Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 885
Filter
1.
Arch Virol ; 169(6): 133, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829449

ABSTRACT

Akabane virus (AKAV), Aino virus, Peaton virus, Sathuperi virus, and Shamonda virus are arthropod-borne viruses belonging to the order Elliovirales, family Peribunyaviridae, genus Orthobunyavirus. These viruses cause or may cause congenital malformations in ruminants, including hydranencephaly, poliomyelitis, and arthrogryposis, although their pathogenicity may vary among field cases. AKAV may cause relatively severe congenital lesions such as hydranencephaly in calves. Furthermore, strains of AKAV genogroups I and II exhibit different disease courses. Genogroup I strains predominantly cause postnatal viral encephalomyelitis, while genogroup II strains are primarily detected in cases of congenital malformation. However, the biological properties of AKAV and other orthobunyaviruses are insufficiently investigated in hosts in the field and in vitro. Here, we used an immortalized bovine brain cell line (FBBC-1) to investigate viral replication efficiency, cytopathogenicity, and host innate immune responses. AKAV genogroup II and Shamonda virus replicated to higher titers in FBBC-1 cells compared with the other viruses, and only AKAV caused cytopathic effects. These results may be associated with the severe congenital lesions in the brain caused by AKAV genogroup II. AKAV genogroup II strains replicated to higher titers in FBBC-1 cells than AKAV genogroup I strains, suggesting that genogroup II strains replicated more efficiently in fetal brain cells, accounting for the detection of the latter strains mainly in fetal infection cases. Therefore, FBBC-1 cells may serve as a valuable tool for investigating the virulence and tropism of the orthobunyaviruses for bovine neonatal brain tissues in vitro.


Subject(s)
Brain , Bunyaviridae Infections , Orthobunyavirus , Virus Replication , Animals , Cattle , Orthobunyavirus/pathogenicity , Orthobunyavirus/genetics , Orthobunyavirus/physiology , Orthobunyavirus/classification , Brain/virology , Brain/pathology , Cell Line , Bunyaviridae Infections/virology , Bunyaviridae Infections/veterinary , Bunyaviridae Infections/pathology , Cattle Diseases/virology , Fetus/virology , Cytopathogenic Effect, Viral , Immunity, Innate
2.
BMC Vet Res ; 20(1): 183, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720324

ABSTRACT

BACKGROUND: Pigs are susceptible to several ruminant pathogens, including Coxiella burnetti, Schmallenberg virus (SBV) and bovine viral diarrhea virus (BVDV). These pathogens have already been described in the pig population, although the dynamics of the infection and the impact on pig farms are currently unclear. The aim of this work was to evaluate the presence of these infections in the pig population of the Campania region, southern Italy, and to evaluate the risk factors associated with a greater risk of exposure. RESULTS: A total of 414 serum samples belonging to 32 herds were tested for the presence of antibodies against SBV, Coxiella, and BVD using commercial multispecies ELISA kits. SBV (5.3%) was the most prevalent pathogen, followed by Coxiella (4.1%) and BVD (3%). The risk factors included in the study (age, sex, province, farming system, ruminant density and major ruminant species) had no influence on the probability of being exposed to BVD and Coxiella, except for the location, in fact more pigs seropositive to Coxiella were found in the province of Caserta. However, the univariate analysis highlighted the influence of age, location, and sex on exposure to SBV. The subsequent multivariate analysis statistically confirmed the importance of these factors. The presence of neutralizing antibodies for SBV and BVDV, or antibodies directed towards a specific phase of infection for Coxiella was further confirmed with virus-neutralization assays and phase-specific ELISAs in a large proportion of positive samples. The presence of high neutralizing antibody titers (especially for SBV) could indicate recent exposures. Twelve of the 17 positive samples tested positive for antibodies against Coxiella phase I or II antigens, indicating the presence of both acute and chronic infections (one animal tested positive for both phases antibodies). CONCLUSIONS: Our study indicates a non-negligible exposure of pigs from southern Italy to the above pathogens. Further studies are necessary to fully understand the dynamics of these infections in pigs, the impact on productivity, and the public health consequences in the case of Coxiella.


Subject(s)
Antibodies, Viral , Q Fever , Swine Diseases , Animals , Italy/epidemiology , Seroepidemiologic Studies , Swine , Risk Factors , Swine Diseases/epidemiology , Swine Diseases/microbiology , Swine Diseases/virology , Q Fever/epidemiology , Q Fever/veterinary , Female , Male , Antibodies, Viral/blood , Diarrhea Viruses, Bovine Viral/immunology , Antibodies, Bacterial/blood , Orthobunyavirus/immunology , Orthobunyavirus/isolation & purification , Coxiella burnetii/immunology , Coxiella burnetii/isolation & purification , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Pseudorabies/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary
3.
Mem Inst Oswaldo Cruz ; 119: e230221, 2024.
Article in English | MEDLINE | ID: mdl-38747855

ABSTRACT

OBJECTIVES: We report the first case of Oropouche fever detected in the border region of Colombia. METHODS: Using a multiplex real-time polymerase chain reaction (PCR), genetic sequencing and clinical characteristics during the dengue epidemic in 2019, a total of 175 samples were analysed, from cases notified to the system epidemiological surveillance such as dengue. FINDINGS: The Oropouche virus (OROV) isolate from Leticia belongs to lineage 2 according to both M and S genome segments maximum likelihood (ML) analysis, shares a common ancestor with samples obtained in Esmeraldas, Ecuador and Turbaco, Colombia. The patient: a woman resident in the border neighbourhood of the municipality of Leticia had the following symptoms: fever, headache, retro-orbital pain and myalgias. MAIN CONCLUSION: This cross-border surveillance can be useful to give an alert about the entry or exit of arboviruses circulation in the region, which are often underreported in public health surveillance systems.


Subject(s)
Orthobunyavirus , Humans , Female , Colombia/epidemiology , Orthobunyavirus/genetics , Orthobunyavirus/isolation & purification , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , Adult , Real-Time Polymerase Chain Reaction , Phylogeny
4.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1548-1558, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783815

ABSTRACT

In order to generate monoclonal antibodies against the akabane virus (AKAV) N protein, this study employed a prokaryotic expression system to express the AKAV N protein. Following purification, BALB/c mice were immunized, and their splenocytes were fused with mouse myeloma cells (SP2/0) to produce hybridoma cells. The indirect ELISA method was used to screen for positive hybridoma cells. Two specific hybridoma cell lines targeting AKAV N protein, designated as 2C9 and 5E9, were isolated after three rounds of subcloning. Further characterization was conducted through ELISA, Western blotting, and indirect immunofluorescence assay (IFA). The results confirmed that the monoclonal antibodies specifically target AKAV N protein, exhibiting strong reactivity in IFA. Subtype analysis identified the heavy chain of the 2C9 mAb's as IgG2b and its light chain as κ-type; the 5E9 mAb's heavy chain was determined to be IgG1, with a κ-type light chain. Their ELISA titers reached 1:4 096 000. This study successfully developed two monoclonal antibodies targeting AKAV N protein, which lays a crucial foundation for advancing diagnostic methods for akabane disease prevention and control, as well as for studying the function of the AKAV N protein.


Subject(s)
Antibodies, Monoclonal , Mice, Inbred BALB C , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Mice , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/genetics , Hybridomas/immunology , Hybridomas/metabolism , Orthobunyavirus/immunology , Orthobunyavirus/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Antibodies, Viral/immunology , Female
5.
Front Cell Infect Microbiol ; 14: 1365221, 2024.
Article in English | MEDLINE | ID: mdl-38711929

ABSTRACT

Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.


Subject(s)
Bunyaviridae Infections , Immunity, Innate , Orthobunyavirus , Bunyaviridae Infections/immunology , Bunyaviridae Infections/virology , Humans , Animals , Orthobunyavirus/immunology , Host-Pathogen Interactions/immunology , Interferons/immunology , Interferons/metabolism , Signal Transduction , Cytokines/metabolism , Cytokines/immunology , Vector Borne Diseases/immunology , Vector Borne Diseases/virology , Vector Borne Diseases/prevention & control , Virus Replication
6.
Parasit Vectors ; 17(1): 204, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715075

ABSTRACT

BACKGROUND: Mosquito-borne viruses cause various infectious diseases in humans and animals. Oya virus (OYAV) and Ebinur Lake virus (EBIV), belonging to the genus Orthobunyavirus within the family Peribunyaviridae, are recognized as neglected viruses with the potential to pose threats to animal or public health. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. METHODS: To investigate the range of mosquito vectors for OYAV (strain SZC50) and EBIV (strain Cu20-XJ), the susceptibility of four mosquito species (Culex pipiens pallens, Cx. quinquefasciatus, Aedes albopictus, and Ae. aegypti) was measured through artificial oral infection. Then, mosquito species with a high infection rate (IR) were chosen to further evaluate the dissemination rate (DR), transmission rate (TR), and transmission efficiency. The viral RNA in each mosquito sample was determined by RT-qPCR. RESULTS: The results revealed that for OYAV, Cx. pipiens pallens had the highest IR (up to 40.0%) among the four species, but the DR and TR were 4.8% and 0.0%, respectively. For EBIV, Cx. pipiens pallens and Cx. quinquefasciatus had higher IR compared to Ae. albopictus (1.7%). However, the EBIV RNA and infectious virus were detected in Cx. pipiens pallens, with a TR of up to 15.4% and a transmission efficiency of 3.3%. CONCLUSIONS: The findings indicate that Cx. pipiens pallens was susceptible to OYAV but had an extremely low risk of transmitting the virus. Culex pipiens pallens and Cx. quinquefasciatus were susceptible to EBIV, and Cx. pipiens pallens had a higher transmission risk to EBIV than Cx. quinquefasciatus.


Subject(s)
Aedes , Culex , Mosquito Vectors , Orthobunyavirus , Animals , Mosquito Vectors/virology , Aedes/virology , Culex/virology , Orthobunyavirus/genetics , Orthobunyavirus/classification , Orthobunyavirus/isolation & purification , RNA, Viral/genetics , Bunyaviridae Infections/transmission , Bunyaviridae Infections/virology
8.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38602389

ABSTRACT

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Subject(s)
Hemiptera , Orthobunyavirus , RNA Viruses , Animals , Female , Phylogeny , Insecta , RNA Viruses/genetics
9.
J Invertebr Pathol ; 204: 108118, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679369

ABSTRACT

Portunid crabs are distributed worldwide and highly valued in aquaculture. Viral infections are the main limiting factor for the survival of these animals and, consequently, for the success of commercial-scale cultivation. However, there is still a lack of knowledge about the viruses that infect cultured portunid crabs worldwide. Herein, the genome sequence and phylogeny of Callinectes sapidus reovirus 2 (CsRV2) are described, and the discovery of a new bunyavirus in Callinectes danae cultured in southern Brazil is reported. The CsRV2 genome sequence consists of 12 dsRNA segments (20,909 nt) encode 13 proteins. The predicted RNA-dependent RNA polymerase (RdRp) shows a high level of similarity with that of Eriocheir sinensis reovirus 905, suggesting that CsRV2 belongs to the genus Cardoreovirus. The CsRV2 particles are icosahedral, measuring approximately 65 nm in diameter, and exhibit typical non-turreted reovirus morphology. High throughput sequencing data revealed the presence of an additional putative virus genome similar to bunyavirus, called Callinectes danae Portunibunyavirus 1 (CdPBV1). The CdPBV1 genome is tripartite, consisting of 6,654 nt, 3,120 nt and 1,656 nt single-stranded RNA segments that each encode a single protein. Each segment has a high identity with European shore crab virus 1, suggesting that CdPBV1 is a new representative of the family Cruliviridae. The putative spherical particles of CdPBV1 measure ∼120 nm in diameter and present a typical bunyavirus morphology. The results of the histopathological analysis suggest that these new viruses can affect the health and, consequently, the survival of C. danae in captivity. Therefore, the findings reported here should be used to improve prophylactic and pathogen control practices and contribute to the development and optimization of the production of soft-shell crabs on a commercial scale in Brazil.


Subject(s)
Brachyura , Genome, Viral , Phylogeny , Reoviridae , Animals , Brachyura/virology , Reoviridae/genetics , Reoviridae/classification , Orthobunyavirus/genetics , Aquaculture
10.
Virol J ; 21(1): 81, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589896

ABSTRACT

Orthobunyavirus oropouche ense virus (OROV), the causative agent of Oropouche fever, is widely dispersed in Brazil and South America, causing sporadic outbreaks. Due to the similarity of initial clinical symptoms caused by OROV with other arboviruses found in overlapping geographical areas, differential diagnosis is challenging. As for most neglected tropical diseases, there is a shortage of reagents for diagnosing and studying OROV pathogenesis. We therefore developed and characterized mouse monoclonal antibodies and, one of them recognizes the OROV nucleocapsid in indirect immunofluorescent (IFA) and immunohistochemistry (IHC) assays. Considering that it is the first monoclonal antibody produced for detecting OROV infections, we believe that it will be useful not only for diagnostic purposes but also for performing serological surveys and epidemiological surveillance on the dispersion and prevalence of OROV in Brazil and South America.


Subject(s)
Bunyaviridae Infections , Orthobunyavirus , Animals , Mice , Antibodies, Monoclonal , Bunyaviridae Infections/diagnosis , Brazil/epidemiology
11.
Am J Trop Med Hyg ; 110(5): 968-970, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38531101

ABSTRACT

Brazoran virus was first isolated from Culex mosquitoes in Texas in 2012, yet little is known about this virus. We report the isolation of this virus from Culex erraticus from southern Florida during 2016. The Florida strain had a nucleotide identity of 96.3% (S segment), 99.1% (M segment), and 95.8% (L segment) to the Texas isolate. Culex quinquefasciatus and Aedes aegypti colonies were subsequently fed virus blood meals to determine their vector competence for Brazoran virus. Culex quinquefasciatus was susceptible to midgut infection, but few mosquitoes developed disseminated infections. Aedes aegypti supported disseminated infection, but virus transmission could not be demonstrated. Suckling mice became infected by intradermal inoculation without visible disease signs. The virus was detected in multiple mouse tissues but rarely infected the brain. This study documents the first isolation of Brazoran virus outside of Texas. Although this virus infected Ae. aegypti and Cx. quinquefasciatus in laboratory trials, their vector competence could not be demonstrated, suggesting they are unlikely vectors of Brazoran virus.


Subject(s)
Aedes , Culex , Mosquito Vectors , Orthobunyavirus , Animals , Culex/virology , Aedes/virology , Mice , Mosquito Vectors/virology , Florida/epidemiology , Orthobunyavirus/isolation & purification , Female
12.
Virus Genes ; 60(3): 325-331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492201

ABSTRACT

Whole-genome sequencing of a virus isolated from Culicoides biting midges in southern Japan in 2020 revealed that it is a strain of Balagodu virus (BLGV; genus Orthobunyavirus; family Peribunyaviridae; order Bunyavirales). A solitary instance of BLGV isolation occurred in India in 1963. All assembled segments comprise complete protein-coding sequences that are similar to those of other orthobunyaviruses. The consensus 3'- and 5'-terminal sequences of orthobunyaviruses' genomic RNAs are also conserved in the Japanese BLGV strain. Here, we update the geographic distribution of BLGV and provide its complete sequence, contributing to the clarification of orthobunyavirus phylogeny.


Subject(s)
Genome, Viral , Orthobunyavirus , Phylogeny , Whole Genome Sequencing , Japan , Genome, Viral/genetics , Orthobunyavirus/genetics , Orthobunyavirus/isolation & purification , Orthobunyavirus/classification , Animals , RNA, Viral/genetics , Ceratopogonidae/virology , Bunyaviridae Infections/virology
13.
Cell Mol Life Sci ; 81(1): 71, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300320

ABSTRACT

Hexosylceramides (HexCer) are implicated in the infection process of various pathogens. However, the molecular and cellular functions of HexCer in infectious cycles are poorly understood. Investigating the enveloped virus Uukuniemi (UUKV), a bunyavirus of the Phenuiviridae family, we performed a lipidomic analysis with mass spectrometry and determined the lipidome of both infected cells and derived virions. We found that UUKV alters the processing of HexCer to glycosphingolipids (GSL) in infected cells. The infection resulted in the overexpression of glucosylceramide (GlcCer) synthase (UGCG) and the specific accumulation of GlcCer and its subsequent incorporation into viral progeny. UUKV and several pathogenic bunyaviruses relied on GlcCer in the viral envelope for binding to various host cell types. Overall, our results indicate that GlcCer is a structural determinant of virions crucial for bunyavirus infectivity. This study also highlights the importance of glycolipids on virions in facilitating interactions with host cell receptors and infectious entry of enveloped viruses.


Subject(s)
Orthobunyavirus , Glucosylceramides , Virus Attachment , Lipidomics , Mass Spectrometry
14.
Nat Commun ; 15(1): 1121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321047

ABSTRACT

The first step in disease pathogenesis for arboviruses is the establishment of infection following vector transmission. For La Crosse virus (LACV), the leading cause of pediatric arboviral encephalitis in North America, and other orthobunyaviruses, the initial course of infection in the skin is not well understood. Using an intradermal (ID) model of LACV infection in mice, we find that the virus infects and replicates nearly exclusively within skin-associated muscle cells of the panniculus carnosus (PC) and not in epidermal or dermal cells like most other arbovirus families. LACV is widely myotropic, infecting distal muscle cells of the peritoneum and heart, with limited infection of draining lymph nodes. Surprisingly, muscle cells are resistant to virus-induced cell death, with long term low levels of virus release progressing through the Golgi apparatus. Thus, skin muscle may be a key cell type for the initial infection and spread of arboviral orthobunyaviruses.


Subject(s)
Arboviruses , Bunyaviridae Infections , Encephalitis, California , La Crosse virus , Orthobunyavirus , Humans , Child , Animals , Mice , Virus Replication , Muscles
18.
Viruses ; 16(2)2024 02 06.
Article in English | MEDLINE | ID: mdl-38400037

ABSTRACT

Bataï virus (BATV), belonging to the Orthobunyavirus genus, is an emerging mosquito-borne virus with documented cases in Asia, Europe, and Africa. It causes various symptoms in humans and ruminants. Another related virus is Ilesha virus (ILEV), which causes a range of diseases in humans and is mainly found in African countries. This study aimed to genetically identify and characterize a BATV strain previously misclassified as ILEV in Senegal. The strain was reactivated and subjected to whole genome sequencing using an Illumina-based approach. Genetic analyses and phylogeny were performed to assess the evolutionary relationships. Genomic analyses revealed a close similarity between the Senegal strain and the BATV strains UgMP-6830 from Uganda. The genetic distances indicated high homology. Phylogenetic analysis confirmed the Senegal strain's clustering with BATV. This study corrects the misclassification, confirming the presence of BATV in West Africa. This research represents the first evidence of BATV circulation in West Africa, underscoring the importance of genomic approaches in virus classification. Retrospective sequencing is crucial for reevaluating strains and identifying potential public health threats among neglected viruses.


Subject(s)
Bunyamwera virus , Culicidae , Orthobunyavirus , Animals , Humans , Bunyamwera virus/genetics , Senegal , Phylogeny , Retrospective Studies , Orthobunyavirus/genetics , Genomics , Ruminants
19.
Viruses ; 16(2)2024 02 15.
Article in English | MEDLINE | ID: mdl-38400069

ABSTRACT

Orthobunyaviruses (order Bunyavirales, family Peribunyaviridae) in the Simbu serogroup have been responsible for widespread epidemics of congenital disease in ruminants. Australia has a national program to monitor arboviruses of veterinary importance. While monitoring for Akabane virus, a novel orthobunyavirus was detected. To inform the priority that should be given to this detection, a scoping review was undertaken to (1) characterise the associated disease presentations and establish which of the Simbu group viruses are of veterinary importance; (2) examine the diagnostic assays that have undergone development and validation for this group of viruses; and (3) describe the methods used to monitor the distribution of these viruses. Two search strategies identified 224 peer-reviewed publications for 33 viruses in the serogroup. Viruses in this group may cause severe animal health impacts, but only those phylogenetically arranged in clade B are associated with animal disease. Six viruses (Akabane, Schmallenberg, Aino, Shuni, Peaton, and Shamonda) were associated with congenital malformations, neurological signs, and reproductive disease. Diagnostic test interpretation is complicated by cross-reactivity, the timing of foetal immunocompetence, and sample type. Serological testing in surveys remains a mainstay of the methods used to monitor the distribution of SGVs. Given significant differences in survey designs, only broad mean seroprevalence estimates could be provided. Further research is required to determine the disease risk posed by novel orthobunyaviruses and how they could challenge current diagnostic and surveillance capabilities.


Subject(s)
Bunyaviridae Infections , Cattle Diseases , Orthobunyavirus , Simbu virus , Cattle , Animals , Livestock , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Seroepidemiologic Studies , Serogroup , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Diagnostic Tests, Routine
20.
Microbiol Spectr ; 12(3): e0162923, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38323826

ABSTRACT

Oropouche virus (OROV) is characterized as a re-emerging arbovirus of great concern for public health, being responsible for several outbreaks of acute fever identified in Latin American countries, registering more than half a million reported cases. The incidence of reports of this virus is intrinsically favored by environmental conditions, in which such characteristics are related to the increase and distribution of the vector population to areas of human traffic. Moreover, there is a problem regarding the lack of diagnosis in Brazil that aggregates the success of the etiologic agent. Thus, by means of molecular techniques, we identified 27 positive cases of the OROV circulating in border locations in western Amazon, with 44.44% (12/27) of the cohort characterized as infected individuals with reported symptoms, mainly ranging from fever, myalgia, and back pain. Among the positive samples, it was possible to obtain a total of 48.14% (13/27) samples to analyze the S and M segments of Oropouche, which showed similarities among the Brazilian sequences. Thus, it was possible to verify the circulation of the OROV in Rondonia and border areas, in which the tracking of neglected arboviruses is necessary for the genomic surveillance of emerging and re-emerging viruses.IMPORTANCEThe western Amazon region is known for outbreaks of acute febrile illnesses, to which the lack of specific diagnostics for different pathogens hinders the management of patients in healthcare units. The Oropouche virus has already been recorded in the region in the 1990s. However, this is the first study, after this record, to perform the detection of individuals with acute febrile illness using a screening test to exclude Zika, dengue, and chikungunya, confirmed by sequencing the circulation of the virus in the state of Rondonia and border areas. We emphasize the importance of including diagnostics for viruses such as Oropouche, which suffers underreporting for years and is related to seasonal periods in Western Amazon locations, a factor that has a direct influence on public health in the region. In addition, we emphasize the importance of genomic surveillance in the elucidation of outbreaks that affect the resident population of these locations.


Subject(s)
Orthobunyavirus , Zika Virus Infection , Zika Virus , Humans , Orthobunyavirus/genetics , Brazil/epidemiology , Fever , Disease Outbreaks
SELECTION OF CITATIONS
SEARCH DETAIL
...