Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.595
Filter
1.
J Colloid Interface Sci ; 670: 563-575, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38776691

ABSTRACT

The interactions of viral fusion peptides from influenza (E4K and Ac-E4K) and human immunodeficiency virus (gp41 and Ac-gp41) with planar lipid bilayers and monolayers was investigated herein. A combination of surface-sensitive techniques, including quartz crystal microbalance with dissipation (QCM-D), Langmuir-Blodgett area-pressure isotherms with Micro-Brewster angle microscopy, and neutron reflectometry, was employed. Differences in the interactions of the viral fusion peptides with lipid bilayers featuring ordered and disordered phases, as well as lipid rafts, were revealed. The HIV fusion peptide (gp41) exhibited strong binding to the DOPC/DOPS bilayer, comprising a liquid disordered phase, with neutron reflectometry (NR) showing interaction with the bilayer's headgroup area. Conversely, negligible binding was observed with lipid bilayers in a liquid ordered phase. Notably, the influenza peptide (E4K) demonstrated slower binding kinetics with DOPC/DOPS bilayers and distinct interactions compared to gp41, as observed through QCM-D. This suggests different mechanisms of interaction with the lipid bilayers: one peptide interacts more within the headgroup region, while the other is more involved in transmembrane interactions. These findings hold implications for understanding viral fusion mechanisms and developing antimicrobials and antivirals targeting membrane interactions. The differential binding behaviours of the viral fusion peptides underscore the importance of considering membrane composition and properties in therapeutic strategy design.


Subject(s)
Antiviral Agents , HIV Envelope Protein gp41 , Lipid Bilayers , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Humans , Orthomyxoviridae/drug effects , Orthomyxoviridae/metabolism , Quartz Crystal Microbalance Techniques
2.
Influenza Other Respir Viruses ; 18(5): e13315, 2024 May.
Article in English | MEDLINE | ID: mdl-38798083

ABSTRACT

BACKGROUND: Novel influenza viruses pose a potential pandemic risk, and rapid detection of infections in humans is critical to characterizing the virus and facilitating the implementation of public health response measures. METHODS: We use a probabilistic framework to estimate the likelihood that novel influenza virus cases would be detected through testing in different community and healthcare settings (urgent care, emergency department, hospital, and intensive care unit [ICU]) while at low frequencies in the United States. Parameters were informed by data on seasonal influenza virus activity and existing testing practices. RESULTS: In a baseline scenario reflecting the presence of 100 novel virus infections with similar severity to seasonal influenza viruses, the median probability of detecting at least one infection per month was highest in urgent care settings (72%) and when community testing was conducted at random among the general population (77%). However, urgent care testing was over 15 times more efficient (estimated as the number of cases detected per 100,000 tests) due to the larger number of tests required for community testing. In scenarios that assumed increased clinical severity of novel virus infection, median detection probabilities increased across all healthcare settings, particularly in hospitals and ICUs (up to 100%) where testing also became more efficient. CONCLUSIONS: Our results suggest that novel influenza virus circulation is likely to be detected through existing healthcare surveillance, with the most efficient testing setting impacted by the disease severity profile. These analyses can help inform future testing strategies to maximize the likelihood of novel influenza detection.


Subject(s)
Influenza, Human , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/virology , United States/epidemiology , Orthomyxoviridae/isolation & purification , Orthomyxoviridae/genetics , Orthomyxoviridae/classification , Epidemiological Monitoring
3.
Influenza Other Respir Viruses ; 18(5): e13313, 2024 May.
Article in English | MEDLINE | ID: mdl-38757747

ABSTRACT

BACKGROUND: Influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are both respiratory viruses with similar clinical manifestations and modes of transmission. This study describes influenza data before and during the coronavirus disease pandemic (COVID-19) in Cameroon and SARS-CoV-2 data during the pandemic period. METHODS: The study ran from 2017 to 2022, and data were divided into two periods: before (2017-2019) and during (2020-2022) the COVID-19 pandemic. Nasopharyngeal samples collected from persons with respiratory illness were tested for influenza using the Centers for Disease Control and Prevention (CDC) typing and subtyping assays. During the COVID-19 pandemic, the respiratory specimens were simultaneously tested for SARS-CoV-2 using the DaAn gene protocol or the Abbott real-time SARS-CoV-2 assay. The WHO average curve method was used to compare influenza virus seasonality before and during the pandemic. RESULTS: A total of 6246 samples were tested. Influenza virus detection rates were significantly higher in the pre-pandemic period compared to the pandemic period (30.8% vs. 15.5%; p < 0.001). Meanwhile, the SARS-CoV-2 detection rate was 2.5%. A change in the seasonality of influenza viruses was observed from a bi-annual peak before the pandemic to no clear seasonal pattern during the pandemic. The age groups 2-4 and 5-14 years were significantly associated with higher influenza positivity rates in both pre-pandemic and pandemic periods. For SARS-CoV-2, all age groups above 15 years were the most affected population. CONCLUSION: The COVID-19 pandemic had a significant impact on the seasonal influenza by changing the seasonality of the virus and reducing its detection rates.


Subject(s)
COVID-19 , Influenza, Human , SARS-CoV-2 , Humans , Cameroon/epidemiology , Influenza, Human/epidemiology , Influenza, Human/virology , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/virology , Adolescent , Adult , Child , Child, Preschool , Middle Aged , Young Adult , Female , Male , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Infant , Aged , Nasopharynx/virology , Seasons , Pandemics , Orthomyxoviridae/isolation & purification , Orthomyxoviridae/genetics , Orthomyxoviridae/classification
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731896

ABSTRACT

Following infection, influenza viruses strive to establish a new host cellular environment optimized for efficient viral replication and propagation. Influenza viruses use or hijack numerous host factors and machinery not only to fulfill their own replication process but also to constantly evade the host's antiviral and immune response. For this purpose, influenza viruses appear to have formulated diverse strategies to manipulate the host proteins or signaling pathways. One of the most effective tactics is to specifically induce the degradation of the cellular proteins that are detrimental to the virus life cycle. Here, we summarize the cellular factors that are deemed to have been purposefully degraded by influenza virus infection. The focus is laid on the mechanisms for the protein ubiquitination and degradation in association with facilitated viral amplification. The fate of influenza viral infection of hosts is heavily reliant on the outcomes of the interplay between the virus and the host antiviral immunity. Understanding the processes of how influenza viruses instigate the protein destruction pathways could provide a foundation for the development of advanced therapeutics to target host proteins and conquer influenza.


Subject(s)
Host-Pathogen Interactions , Orthomyxoviridae , Ubiquitination , Virus Replication , Humans , Orthomyxoviridae/metabolism , Orthomyxoviridae/physiology , Influenza, Human/metabolism , Influenza, Human/virology , Proteolysis , Animals
5.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793649

ABSTRACT

Influenza vaccines, which are recommended by the World Health Organization (WHO), are the most effective preventive measure against influenza virus infection. Madin-Darby canine kidney (MDCK) cell culture is an emerging technology used to produce influenza vaccines. One challenge when purifying influenza vaccines using this cell culture system is to efficiently remove impurities, especially host cell double-stranded DNA (dsDNA) and host cell proteins (HCPs), for safety assurance. In this study, we optimized ion-exchange chromatography methods to harvest influenza viruses from an MDCK cell culture broth, the first step in influenza vaccine purification. Bind/elute was chosen as the mode of operation for simplicity. The anion-exchange Q chromatography method was able to efficiently remove dsDNA and HCPs, but the recovery rate for influenza viruses was low. However, the cation-exchange SP process was able to simultaneously achieve high dsDNA and HCP removal and high influenza virus recovery. For the SP process to work, the clarified cell culture broth needed to be diluted to reduce its ionic strength, and the optimal dilution rate was determined to be 1:2 with purified water. The SP process yielded a virus recovery rate exceeding 90%, as measured using a hemagglutination units (HAUs) assay, with removal efficiencies over 97% for HCPs and over 99% for dsDNA. Furthermore, the general applicability of the SP chromatography method was demonstrated with seven strains of influenza viruses recommended for seasonal influenza vaccine production, including H1N1, H3N2, B (Victoria), and B (Yamagata) strains, indicating that the SP process could be utilized as a platform process. The SP process developed in this study showed four advantages: (1) simple operation, (2) a high recovery rate for influenza viruses, (3) a high removal rate for major impurities, and (4) general applicability.


Subject(s)
Influenza Vaccines , Virion , Animals , Dogs , Madin Darby Canine Kidney Cells , Virion/isolation & purification , Chromatography, Ion Exchange/methods , Virus Cultivation/methods , Orthomyxoviridae/isolation & purification , Cell Culture Techniques/methods
6.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38661717

ABSTRACT

During secondary infection with influenza virus, plasma cells (PCs) develop within the lung, providing a local source of antibodies. However, the site and mechanisms that regulate this process are poorly defined. Here, we show that while circulating memory B cells entered the lung during rechallenge and were activated within inducible bronchus-associated lymphoid tissues (iBALTs), resident memory B (BRM) cells responded earlier, and their activation occurred in a different niche: directly near infected alveoli. This process required NK cells but was largely independent of CD4 and CD8 T cells. Innate stimuli induced by virus-like particles containing ssRNA triggered BRM cell differentiation in the absence of cognate antigen, suggesting a low threshold of activation. In contrast, expansion of PCs in iBALTs took longer to develop and was critically dependent on CD4 T cells. Our work demonstrates that spatially distinct mechanisms evolved to support pulmonary secondary PC responses, and it reveals a specialized function for BRM cells as guardians of the alveoli.


Subject(s)
CD4-Positive T-Lymphocytes , Lung , Orthomyxoviridae Infections , Plasma Cells , Animals , Plasma Cells/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Lung/immunology , Lung/virology , Lung/pathology , Mice , CD4-Positive T-Lymphocytes/immunology , Mice, Inbred C57BL , Killer Cells, Natural/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Memory B Cells/immunology , Lymphocyte Activation/immunology , Orthomyxoviridae/immunology , Orthomyxoviridae/physiology
7.
J Med Virol ; 96(4): e29605, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634474

ABSTRACT

Interferon lambda (IFNλ), classified as a type III IFN, is a representative cytokine that plays an important role in innate immunity along with type I IFN. IFNλ can elicit antiviral states by inducing peculiar sets of IFN-stimulated genes (ISGs). In this study, an adenoviral vector expression system with a tetracycline operator system was used to express human IFNλ4 in cells and mice. The formation of recombinant adenovirus (rAd-huIFNλ4) was confirmed using immunohistochemistry assays and transmission electron microscopy. Its purity was verified by quantifying host cell DNA and host cell proteins, as well as by confirming the absence of the replication-competent adenovirus. The transduction of rAd-huIFNλ4 induced ISGs and inhibited four subtypes of the influenza virus in both mouse-derived (LA-4) and human-derived cells (A549). The antiviral state was confirmed in BALB/c mice following intranasal inoculation with 109 PFU of rAd-huIFNλ4, which led to the inhibition of four subtypes of the influenza virus in mouse lungs, with reduced inflammatory lesions. These results imply that human IFNλ4 could induce antiviral status by modulating ISG expression in mice.


Subject(s)
Antiviral Agents , Influenza, Human , Interferon Lambda , Orthomyxoviridae , Animals , Humans , Mice , Antiviral Agents/pharmacology , Immunity, Innate , Influenza, Human/immunology , Influenza, Human/prevention & control , Interferon Lambda/metabolism , Interferon Lambda/pharmacology , Interferon Type I/genetics , Interferons/metabolism , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Genetic Vectors
8.
Influenza Other Respir Viruses ; 18(4): e13285, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38616564

ABSTRACT

BACKGROUND: Pneumonia is a leading cause of morbidity and mortality in children < 5 years. We describe nasopharyngeal carriage of respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and influenza virus among children with fast-breathing pneumonia in Karachi, Pakistan. METHODS: We performed a cross-sectional analysis of nasopharyngeal swabs from children aged 2-59 months with fast-breathing pneumonia, enrolled in the randomized trial of amoxicillin versus placebo for fast-breathing pneumonia (RETAPP) (NCT02372461) from 2014 to 2016. Swabs were collected using WHO standardized methods, processed at the Aga Khan University, Pakistan. Viral detection was performed using LUMINEX xTAG respiratory viral panel assay and logistic regression identified clinical and sociodemographic predictors. FINDINGS: Of the 1000 children tested, 92.2% (n = 922) were positive for viral carriage. RSV, hMPV, and influenza virus were detected in 59 (6.4%), 56 (6.1%), and 58 (6.3%) children and co-infections in three samples (two RSV-hMPV and one influenza-hMPV). RSV carriage was common in infants (56%), we observed a higher occurrence of fever in children with hMPV and influenza virus (80% and 88%, respectively) and fast breathing in RSV (80%) carriage. RSV carriage was positively associated with a history of fast/difficulty breathing (aOR: 1.96, 95% CI 1.02-3.76) and low oxygen saturation (aOR: 2.52, 95% CI 1.32-4.82), hMPV carriage was positively associated with a complete vaccination status (aOR: 2.22, 95% CI 1.23-4.00) and body temperature ≥ 37.5°C (aOR: 2.34, 95% CI 1.35-4.04) whereas influenza viral carriage was associated with body temperature ≥ 37.5°C (aOR: 4.48, 95% CI 2.53-7.93). CONCLUSION: We observed a high nasopharyngeal viral carriage among children with WHO-defined fast-breathing pneumonia in Pakistan. Fever, difficulty in breathing, hypoxia and vaccination status are important clinical predictors for viral nonsevere community-acquired pneumonia.


Subject(s)
Influenza, Human , Metapneumovirus , Orthomyxoviridae , Respiratory Syncytial Virus, Human , Child , Child, Preschool , Humans , Infant , Cross-Sectional Studies , Fever , Influenza, Human/epidemiology , Pakistan/epidemiology , World Health Organization
9.
Eur J Med Res ; 29(1): 234, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622728

ABSTRACT

BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.


Subject(s)
Alphainfluenzavirus , Drugs, Chinese Herbal , Influenza A virus , Influenza, Human , Orthomyxoviridae , Pneumonia , Mice , Animals , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/genetics , Pneumonia/drug therapy , Pneumonia/genetics , Inflammation , Systems Biology , Gene Expression Profiling
10.
PLoS One ; 19(4): e0291900, 2024.
Article in English | MEDLINE | ID: mdl-38662758

ABSTRACT

Influenza viruses pose a significant public health threat, necessitating comprehensive surveillance strategies to enhance early detection and preventive measures. This systematic review investigates the incidence of influenza viruses in wastewater matrices, aiming to elucidate the potential implications for public health. The study synthesizes existing literature, employing rigorous inclusion criteria to identify relevant studies conducted globally. The essence of the problem lies in the gaps of traditional surveillance methods, which often rely on clinical data and may underestimate the true prevalence of influenza within communities. Wastewater-based epidemiology offers a novel approach to supplementing these conventional methods, providing a broader and more representative assessment of viral circulation. This review systematically examines the methodologies employed in the selected studies, including virus concentration techniques and molecular detection methods, to establish a standardized framework for future research. Our findings reveal a consistent presence of influenza viruses in diverse wastewater matrices across different geographic locations and seasons. Recommendations for future research include the standardization of sampling protocols, improvement of virus concentration methods, and the integration of wastewater surveillance into existing public health frameworks. In conclusion, this systematic review contributes to the understanding of influenza dynamics in wastewater matrices, offering valuable insights for public health practitioners and policymakers. Implementation of wastewater surveillance alongside traditional methods can enhance the resilience of public health systems and better prepare communities for the challenges posed by influenza outbreaks.


Subject(s)
Influenza, Human , Public Health , Wastewater , Wastewater/virology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/virology , Incidence , Orthomyxoviridae/isolation & purification
11.
Epidemiol Infect ; 152: e60, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584132

ABSTRACT

Previous studies suggest that influenza virus infection may provide temporary non-specific immunity and hence lower the risk of non-influenza respiratory virus infection. In a randomized controlled trial of influenza vaccination, 1 330 children were followed-up in 2009-2011. Respiratory swabs were collected when they reported acute respiratory illness and tested against influenza and other respiratory viruses. We used Poisson regression to compare the incidence of non-influenza respiratory virus infection before and after influenza virus infection. Based on 52 children with influenza B virus infection, the incidence rate ratio (IRR) of non-influenza respiratory virus infection after influenza virus infection was 0.47 (95% confidence interval: 0.27-0.82) compared with before infection. Simulation suggested that this IRR was 0.87 if the temporary protection did not exist. We identified a decreased risk of non-influenza respiratory virus infection after influenza B virus infection in children. Further investigation is needed to determine if this decreased risk could be attributed to temporary non-specific immunity acquired from influenza virus infection.


Subject(s)
Herpesviridae Infections , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Respiratory Tract Infections , Child , Humans , Influenza, Human/epidemiology , Influenza B virus , Respiratory Tract Infections/epidemiology
12.
Nat Commun ; 15(1): 2751, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553499

ABSTRACT

Influenza virus activates cellular inflammasome pathways, which can be both beneficial and detrimental to infection outcomes. Here, we investigate the function of the inflammasome-activated, pore-forming protein gasdermin D (GSDMD) during infection. Ablation of GSDMD in knockout (KO) mice (Gsdmd-/-) significantly attenuates influenza virus-induced weight loss, lung dysfunction, lung histopathology, and mortality compared with wild type (WT) mice, despite similar viral loads. Infected Gsdmd-/- mice exhibit decreased inflammatory gene signatures shown by lung transcriptomics. Among these, diminished neutrophil gene activation signatures are corroborated by decreased detection of neutrophil elastase and myeloperoxidase in KO mouse lungs. Indeed, directly infected neutrophils are observed in vivo and infection of neutrophils in vitro induces release of DNA and tissue-damaging enzymes that is largely dependent on GSDMD. Neutrophil depletion in infected WT mice recapitulates the reductions in mortality, lung inflammation, and lung dysfunction observed in Gsdmd-/- animals, while depletion does not have additive protective effects in Gsdmd-/- mice. These findings implicate a function for GSDMD in promoting lung neutrophil responses that amplify influenza virus-induced inflammation and pathogenesis. Targeting the GSDMD/neutrophil axis may provide a therapeutic avenue for treating severe influenza.


Subject(s)
Neutrophils , Orthomyxoviridae , Animals , Mice , Neutrophils/metabolism , Gasdermins , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation/genetics , Inflammation/metabolism , Orthomyxoviridae/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism
13.
Antimicrob Agents Chemother ; 68(4): e0135023, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38470034

ABSTRACT

Influenza remains a significant threat to public health. In severe cases, excessive inflammation can lead to severe pneumonia or acute respiratory distress syndrome, contributing to patient morbidity and mortality. While antivirals can be effective if administered early, current anti-inflammatory drugs have limited success in treating severe cases. Therefore, discovering new anti-inflammatory agents to inhibit influenza-related inflammatory diseases is crucial. Herein, we screened a drug library with known targets using a human monocyte U937 infected with the influenza virus to identify novel anti-inflammatory agents. We also evaluated the anti-inflammatory effects of the hit compounds in an influenza mouse model. Our research revealed that JAK inhibitors exhibited a higher hit rate and more potent inhibition effect than inhibitors targeting other drug targets in vitro. Of the 22 JAK inhibitors tested, 15 exhibited robust anti-inflammatory activity against influenza virus infection in vitro. Subsequently, we evaluated the efficacy of 10 JAK inhibitors using an influenza mouse model and observed that seven provided protection ranging from 40% to 70% against lethal influenza virus infection. We selected oclacitinib as a representative compound for an extensive study to further investigate the in vivo therapeutic potential of JAK inhibitors for severe influenza-associated inflammation. Our results revealed that oclacitinib effectively suppressed neutrophil and macrophage infiltration, reduced pro-inflammatory cytokine production, and ultimately mitigated lung injury in mice infected with lethal influenza virus without impacting viral titer. These findings suggest that JAK inhibitors can modulate immune responses to influenza virus infection and may serve as potential treatments for influenza.IMPORTANCEAntivirals exhibit limited efficacy in treating severe influenza when not administered promptly during the infection. Current steroidal and nonsteroidal anti-inflammatory drugs demonstrate restricted effectiveness against severe influenza or are associated with significant side effects. Therefore, there is an urgent need for novel anti-inflammatory agents that possess high potency and minimal adverse reactions. In this study, 15 JAK inhibitors were identified through a screening process based on their anti-inflammatory activity against influenza virus infection in vitro. Remarkably, 7 of the 10 selected inhibitors exhibited protective effects against lethal influenza virus infection in mice, thereby highlighting the potential therapeutic value of JAK inhibitors for treating influenza.


Subject(s)
Communicable Diseases , Influenza, Human , Janus Kinase Inhibitors , Orthomyxoviridae Infections , Orthomyxoviridae , Pyrimidines , Sulfonamides , Humans , Animals , Mice , Influenza, Human/drug therapy , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Cytokines , Orthomyxoviridae Infections/drug therapy , Inflammation/drug therapy , Communicable Diseases/drug therapy , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Lung
14.
Influenza Other Respir Viruses ; 18(3): e13276, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38513364

ABSTRACT

Every year, influenza virus infections cause significant morbidity and mortality worldwide. They pose a substantial burden of disease, in terms of not only health but also the economy. Owing to the ability of influenza viruses to continuously evolve, annual seasonal influenza vaccines are necessary as a prophylaxis. However, current influenza vaccines against seasonal strains have limited effectiveness and require yearly reformulation due to the virus undergoing antigenic drift or shift. Vaccine mismatches are common, conferring suboptimal protection against seasonal outbreaks, and the threat of the next pandemic continues to loom. Therefore, there is a great need to develop a universal influenza vaccine (UIV) capable of providing broad and durable protection against all influenza virus strains. In the quest to develop a UIV that would obviate the need for annual vaccination and formulation, a multitude of strategies is currently underway. Promising approaches include targeting the highly conserved epitopes of haemagglutinin (HA), neuraminidase (NA), M2 extracellular domain (M2e) and internal proteins of the influenza virus. The identification and characterization of broadly neutralizing antibodies (bnAbs) targeting conserved regions of the viral HA protein, in particular, have provided important insight into novel vaccine designs and platforms. This review discusses universal vaccine approaches presently under development, with an emphasis on those targeting the highly conserved stalk of the HA protein, recent technological advancements used and the future prospects of a UIV in terms of its advantages, developmental obstacles and potential shortcomings.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Antibodies, Viral , Hemagglutinins , Viral Proteins , Hemagglutinin Glycoproteins, Influenza Virus/genetics
15.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38521981

ABSTRACT

It is a problem that influenza virus infection increases susceptibility to secondary bacterial infection in lungs leading to lethal pneumonia. We previously reported that exopolysaccharides (EPS) derived from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (OLL1073R-1) could prevent against influenza virus infection followed by secondary bacterial infection in vitro. Therefore, the present study assessed whether EPS derived OLL1073R-1 protects the alveolar epithelial barrier disfunction caused by influenza virus infection. After A549 cells treated with EPS or without EPS were infected influenza virus A/Puerto Rico/8/34 (IFV) for 12 h, the levels of tight junction genes expression and inflammatory genes expression were measured by reverse transcription polymerase chain reaction. As results, EPS treatment could protect against low-titer IFV infection, but not high-titer IFV infection, followed by suppression of the increased expression of inflammatory cytokine gene levels and recovery of the decrease in the expression level of ZO-1 gene that was caused by low-titer IFV infection, leading to an improvement trend in the barrier function. Our findings showed that EPS derived from OLL1073R-1 could inhibit low-titer IFV infection leading to maintenance of the epithelial barrier function through the suppression of inflammatory cytokine genes expression.


Subject(s)
Bacterial Infections , Influenza, Human , Lactobacillus delbrueckii , Orthomyxoviridae , Humans , Lactobacillus delbrueckii/genetics , Lactobacillus delbrueckii/metabolism , Tight Junctions , Cytokines/genetics , Cytokines/metabolism
16.
Environ Pollut ; 348: 123781, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38492752

ABSTRACT

Epidemiological studies showed a positive association between exposure to PM2.5 and the severity of influenza virus infection. However, the mechanisms by which PM2.5 can disrupt antiviral defence are still unclear. From this perspective, the objective of this study was to evaluate the effects of PM2.5 on antiviral signalling in the respiratory epithelium using the bronchial Calu-3 cell line grown at the air-liquid interface. Pre-exposure to PM2.5 before infection with the influenza virus was investigated, as well as a co-exposure. Although a physical interaction between the virus and the particles seems possible, no effect of PM2.5 on viral replication was observed during co-exposure, although a downregulation of IFN-ß release was associated to PM2.5 exposure. However, pre-exposure slightly increased the viral nucleoprotein production and the pro-inflammatory response. Conversely, the level of the myxovirus resistance protein A (MxA), an interferon-stimulated gene (ISG) induced by IFN-ß, was reduced. Therefore, these results suggest that pre-exposure to PM2.5 could alter the antiviral response of bronchial epithelial cells, increasing their susceptibility to viral infection.


Subject(s)
Influenza, Human , Orthomyxoviridae , Virus Diseases , Humans , Interferons , Influenza, Human/genetics , Influenza, Human/metabolism , Respiratory Mucosa , Antiviral Agents , Epithelium/metabolism , Particulate Matter/toxicity
17.
Curr Opin Virol ; 65: 101397, 2024 04.
Article in English | MEDLINE | ID: mdl-38458064

ABSTRACT

Influenza virus is an important human pathogen with significant pandemic potential. Tissue-resident memory T cells (Trm) in the lung provide critical protection against influenza, but unlike Trm at other mucosal sites, Trm in the respiratory tract (RT) are subject to rapid attrition in mice, mirroring the decline in protective immunity to influenza virus over time. Conversely, dysfunctional Trm can drive fibrosis in aged mice. The requirement for local antigen to induce and maintain RT Trm must be considered in vaccine strategies designed to induce this protective immune subset. Here, we discuss recent studies that inform our understanding of influenza-specific respiratory Trm, and the factors that influence their development and persistence. We also discuss how these biological insights are being used to develop vaccines that induce Trm in the RT, despite the limitations to monitoring Trm in humans.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Mice , Humans , Animals , Influenza, Human/prevention & control , CD8-Positive T-Lymphocytes , Memory T Cells , Immunologic Memory , Lung
18.
BMC Infect Dis ; 24(1): 302, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475703

ABSTRACT

BACKGROUND: Influenza viruses cause pneumonia in approximately one-third of cases, and pneumonia is an important cause of death. The aim was to identify risk factors associated with severity and those that could predict the development of pneumonia. METHODS: This retrospective, observational study included all adult patients with confirmed influenza virus infection admitted to Son Espases University Hospital during four influenza seasons in Spain (October to May) from to 2012-2016. RESULTS: Overall, 666 patients with laboratory-confirmed influenza were included, 93 (14%) of which were severe; 73 (10.9%) were admitted to Intensive Care Unit (ICU), 39 (5.8%) died, and 185 (27.7%) developed pneumonia. Compared to less severe cases, patients with severe disease: were less vaccinated (40% vs. 28%, p = 0.021); presented with more confusion (26.9% vs. 6.8%), were more hypoxemic (Horowitz index (PaO2/FiO2) 261 vs. 280), had higher C-reactive protein (CRP) (12.3 vs. 4.0), had more coinfections (26.8% vs. 6.3%) and had more pleural effusion (14% vs. 2.6%) (last six all p < 0.001). Risk factors significantly associated with severity were pneumonia [OR (95% CI) = 4.14 (2.4-7.16)], history of heart disease (1.84, 1.03-3.28), and confusion at admission (4.99, 2.55-9.74). Influenza vaccination was protective (0.53, 0.28-0.98). Compared to those without pneumonia, the pneumonia group had higher CRP (11.3 vs. 4.0, p < 0.001), lower oxygen saturation (92% vs. 94%, p < 0.001), were more hypoxic (PaO2/FiO2 266 vs. 281, p < 0.001), and incurred more mechanical ventilation, septic shock, admission to the ICU, and deaths (all four p < 0.001). Higher CRP and lower oxygen saturation were independent variables for predicting the development of pneumonia. CONCLUSIONS: Pneumonia, history of heart disease, confusion and no influenza vaccination were independent variables to present complications in patients admitted with influenza infection.


Subject(s)
Communicable Diseases , Heart Diseases , Influenza, Human , Orthomyxoviridae , Pneumonia, Viral , Pneumonia , Adult , Humans , Retrospective Studies , Pneumonia/complications , Communicable Diseases/complications , Intensive Care Units , Risk Factors , Heart Diseases/complications
19.
Front Immunol ; 15: 1271926, 2024.
Article in English | MEDLINE | ID: mdl-38426086

ABSTRACT

Natural components of breast milk, human milk oligosaccharides (HMOs) and osteopontin (OPN) have been shown to have a variety of functional activities and are widely used in infant formulas. However, the preventive and therapeutic effects of both on influenza viruses are not known. In this study, antiviral assays using a human laryngeal carcinoma cell line (HEP-2) showed that 3'-sialyllactose (3'-SL) and OPN had the best antiviral ability with IC50 values of 33.46 µM and 1.65 µM, respectively. 3'-SL (10 µM) and OPN (4 µM) were used in combination to achieve 75% inhibition. Further studies found that the combination of 200 µg/mL of 3'-SL with 500 µg/mL of OPN exerted the best antiviral ability. The reason for this was related to reduced levels of the cytokines TNF-α, IL-6, and iNOS in relation to mRNA expression. Plaque assay and TCID50 assay found the same results and verified synergistic effects. Our research indicates that a combination of 3'-SL and OPN can effectively reduce inflammatory storms and exhibit anti-influenza virus effects through synergistic action.


Subject(s)
Influenza, Human , Orthomyxoviridae , Infant , Female , Humans , Osteopontin/genetics , Influenza, Human/drug therapy , Milk, Human/metabolism , Oligosaccharides/pharmacology , Antiviral Agents
20.
Viruses ; 16(3)2024 02 28.
Article in English | MEDLINE | ID: mdl-38543738

ABSTRACT

Influenza D virus (IDV) is the most recent addition to the Orthomyxoviridae family and cattle serve as the primary reservoir. IDV has been implicated in Bovine Respiratory Disease Complex (BRDC), and there is serological evidence of human infection of IDV. Evolutionary changes in the IDV genome have resulted in the expansion of genetic diversity and the emergence of multiple lineages that might expand the host tropism and potentially increase the pathogenicity to animals and humans. Therefore, there is an urgent need for automated, accurate and rapid typing tools for IDV lineage typing. Currently, IDV lineage typing is carried out using BLAST-based searches and alignment-based molecular phylogeny of the hemagglutinin-esterase fusion (HEF) gene sequences, and lineage is assigned to query sequences based on sequence similarity (BLAST search) and proximity to the reference lineages in the tree topology, respectively. To minimize human intervention and lineage typing time, we developed IDV Typer server, implementing alignment-free method based on return time distribution (RTD) of k-mers. Lineages are assigned using HEF gene sequences. The server performs with 100% sensitivity and specificity. The IDV Typer server is the first application of an RTD-based alignment-free method for typing animal viruses.


Subject(s)
Orthomyxoviridae Infections , Orthomyxoviridae , Thogotovirus , Humans , Animals , Cattle , Deltainfluenzavirus , Thogotovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...