which were mainly associated with higher levels of PFASs, chloroalkyl and alkyl OPEs, compared with tile floors. Citizens in the urban area also showed higher exposure risks than those in the suburban area. The quantity of household appliances and finishing styles (simple or luxurious) showed an insignificant impact on overall human exposure risks despite their significant effect on the levels of some of the dust contaminants. Results in this study are of importance in understanding human exposure to the co-existence of multiple contaminants in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Exposure , Environmental Monitoring , Flame Retardants , Halogenated Diphenyl Ethers , Housing , Dust/analysis , Humans , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Beijing , Flame Retardants/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Halogenated Diphenyl Ethers/analysis , Child , Adult , Child, Preschool , Air Pollutants/analysis , Organophosphates/analysis , Infant , China , Adolescent
8.
J Am Soc Mass Spectrom ; 35(5): 829-833, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38564189

ABSTRACT

A new approach using orthogonal analytical techniques is developed for chemical identification. High resolution mass spectrometry and infrared ion spectroscopy are applied through a 5-level confidence paradigm to demonstrate the effectiveness of nontargeted workflow for the identification of hazardous organophosphates. Triphenyl phosphate is used as a surrogate organophosphate for occupational exposure, and silicone wristbands are used to represent personal samplers. Spectral data of a target compound is combined with spectral data of the sodium adduct and quantum chemical calculations to achieve a confirmed identification. Here, we demonstrate a nontargeted workflow that identifies organophosphate exposure and provides a mechanism for selecting validated methods for quantitative analyses.


Subject(s)
Occupational Exposure , Silicones , Spectrophotometry, Infrared , Workflow , Occupational Exposure/analysis , Silicones/chemistry , Humans , Spectrophotometry, Infrared/methods , Mass Spectrometry/methods , Environmental Monitoring/methods , Organophosphates/analysis , Organophosphates/chemistry
9.
Sci Total Environ ; 927: 172212, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38580121

ABSTRACT

Organophosphate esters (OPEs) have garnered significant attention in recent years. In view of the enormous ecosystem services value and severe degradation of coral reefs in the South China Sea, this study investigated the occurrence, distribution, and bioaccumulation of 11 OPEs in five coral regions: Daya Bay (DY), Weizhou Island (WZ), Sanya Luhuitou (LHT), Xisha (XS) Islands, and Nansha (NS) Islands. Although OPEs were detected at a high rate, their concentration in South China Sea seawater (1.56 ± 0.89 ng L-1) remained relatively low compared to global levels. All OPEs were identified in coral tissues, with Luhuitou (575 ± 242 ng g-1 dw) showing the highest pollution levels, attributed to intense human activities. Coral mucus, acting as a defense against environmental stresses, accumulated higher ∑11OPEs (414 ± 461 ng g-1 dw) than coral tissues (412 ± 197 ng g-1 dw) (nonparametric test, p < 0.05), and their compositional characteristics varied greatly. In the case of harsh aquatic environments, corals increase mucus secretion and then accumulate organic pollutants. Tissue-mucus partitioning varied among coral species. Most OPEs were found to be bioaccumulative (BAFs >5000 L kg-1) in a few coral tissue samples besides Triphenyl phosphate (TPHP). Mucus' role in the bioaccumulation of OPEs in coral shouldn't be ignored.


Subject(s)
Anthozoa , Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Animals , China , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Organophosphates/analysis , Organophosphates/metabolism , Esters/analysis , Bioaccumulation , Seawater/chemistry , Coral Reefs
10.
Chemosphere ; 356: 141874, 2024 May.
Article in English | MEDLINE | ID: mdl-38575079

ABSTRACT

Organophosphate esters (OPEs) have received considerable attention in environmental research due to their extensive production, wide-ranging applications, prevalent presence, potential for bioaccumulation, and associated ecological and health concerns. Low efficiency of OPE removal results in the effluents of wastewater treatment plants emerging as a significant contributor to OPE contamination. Their notable solubility and mobility give OPEs the potential to be transported to coastal ecosystems via river discharge and atmospheric deposition. Previous research has indicated that OPEs have been widely detected in the atmosphere and water bodies. Atmospheric deposition across air-water exchange is the main input route for OPEs into the environment and ecosystems. The main processes that contribute to air-water exchange is air-water diffusion, dry deposition, wet deposition, and the air-water volatilization process. The present minireview links together the source, occurrence, and exchange of OPEs in water and air, integrates the occurrence and profile data, and summarizes their air-water exchange in the environment.


Subject(s)
Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Esters/analysis , Organophosphates/analysis , Water Pollutants, Chemical/analysis , Air Pollutants/analysis , Air/analysis , Water/chemistry , Wastewater/chemistry , Atmosphere/chemistry , Ecosystem
11.
Environ Monit Assess ; 196(5): 489, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689125

ABSTRACT

River Chanchaga has experienced significant agricultural practices around its catchment, which involved the indiscriminate use of pesticides. However, residents of the study area are not well aware of the negative impact of pesticides on water quality and macroinvertebrates. In this study, the first report on the influence of organophosphate pesticide contamination on the abundance of the macroinvertebrate community was provided. Sampling for the determination of organophosphate pesticide residues was carried out during the peak of the two seasons, while macroinvertebrates and physicochemical variables were observed for 6 months. We examined 11 organophosphate pesticide residues using gas chromatography coupled with mass spectrometry, 12 water quality variables, and 625 macroinvertebrate individuals. The concentration of recorded organophosphate pesticide residues ranged from 0.01 to 0.52 µg/L. From the Canonical Correspondence Analysis plot, malathion, chlorine, and paraffin show a positive correlation with Unima sp., Hydrocanthus sp., Chironomus sp., and Potadoma sp. At station 3, depth shows a positive correlation with Biomphalaria sp. and Zyxomma sp., indicating poor water quality as most of these macroinvertebrates are indicators of water pollution. Diuron and carbofuran show a negative correlation with Lestes sp. and Pseudocloeon sp., and these are pollution-sensitive macroinvertebrates. The total mean concentration of organophosphate pesticide residues was above international drinking water standards set by the World Health Organization except for paraffin, chlorpyrifos, and diuron. In conclusion, the observations recorded from this research are useful in managing pesticide applications around the river catchment.


Subject(s)
Environmental Monitoring , Invertebrates , Pesticide Residues , Rivers , Water Pollutants, Chemical , Water Quality , Animals , Water Pollutants, Chemical/analysis , Rivers/chemistry , Pesticide Residues/analysis , Invertebrates/drug effects , Farms , Agriculture , Organophosphates/analysis
12.
Sci Total Environ ; 929: 172762, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670350

ABSTRACT

Organophosphate esters (OPEs) are a class of emerging and ubiquitous contaminants that are attracting increasing attention, and their large-scale use as flame retardants and plasticizers has led to their pervasive presence in the environment, although their broader impacts remain unknown. In this study, 11 OPEs were measured in the atmosphere of Southeast Asia and Southwest China during 2016. The ∑11OPEs were higher in this region (78.0-1670 pg/m3, mean 458 pg/m3) than in many remote areas, lower than in developed regions, and comparable to levels in many developing country cities. Generally, the ∑11OPEs were higher in urban (105-1670 pg/m3, mean 538 pg/m3) than in suburban (78.0-1350 pg/m3, mean 388 pg/m3). Seasonal variations of OPEs in the air were more pronounced in Cambodia and Laos, especially for Triphenyl Phosphate (TPHP). Seasonal variations of ∑11OPEs in most regions correspond to changes in temperature and rainfall. Biomass burning may be also a factor in facilitating OPE emissions from biomass materials or soil into the atmosphere of Southeast Asia. The random forest analysis showed that among these, rainfall had the greatest effect on the seasonal variation of atmospheric OPE concentrations, followed by biomass burning and temperature. The inter-regional variation of ∑11OPEs in Southeast Asia was related to population and economic development in each region. Airflow trajectories indicated that the OPEs in this region were mainly from local sources. The health risk assessment revealed that the inhalation exposure risks of OPEs to the residents in the study areas were very low during the sampling period, but may be increasing.


Subject(s)
Air Pollutants , Environmental Monitoring , Esters , Organophosphates , China , Air Pollutants/analysis , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis , Seasons , India , Atmosphere/chemistry , Air Pollution/statistics & numerical data
13.
Anal Chem ; 96(12): 4942-4951, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478960

ABSTRACT

Bromochloro alkanes (BCAs) have been manufactured for use as flame retardants for decades, and preliminary environmental risk screening suggests they are likely to behave similarly to polychlorinated alkanes (PCAs), subclasses of which are restricted as Stockholm Convention Persistent Organic Pollutants (POPs). BCAs have rarely been studied in the environment, although some evidence suggests they may migrate from treated-consumer materials into indoor dust, resulting in human exposure via inadvertent ingestion. In this study, BCA-C14 mixture standards were synthesized and used to validate an analytical method. This method relies on chloride-enhanced liquid chromatography-electrospray ionization-Orbitrap-high resolution mass spectrometry (LC-ESI-Orbitrap-HRMS) and a novel CP-Seeker integration software package for homologue detection and integration. Dust sample preparation via ultrasonic extraction, acidified silica cleanup, and fractionation on neutral silica cartridges was found to be suitable for BCAs, with absolute recovery of individual homologues averaging 66 to 78% and coefficients of variation ≤10% in replicated spiking experiments (n = 3). In addition, a total of 59 indoor dust samples from six countries, including Australia (n = 10), Belgium (n = 10), Colombia (n = 10), Japan (n = 10), Thailand (n = 10), and the United States of America (n = 9), were analyzed for BCAs. BCAs were detected in seven samples from the U.S.A., with carbon chain lengths of C8, C10, C12, C14, C16, C18, C24 to C28, C30 and C31 observed overall, though not detected in samples from any other countries. Bromine numbers of detected homologues in the indoor dust samples ranged Br1-4 as well as Br7, while chlorine numbers ranged Cl2-11. BCA-C18 was the most frequently detected, observed in each of the U.S.A. samples, while the most prevalent degrees of halogenation were homologues of Br2 and Cl4-5. Broad estimations of BCA concentrations in the dust samples indicated that levels may approach those of other flame retardants in at least some instances. These findings suggest that development of quantification strategies and further investigation of environmental occurrence and health implications are needed.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Humans , Environmental Monitoring , Organophosphates/analysis , Dust/analysis , Flame Retardants/analysis , Air Pollution, Indoor/analysis , Halogens , Silicon Dioxide/analysis
14.
Environ Pollut ; 348: 123655, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38467366

ABSTRACT

Although global plastic distribution is at the heart of 21st century environmental concerns, little information is available concerning how organic plastic additives contaminate freshwater sediments, which are often subject to strong anthropogenic pressure. Here, sediment core samples were collected in the Rhone and the Rhine watersheds (France), dated using 137Cs and 210Pbxs methods and analysed for nine phthalates (PAEs) and seven organophosphate esters (OPEs). The distribution of these organic contaminants was used to establish a chronological archive of plastic additive pollution from 1860 (Rhine) and 1930 (Rhone) until today. Sediment grain size and parameters related to organic matter (OM) were also measured as potential factors that may affect the temporal distribution of OPEs and PAEs in sediments. Our results show that OPE and PAE levels increased continuously in Rhone and Rhine sediments since the first records. In both rivers, ∑PAEs levels (from 9.1 ± 1.7 to 487.3 ± 27.0 ng g-1 dry weight (dw) ± standard deviation and from 4.6 ± 1.3 to 65.2 ± 11.2 ng g-1 dw, for the Rhine and the Rhone rivers, respectively) were higher than ∑OPEs levels (from 0.1 ± 0.1 to 79.1 ± 13.7 ng g-1 dw and from 0.6 ± 0.1 to 17.8 ± 2.3 ng g-1 dw, for Rhine and Rhone rivers, respectively). In both rivers, di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAE, followed by diisobutyl phthalate (DiBP), while tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant OPE. No relationship was found between granulometry and additives concentrations, while organic matter helps explain the vertical distribution of PAEs and OPEs in the sediment cores. This study thus establishes a temporal trajectory of PAEs and OPEs contents over the last decades, leading to a better understanding of historical pollution in these two Western European rivers.


Subject(s)
Phthalic Acids , Phthalic Acids/analysis , Esters/analysis , Dibutyl Phthalate/analysis , Environmental Pollution/analysis , Rivers , Organophosphates/analysis , China
15.
Environ Sci Technol ; 58(11): 4904-4913, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38437168

ABSTRACT

The Yangtze River fishery resources have declined strongly over the past few decades. One suspected reason for the decline in fishery productivity, including silver carp (Hypophthalmichthys molitrix), has been linked to organophosphate esters (OPEs) contaminant exposure. In this study, the adverse effect of OPEs on lipid metabolism in silver carp captured from the Yangtze River was examined, and our results indicated that muscle concentrations of the OPEs were positively associated with serum cholesterol and total lipid levels. In vivo laboratory results revealed that exposure to environmental concentrations of OPEs significantly increased the concentrations of triglyceride, cholesterol, and total lipid levels. Lipidome analysis further confirmed the lipid metabolism dysfunction induced by OPEs, and glycerophospholipids and sphingolipids were the most affected lipids. Hepatic transcriptomic analysis found that OPEs caused significant alterations in the transcription of genes involved in lipid metabolism. Pathways associated with lipid homeostasis, including the peroxisome proliferator-activated receptor (PPAR) signal pathway, cholesterol metabolism, fatty acid biosynthesis, and steroid biosynthesis, were significantly changed. Furthermore, the affinities of OPEs were different, but the 11 OPEs tested could bind with PPARγ, suggesting that OPEs could disrupt lipid metabolism by interacting with PPARγ. Overall, this study highlighted the harmful effects of OPEs on wild fish and provided mechanistic insights into OPE-induced metabolic disorders.


Subject(s)
Carps , Flame Retardants , Metabolic Diseases , Animals , Rivers , PPAR gamma , Esters/analysis , Organophosphates/toxicity , Organophosphates/analysis , Cholesterol/analysis , Lipids , Flame Retardants/analysis , China , Environmental Monitoring/methods
16.
Mar Pollut Bull ; 201: 116256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521000

ABSTRACT

We report the first empirical confirmation of the co-occurrence of organophosphate esters (OPEs) additives and microplastics (MPs) in benthic compartments from the Loire estuary. Higher median concentrations of MPs (3387 items/kg dw), ∑13tri-OPEs (12.0 ng/g dw) and ∑4di-OPEs (0.7 ng/g dw) were measured in intertidal sediments with predominance of fine particles, and under higher anthropogenic pressures, with a general lack of seasonality. Contrarily, Scrobicularia plana showed up to 4-fold higher ∑tri-OPE concentrations in summer (reaching 37.0 ng/g dw), and similar spatial distribution. Polyethylene predominated in both compartments. Tris(2-ethylhexyl) phosphate (TEHP), its degradation metabolite (BEHP) and tris-(2-chloro, 1-methylethyl) phosphate (TCIPP) were the most abundant OPEs in sediments, while TCIPP predominated in S. plana. The biota-sediment accumulation factors suggest bioaccumulation potential for chlorinated-OPEs, with higher exposure in summer. No significant correlations were generally found between OPEs and MPs in sediments suggesting a limited role of MPs as in-situ source of OPEs.


Subject(s)
Environmental Monitoring , Flame Retardants , Microplastics , Plastics , Estuaries , Flame Retardants/analysis , Plasticizers/analysis , Organophosphates/analysis , Phosphates , Esters/analysis , China
17.
Environ Pollut ; 347: 123733, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458527

ABSTRACT

Chronic respiratory diseases are a dealing cause of death and disability worldwide. Their prevalence is steadily increasing and the exposure to environmental contaminants, including Flame Retardants (FRs), is being considered as a possible risk factor. Despite the widespread and continuous exposure to FRs, the role of these contaminants in chronic respiratory diseases is yet not clear. This study aims to systematically review the association between the exposure to FRs and chronic respiratory diseases. Searches were performed using the Cochrane Library, MEDLINE, EMBASE, PUBMED, SCOPUS, ISI Web of Science (Science and Social Science Index), WHO Global Health Library and CINAHL EBSCO. Among the initial 353 articles found, only 9 fulfilled the inclusion criteria and were included. No statistically significant increase in the risk for chronic respiratory diseases with exposure to FRs was found and therefore there is not enough evidence to support that FRs pose a significantly higher risk for the development or worsening of respiratory diseases. However, a non-significant trend for potential hazard was found for asthma and rhinitis/rhinoconjunctivitis, particularly considering urinary organophosphate esters (OPEs) including TNBP, TPHP, TCEP and TCIPP congeners/compounds. Most studies showed a predominance of moderate risk of bias, therefore the global strength of the evidence is low. The limitations of the studies here reviewed, and the potential hazardous effects herein identified highlights the need for good quality large-scale cohort studies in which biomarkers of exposure should be quantified in biological samples.


Subject(s)
Asthma , Flame Retardants , Humans , Flame Retardants/analysis , Organophosphorus Compounds/analysis , Organophosphates/analysis , Environmental Monitoring , Dust/analysis , Halogenated Diphenyl Ethers/analysis
18.
Sci Total Environ ; 926: 172045, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38554968

ABSTRACT

Bioaccessibility of halogenated flame retardants (HFRs) and organophosphorus esters (OPEs) is necessarily investigated to provide more accurate risk assessment and information about absorption behavior of these pollutants. In this study, total and bioaccessible concentrations of HFRs (including legacy and alternative substances) and OPEs were determined in settled dust samples collected from Vietnamese e-waste and end-of-life vehicle (ELV) processing areas. Concentrations of both HFRs and OPEs were significantly higher in the e-waste dust than ELV dust. Bioavailability of HFRs and OPEs in dust was determined by using an in vitro assay with human-simulated digestive fluids, dialysis membrane, and Tenax® TA sorptive sink. Bioaccessibility of HFRs was markedly lower than that of OPEs, which could be largely due to higher hydrophobicity of HFRs compared to OPEs. Bioaccessibility of almost hydrophobic compounds were markedly lower in the e-waste dust (containing micronized plastic debris) than in the ELV dust (containing oily materials), suggesting the influence of specific dust matrices on pollutant bioaccessibility. Although the daily uptake doses of selected HFRs and OPEs from dust were markedly higher in the e-waste sites compared to the ELV sites, the direct exposure risk was not significant. Our results suggest that bioaccessibility can partly explain the differences between dust and uptake profiles, which may relate to accumulation profiles of HFRs and OPEs in human samples.


Subject(s)
Air Pollution, Indoor , Electronic Waste , Environmental Pollutants , Flame Retardants , Humans , Dust/analysis , Environmental Monitoring/methods , Flame Retardants/analysis , Vietnam , Electronic Waste/analysis , Air Pollution, Indoor/analysis , Organophosphates/analysis , Esters/analysis , China
19.
J Hazard Mater ; 469: 134035, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38490147

ABSTRACT

The trophodynamic of organophosphate esters (OPEs) has not been known well despite their widespread occurrence in the aquatic environments. In this study, ten species of crustacean, seven species of mollusk, and 22 species of fish were collected in the Laizhou Bay (LZB) to examine the occurrence, bioaccumulation, and trophic transfer, and health risk of eight traditional OPEs and three emerging oligomeric OPEs. The results showed that total concentration of OPEs was 2.04 to 28.6 ng g-1 ww in the muscle of crustacean, mollusk, and fish and 2.62 to 60.6 ng g-1 ww in the fish gill. Chlorinated OPEs averagely contributed to over 85% of total OPEs while oligomeric OPEs averagely accounted for approximate 4%. The average log apparent bioaccumulation factor (ABAF) ranged from - 0.4 L kg-1 ww for triethyl phosphate to 2.4 L kg-1 ww for resorcinol-bis (diphenyl) phosphate. Apparent trophic magnification factors (ATMF) of individual OPE were generally less than 1, demonstrating the biodilution effect of the OPEs in the organism web of LZB. Additionally, the log ABAF and ATMF of OPEs were significantly positively correlated to their log Kow but negatively correlated to their biotransformation rate constant (BRC). Therefore, the OPEs with high Kow and low BRC tend to more accumulate in the marine organisms. The health risks associated with OPEs through the consumption of the seafood from the bay were low, even at high exposure scenario.


Subject(s)
Water Pollutants, Chemical , Animals , Bays , Bioaccumulation , Biota , China , Environmental Monitoring/methods , Fishes/metabolism , Organophosphates/analysis , Water Pollutants, Chemical/analysis
20.
Environ Res ; 251(Pt 1): 118614, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38462084

ABSTRACT

Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers in consumer and industrial products. They have been found to have numerous exposure hazards. Recently, several OPEs have been detected in surface waters around the world, which may pose potential ecological risks to freshwater organisms. In this study, the concentration, spatial variation, and ecological risk of 15 OPEs in the Beiyun and Yongding rivers were unprecedentedly investigated by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and risk quotient (RQ) method. The result showed that triethyl phosphate (TEP), tri (2-chloroisopropyl) phosphate (TCPP) were the most abundant OPEs with average concentrations of 55.53 ng/L and 42.29 ng/L, respectively. The concentrations of OPEs in the Beiyun River are higher than in the Yongding River, and their levels were higher in densely populated and industrial areas. The risk assessment showed that there was insignificant from OPEs to freshwater organisms in these rivers (RQs <0.1). The risk was higher downstream than upstream, which was related to human-intensive industrial activities downstream in the Yongding River. The ecological risk of OPEs in surface waters worldwide was estimated by joint probability curves (JPCs), and the result showed that there was a moderate risk for tri (2-chloroethyl) phosphate (TCEP), a low risk for trimethyl phosphate (TMP), and insignificant for other OPEs. In addition, the QSAR-ICE-SSD model was used to calculate the hazardous concentration for 5% (HC5). This result validated the feasibility and accuracy of this model in predicting acute data of OPEs and reducing biological experiments on the toxicity of OPEs. These results revealed the ecological risk of OPEs and provided the scientific basis for environmental managers.


Subject(s)
Environmental Monitoring , Organophosphates , Rivers , Water Pollutants, Chemical , Risk Assessment , Water Pollutants, Chemical/analysis , Organophosphates/analysis , Rivers/chemistry , Esters/analysis , China , Tandem Mass Spectrometry , Flame Retardants/analysis , Cities
SELECTION OF CITATIONS
SEARCH DETAIL
...