Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 257(1): 299-317, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31529247

ABSTRACT

Orobanche picridis is an obligate root parasite devoid of chlorophyll in aboveground organs, which infects various Picris species. Given the high level of phenotypic variability of the species, the considerable limitation of the number of taxonomically relevant traits (mainly in terms of generative elements), and the low morphological variation between species, Orobanche is regarded as one of the taxonomically most problematic genera. This study aimed to analyse the taxonomic traits of O. picridis flowers with the use of stereoscopic and bright-field microscopy as well as fluorescence, scanning, and transmission electron microscopy. The micromorphology of sepals, petals, stamens, and pistils was described. For the first time, the anatomy of parasitic Orobanche nectaries and the ultrastructure of nectaries and glandular trichomes were presented. Special attention was paid to the distribution and types of glandular and non-glandular trichomes as well as the types of metabolites contained in these structures. It was demonstrated that the nectary gland was located at the base of the gynoecium and nectar was secreted through modified nectarostomata. The secretory parenchyma cells contained nuclei, large amyloplasts with starch granules, mitochondria, and high content of endoplasmic reticulum profiles. Nectar was transported via symplastic and apoplastic routes. The results of histochemical assays and fluorescence tests revealed the presence of four groups of metabolites, i.e. polyphenols (tannins, flavonoids), lipids (acidic and neutral lipids, essential oil, sesquiterpenes, steroids), polysaccharides (acidic and neutral polysaccharides), and alkaloids, in the trichomes located on perianth elements and stamens.


Subject(s)
Flowers/anatomy & histology , Flowers/ultrastructure , Orobanche/anatomy & histology , Orobanche/ultrastructure , Parasites/classification , Parasites/ultrastructure , Animals , Flowers/classification , Fluorescence , Orobanche/classification , Plant Nectar/physiology
2.
Ann Bot ; 103(7): 1005-14, 2009 May.
Article in English | MEDLINE | ID: mdl-19251714

ABSTRACT

BACKGROUND AND AIMS: Orobanche minor is a root-holoparasitic angiosperm that attacks a wide range of host species, including a number of commonly cultivated crops. The extent to which genetic divergence among natural populations of O. minor is influenced by host specificity has not been determined previously. Here, the host specificity of natural populations of O. minor is quantified for the first time, and evidence that this species may comprise distinct physiological races is provided. METHODS: A tripartite approach was used to examine the physiological basis for the divergence of populations occurring on different hosts: (1) host-parasite interactions were cultivated in rhizotron bioassays in order to quantify the early stages of the infection and establishment processes; (2) using reciprocal-infection experiments, parasite races were cultivated on their natural and alien hosts, and their fitness determined in terms of biomass; and (3) the anatomy of the host-parasite interface was investigated using histochemical techniques, with a view to comparing the infection process on different hosts. KEY RESULTS: Races occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota ssp. gummifer) showed distinct patterns of host specificity: parasites cultivated in cross-infection studies showed a higher fitness on their natural hosts, suggesting that races show local adaptation to specific hosts. In addition, histological evidence suggests that clover and carrot roots vary in their responses to infection. Different root anatomy and responses to infection may underpin a physiological basis for host specificity. CONCLUSIONS: It is speculated that host specificity may isolate races of Orobanche on different hosts, accelerating divergence and ultimately speciation in this genus. The rapid life cycle and broad host range of O. minor make this species an ideal model with which to study the interactions of parasitic plants with their host associates.


Subject(s)
Genetic Speciation , Orobanche/classification , Orobanche/growth & development , Host-Parasite Interactions , Models, Biological , Species Specificity , Trifolium/parasitology
3.
Gene ; 387(1-2): 75-86, 2007 Jan 31.
Article in English | MEDLINE | ID: mdl-17008031

ABSTRACT

We present the first study on the diversity and evolution of Ty1-copia and Ty3-gypsy retroelements in a group of non-photosynthetic flowering plants. To this end partial sequences of the reverse transcriptase (rt) gene were obtained from 20 clones for each retroelement type from seven and six accessions of Orobanche and Phelipanche (Orobanchaceae), respectively. Overall sequence similarity is higher in Ty3-gypsy elements than in Ty1-copia elements in agreement with the results from other angiosperm groups. Higher sequence diversity and stronger phylogenetic structure, especially of Ty1-copia sequences, in Orobanche species compared to Phelipanche species support the previously suggested hypothesis (based on karyological and cytological data) that genomes of Orobanche species are more dynamic than those of Phelipanche species. No evidence was found for intraspecific differences of retroelement diversity nor for differences between pest taxa and their putative wild relatives, e.g., O. crenata and O. owerini. The occurrence of a few sequences from Phelipanche species in clades otherwise comprising sequences from Orobanche species might be due to horizontal gene transfer, but the alternative of vertical transmission cannot be rejected unambiguously.


Subject(s)
Genetic Variation , Orobanche/classification , Repetitive Sequences, Nucleic Acid/genetics , Retroelements/genetics , Chromosome Mapping , Evolution, Molecular , Genome, Plant , Orobanchaceae/classification , Orobanchaceae/genetics , Orobanche/genetics , Phylogeny , Sequence Analysis, DNA
4.
Nat Prod Res ; 19(6): 547-50, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16010818

ABSTRACT

We studied the occurrence of phenylpropanoid glycosides (PhG) in five species of the genus Orobanche L., collected in the Latium region of Italy. The presence of orobanchoside and verbascoside in all four species confirms that these PhGs are taxonomic markers of the genus. The results suggest that O. gracilis form. citrina could be a diverse entity.


Subject(s)
Glycosides/analysis , Glycosides/chemistry , Orobanche/chemistry , Propanols/analysis , Propanols/chemistry , Classification , Orobanche/classification
5.
Mol Phylogenet Evol ; 33(2): 482-500, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15336681

ABSTRACT

The rbcL sequences of 106 specimens representing 28 species of the four recognized sections of Orobanche were analyzed and compared. Most sequences represent pseudogenes with premature stop codons. This study confirms that the American lineage (sects. Gymnocaulis and Myzorrhiza) contains potentially functional rbcL-copies with intact open reading frames and low rates of non-synonymous substitutions. For the first time, this is also shown for a member of the Eurasian lineage, O. coerulescens of sect. Orobanche, while all other investigated species of sects. Orobanche and Trionychon contain pseudogenes with distorted reading frames and significantly higher rates of non-synonymous substitutions. Phylogenetic analyses of the rbcL sequences give equivocal results concerning the monophyly of Orobanche, and the American lineage might be more closely related to Boschniakia and Cistanche than to the other sections of Orobanche. Additionally, species of sect. Trionychon phylogenetically nest in sect. Orobanche. This is in concordance with results from other plastid markers (rps2 and matK), but in disagreement with other molecular (nuclear ITS), morphological, and karyological data. This might indicate that the ancestor of sect. Trionychon has captured the plastid genome, or parts of it, of a member of sect. Orobanche. Apart from the phylogenetically problematic position of sect. Trionychon, the phylogenetic relationships within sect. Orobanche are similar to those inferred from nuclear ITS data and are close to the traditional groupings traditionally recognized based on morphology. The intraspecific variation of rbcL is low and is neither correlated with intraspecific morphological variability nor with host range. Ancestral character reconstruction using parsimony suggests that the ancestor of O. sect. Orobanche had a narrow host range.


Subject(s)
Genetic Variation , Orobanche/classification , Orobanche/genetics , Phylogeny , Ribulose-Bisphosphate Carboxylase/genetics , Base Sequence , Evolution, Molecular , Host-Parasite Interactions/genetics , Molecular Sequence Data , Plastids/genetics , Pseudogenes/genetics , Sequence Alignment
6.
Ann Bot ; 91(6): 637-42, 2003 May.
Article in English | MEDLINE | ID: mdl-12714362

ABSTRACT

RAPD markers were used to study variation among 20 taxa in the genus OROBANCHE: O. alba, O. amethystea, O. arenaria, O. ballotae, O. cernua, O. clausonis, O. cumana, O. crenata, O. densiflora, O. foetida, O. foetida var. broteri, O. gracilis, O. haenseleri, O. hederae, O. latisquama, O. mutelii, O. nana, O. ramosa, O. rapum-genistae and O. santolinae. A total of 202 amplification products generated with five arbitrary RAPD primers was obtained and species-specific markers were identified. The estimated Jaccard's differences between the species varied between 0 and 0.864. The pattern of interspecific variation obtained is in general agreement with previous taxonomic studies based on morphology, and the partition into two different sections (Trionychon and Orobanche) is generally clear. However, the position in the dendrogram of O. clausonis did not fit this classification since it clustered with members of section TRIONYCHON: Within this section, O. arenaria was relatively isolated from the other members of the section: O. mutelii, O. nana and O. ramosa. Within section Orobanche, all O. ramosa populations showed a similar amplification pattern, whereas differences among O. crenata populations growing on different hosts were found. Orobanche foetida and O. densiflora clustered together, supporting the morphological and cytological similarities and the host preferences of these species.


Subject(s)
Orobanche/classification , Orobanche/genetics , Phylogeny , Random Amplified Polymorphic DNA Technique , Genetic Markers , Genetic Variation , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...