Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 892
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731896

ABSTRACT

Following infection, influenza viruses strive to establish a new host cellular environment optimized for efficient viral replication and propagation. Influenza viruses use or hijack numerous host factors and machinery not only to fulfill their own replication process but also to constantly evade the host's antiviral and immune response. For this purpose, influenza viruses appear to have formulated diverse strategies to manipulate the host proteins or signaling pathways. One of the most effective tactics is to specifically induce the degradation of the cellular proteins that are detrimental to the virus life cycle. Here, we summarize the cellular factors that are deemed to have been purposefully degraded by influenza virus infection. The focus is laid on the mechanisms for the protein ubiquitination and degradation in association with facilitated viral amplification. The fate of influenza viral infection of hosts is heavily reliant on the outcomes of the interplay between the virus and the host antiviral immunity. Understanding the processes of how influenza viruses instigate the protein destruction pathways could provide a foundation for the development of advanced therapeutics to target host proteins and conquer influenza.


Subject(s)
Host-Pathogen Interactions , Orthomyxoviridae , Ubiquitination , Virus Replication , Humans , Orthomyxoviridae/metabolism , Orthomyxoviridae/physiology , Influenza, Human/metabolism , Influenza, Human/virology , Proteolysis , Animals
2.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38661717

ABSTRACT

During secondary infection with influenza virus, plasma cells (PCs) develop within the lung, providing a local source of antibodies. However, the site and mechanisms that regulate this process are poorly defined. Here, we show that while circulating memory B cells entered the lung during rechallenge and were activated within inducible bronchus-associated lymphoid tissues (iBALTs), resident memory B (BRM) cells responded earlier, and their activation occurred in a different niche: directly near infected alveoli. This process required NK cells but was largely independent of CD4 and CD8 T cells. Innate stimuli induced by virus-like particles containing ssRNA triggered BRM cell differentiation in the absence of cognate antigen, suggesting a low threshold of activation. In contrast, expansion of PCs in iBALTs took longer to develop and was critically dependent on CD4 T cells. Our work demonstrates that spatially distinct mechanisms evolved to support pulmonary secondary PC responses, and it reveals a specialized function for BRM cells as guardians of the alveoli.


Subject(s)
CD4-Positive T-Lymphocytes , Lung , Orthomyxoviridae Infections , Plasma Cells , Animals , Plasma Cells/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Lung/immunology , Lung/virology , Lung/pathology , Mice , CD4-Positive T-Lymphocytes/immunology , Mice, Inbred C57BL , Killer Cells, Natural/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Memory B Cells/immunology , Lymphocyte Activation/immunology , Orthomyxoviridae/immunology , Orthomyxoviridae/physiology
3.
J Virol ; 98(3): e0156323, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38323811

ABSTRACT

Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE: Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.


Subject(s)
Dengue Virus , HIV-1 , Induced Pluripotent Stem Cells , Macrophages , Models, Biological , Orthomyxoviridae , Virology , Animals , Humans , Cell Differentiation/genetics , HIV-1/growth & development , HIV-1/physiology , Induced Pluripotent Stem Cells/cytology , Macrophages/cytology , Macrophages/metabolism , Macrophages/virology , Orthomyxoviridae/growth & development , Orthomyxoviridae/physiology , Pan troglodytes , Dengue Virus/growth & development , Dengue Virus/physiology , Fibroblasts/cytology , Monocytes/cytology , Virus Replication , Flow Cytometry , Gene Expression Profiling , Chromatin Assembly and Disassembly , Viral Tropism , Virology/methods , Biomarkers/analysis , Biomarkers/metabolism
4.
J Virol ; 97(4): e0181322, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36943134

ABSTRACT

Despite lacking a DNA intermediate, orthomyxoviruses complete their replication cycle in the nucleus and generate multiple transcripts by usurping the host splicing machinery. This biology results in dynamic changes of relative viral transcripts over time and dictates the replicative phase of the infection. Here, we demonstrate that the family of archaeal L7Ae proteins uniquely inhibit the splicing biology of influenza A virus, influenza B virus, and Salmon isavirus, revealing a common strategy utilized by Orthomyxoviridae members to achieve this dynamic. L7Ae-mediated inhibition of virus biology was lost with the generation of a splicing-independent strain of influenza A virus and attempts to select for an escape mutant resulted in variants that conformed to host splicing biology at significant cost to their overall fitness. As L7Ae recognizes conventional kink turns in various RNAs, these data implicate the formation of a similar structure as a shared strategy adopted by this virus family to coordinate their replication cycle. IMPORTANCE Here, we demonstrate that a family of proteins from archaea specifically inhibit this splicing biology of all tested members of the Orthomyxoviridae family. We show that this inhibition extends to influenza A virus, influenza B virus, and isavirus genera, while having no significant impact on the mammalian transcriptome or proteome. Attempts to generate an escape mutant against L7Ae-mediated inhibition resulted in mutations surrounding the viral splice sites and a significant loss of viral fitness. Together, these findings reveal a unique biology shared among diverse members of the Orthomyxoviridae family that may serve as a means to generate future universal therapeutics.


Subject(s)
Archaeal Proteins , Orthomyxoviridae , RNA Splicing , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Orthomyxoviridae/physiology , RNA Splicing/physiology , Humans , Animals , Dogs , Vero Cells , Chlorocebus aethiops , A549 Cells , HEK293 Cells , Host Microbial Interactions , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/virology
5.
Proc Natl Acad Sci U S A ; 119(33): e2208011119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939703

ABSTRACT

The subunits of the influenza hemagglutinin (HA) trimer are synthesized as single-chain precursors (HA0s) that are proteolytically cleaved into the disulfide-linked polypeptides HA1 and HA2. Cleavage is required for activation of membrane fusion at low pH, which occurs at the beginning of infection following transfer of cell-surface-bound viruses into endosomes. Activation results in extensive changes in the conformation of cleaved HA. To establish the overall contribution of cleavage to the mechanism of HA-mediated membrane fusion, we used cryogenic electron microscopy (cryo-EM) to directly image HA0 at neutral and low pH. We found extensive pH-induced structural changes, some of which were similar to those described for intermediates in the refolding of cleaved HA at low pH. They involve a partial extension of the long central coiled coil formed by melting of the preexisting secondary structure, threading it between the membrane-distal domains, and subsequent refolding as extended helices. The fusion peptide, covalently linked at its N terminus, adopts an amphipathic helical conformation over part of its length and is repositioned and packed against a complementary surface groove of conserved residues. Furthermore, and in contrast to cleaved HA, the changes in HA0 structure at low pH are reversible on reincubation at neutral pH. We discuss the implications of covalently restricted HA0 refolding for the cleaved HA conformational changes that mediate membrane fusion and for the action of antiviral drug candidates and cross-reactive anti-HA antibodies that can block influenza infectivity.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Membrane Fusion , Orthomyxoviridae , Virus Internalization , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Hydrogen-Ion Concentration , Orthomyxoviridae/physiology , Protein Conformation
7.
Virus Res ; 309: 198659, 2022 02.
Article in English | MEDLINE | ID: mdl-34929215

ABSTRACT

Influenza is prevalent in temperate countries during winter when the environment is dry and cold; however, in tropical and subtropical countries, it is prevalent during the hot, humid rainy season. Thus, temperature and humidity conditions affect influenza outbreaks in different climates. Although the reason for this may be related to host conditions and the conditions under which the virus can survive, it is difficult to analyze changes in host viral responses owing to environmental changes at the cellular level. In the current study, to find candidate genes related with temperature, we analyzed the effects of low-temperature stimulation on influenza virus infection using immortalized respiratory cell lines with the same genetic background established in our laboratory. Although two cell lines with different immune response strengths exhibited enhancement of influenza virus replication following low-temperature stimulation, the mechanisms and degrees were different. In cell lines that showed greater changes, promotion of viral replication was found to involve genes related to temperature, including TRPM2 and CARHSP1. In particular, CARHSP1 expression was decreased by low-temperature stimulation in several respiratory cell lines. In knockdown experiments, because reduction of interferon-ß production and sensitivity were observed, the decline may create an environment in which the initial infection cannot be controlled. This procedure may be effective for identifying candidate genes related to the host/viral responses to changes in temperature, and these results can help elucidate the relationships of temperature, humidity, and host responses with viral infection.


Subject(s)
DNA-Binding Proteins/metabolism , Influenza, Human , Orthomyxoviridae , Phosphoproteins/metabolism , Transcription Factors/metabolism , Calcium , Down-Regulation , Hot Temperature , Humans , Interferon-beta/genetics , Orthomyxoviridae/physiology , Temperature , Virus Replication
8.
PLoS Pathog ; 17(12): e1010106, 2021 12.
Article in English | MEDLINE | ID: mdl-34969061

ABSTRACT

The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.


Subject(s)
COVID-19/virology , Influenza, Human/virology , Orthomyxoviridae/physiology , SARS-CoV-2/physiology , Animals , Antiviral Agents , COVID-19/therapy , COVID-19/transmission , Drug Development , Evolution, Molecular , Humans , Influenza, Human/therapy , Influenza, Human/transmission , Orthomyxoviridae/immunology , SARS-CoV-2/immunology , Selection, Genetic , Viral Load , Viral Vaccines
9.
Front Immunol ; 12: 710705, 2021.
Article in English | MEDLINE | ID: mdl-34721379

ABSTRACT

Canine influenza virus (CIV) is an emerging virus that is associated with major hidden hazards to the canine population and public health. Until now, how canine uses its innate immunity to restrict CIV replication is seldomly investigated. Recently, studies on interferon-inducible transmembrane (IFITM) of several major hosts of influenza virus (human, chicken, duck, pig) indicated it can potently restrict the viral replication. Here, the gene locus of five previously annotated canine IFITM (caIFITM) genes was determined on chromosome 18 using multiple bioinformatics strategies, provisionally designated as caIFITM1, caIFITM2a, caIFITM2b, caIFITM3, and caIFITM5. An analysis on protein sequences between caIFITM and its homologs indicated they shared the same conserved amino acids important for the antiviral activity. Expression profile analysis showed that caIFITM was constitutively expressed in tissues and MDCK cell line. After treatment with interferon or infection with influenza virus, the expression level of caIFITM increased with different degrees in vitro. An animal challenge study demonstrated CIV infection resulted in upregulation of caIFITM in beagles. caIFITMs had a similar subcellular localization to their human homologs. caIFITM1 was present at the cell surface and caIFITM3 was present perinuclearly and colocalized with LAMP1-containing compartments. Finally, we generated A549 cell lines stably expressing caIFITM and challenged them with influenza virus. The result demonstrated caIFITM1, caIFITM2a, caIFITM2b, and caIFITM3 had a potent antiviral activity against influenza virus. Our study will help better understand the evolutional pattern of IFITM and its role in the host's defense against virus infection.


Subject(s)
Antigens, Differentiation/physiology , Dog Diseases/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/physiology , Virus Replication/physiology , A549 Cells , Animals , Antigens, Differentiation/genetics , Dogs , Humans , Immunity, Innate , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology
10.
Viruses ; 13(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34835006

ABSTRACT

The Madin-Darby Canine Kidney (MDCK) cell line is among the most commonly used cell lines for the production of influenza virus vaccines. As cell culture-based manufacturing is poised to replace egg-based processes, increasing virus production is of paramount importance. To shed light on factors affecting virus productivity, we isolated a subline, H1, which had twice the influenza virus A (IAV) productivity of the parent (P) through cell cloning, and characterized H1 and P in detail on both physical and molecular levels. Transcriptome analysis revealed that within a few hours after IAV infection, viral mRNAs constituted over one fifth of total mRNA, with several viral genes more highly expressed in H1 than P. Functional analysis of the transcriptome dynamics showed that H1 and P responded similarly to IAV infection, and were both subjected to host shutoff and inflammatory responses. Importantly, H1 was more active in translation and RNA processing intrinsically and after infection. Furthermore, H1 had more subdued inflammatory and antiviral responses. Taken together, we postulate that the high productivity of IAV hinges on the balance between suppression of host functions to divert cellular resources and the sustaining of sufficient activities for virus replication. Mechanistic insights into virus productivity can facilitate the process optimization and cell line engineering for advancing influenza vaccine manufacturing.


Subject(s)
Madin Darby Canine Kidney Cells , Orthomyxoviridae/genetics , Orthomyxoviridae/physiology , Transcriptome , Virus Replication/physiology , Animals , Apoptosis , Cell Line , Dogs , Hemagglutination , Humans , Influenza A virus/physiology , Influenza Vaccines/immunology , Influenza, Human
11.
Med Microbiol Immunol ; 210(5-6): 277-282, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34604931

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has forced the implementation of unprecedented public health measures strategies which might also have a significant impact on the spreading of other viral pathogens such as influenza and Respiratory Syncytial Virus (RSV) . The present study compares the incidences of the most relevant respiratory viruses before and during the SARS-CoV-2 pandemic in emergency room patients. We analyzed the results of in total 14,946 polymerase chain reaction point-of-care tests (POCT-PCR) for Influenza A, Influenza B, RSV and SARS-CoV-2 in an adult and a pediatric emergency room between December 1, 2018 and March 31, 2021. Despite a fivefold increase in the number of tests performed, the positivity rate for Influenza A dropped from 19.32% (165 positives of 854 tests in 2018/19), 14.57% (149 positives of 1023 in 2019-20) to 0% (0 positives of 4915 tests) in 2020/21. In analogy, the positivity rate for Influenza B and RSV dropped from 0.35 to 1.47%, respectively, 10.65-21.08% to 0% for both in 2020/21. The positivity rate for SARS-CoV2 reached 9.74% (110 of 1129 tests performed) during the so-called second wave in December 2020. Compared to the two previous years, seasonal influenza and RSV incidence was eliminated during the COVID-19 pandemic. Corona-related measures and human behavior patterns could lead to a significant decline or even complete suppression of other respiratory viruses such as influenza and RSV.


Subject(s)
COVID-19/epidemiology , Influenza, Human/diagnosis , Point-of-Care Testing/statistics & numerical data , Respiratory Syncytial Virus Infections/diagnosis , COVID-19/virology , Hospitals/statistics & numerical data , Humans , Incidence , Influenza, Human/epidemiology , Influenza, Human/virology , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , Orthomyxoviridae/physiology , Pandemics , Polymerase Chain Reaction , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus, Human/physiology , Retrospective Studies
12.
Cell Mol Life Sci ; 78(21-22): 6735-6744, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34459952

ABSTRACT

Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells. Similarly, the capsid protein of the non-enveloped papillomavirus L1 should be proteolytically cleaved for viral uncoating. Consequently, extracellular or membrane-bound proteases of the host cells are instrumental for viral infections and represent potential targets for drug development. Here, we summarize how extracellular proteolysis mediated by the kallikreins is implicated in the process of influenza (and potentially coronavirus and papillomavirus) entry into host cells. Besides direct proteolytic activation of viruses, KLK5 and 12 promote viral entry indirectly through proteolytic cascade events, like the activation of thrombolytic enzymes that also can process hemagglutinin, while additional functions of KLKs in infection cannot be excluded. In the light of recent evidence, KLKs represent potential host targets for the development of new antivirals. Humanized animal models to validate their key functions in viral infections will be valuable.


Subject(s)
COVID-19/enzymology , COVID-19/virology , Host Microbial Interactions/physiology , Kallikreins/metabolism , SARS-CoV-2 , Virus Diseases/enzymology , Animals , Asthma/etiology , Coronavirus/genetics , Coronavirus/pathogenicity , Coronavirus/physiology , Host Microbial Interactions/genetics , Humans , Orthomyxoviridae/genetics , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Papillomavirus Infections/enzymology , Papillomavirus Infections/virology , Picornaviridae Infections/complications , Picornaviridae Infections/enzymology , Picornaviridae Infections/virology , Protein Processing, Post-Translational , Proteolysis , Rhinovirus/pathogenicity , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Varicella Zoster Virus Infection/enzymology , Varicella Zoster Virus Infection/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Diseases/virology , Virus Internalization
13.
Cells ; 10(7)2021 07 08.
Article in English | MEDLINE | ID: mdl-34359892

ABSTRACT

Influenza is a zoonotic respiratory disease of major public health interest due to its pandemic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry.


Subject(s)
Host-Pathogen Interactions , Orthomyxoviridae/physiology , Signal Transduction , Virus Uncoating/physiology , Animals , Capsid/metabolism , Humans , Models, Biological
14.
J Immunol ; 207(5): 1310-1321, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34380652

ABSTRACT

The respiratory tract is constantly exposed to various airborne pathogens. Most vaccines against respiratory infections are designed for the parenteral routes of administration; consequently, they provide relatively minimal protection in the respiratory tract. A vaccination strategy that aims to induce the protective mucosal immune responses in the airway is urgently needed. The FcRn mediates IgG Ab transport across the epithelial cells lining the respiratory tract. By mimicking this natural IgG transfer, we tested whether FcRn delivers vaccine Ags to induce a protective immunity to respiratory infections. In this study, we designed a monomeric IgG Fc fused to influenza virus hemagglutinin (HA) Ag with a trimerization domain. The soluble trimeric HA-Fc were characterized by their binding with conformation-dependent HA Abs or FcRn. In wild-type, but not FcRn knockout, mice, intranasal immunization with HA-Fc plus CpG adjuvant conferred significant protection against lethal intranasal challenge with influenza A/PR/8/34 virus. Further, mice immunized with a mutant HA-Fc lacking FcRn binding sites or HA alone succumbed to lethal infection. Protection was attributed to high levels of neutralizing Abs, robust and long-lasting B and T cell responses, the presence of lung-resident memory T cells and bone marrow plasma cells, and a remarkable reduction of virus-induced lung inflammation. Our results demonstrate for the first time, to our knowledge, that FcRn can effectively deliver a trimeric viral vaccine Ag in the respiratory tract and elicit potent protection against respiratory infection. This study further supports a view that FcRn-mediated mucosal immunization is a platform for vaccine delivery against common respiratory pathogens.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Influenza Vaccines/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/physiology , Receptors, Fc/metabolism , Respiratory Mucosa/metabolism , Administration, Intranasal , Animals , Antibodies, Viral/metabolism , Disease Models, Animal , Disease Resistance , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/metabolism , Influenza Vaccines/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Fc/genetics , Respiratory Mucosa/immunology , Vaccination
15.
J Autoimmun ; 124: 102714, 2021 11.
Article in English | MEDLINE | ID: mdl-34403915

ABSTRACT

BACKGROUND: Viral infections may trigger autoimmunity in genetically predisposed individuals. Immunizations mimic viral infections immunologically, but only in rare instances vaccinations coincide with the onset of autoimmunity. Inadvertent vaccine injection into periarticular shoulder tissue can cause inflammatory tissue damage ('shoulder injury related to vaccine administration, SIRVA). Thus, this accident provides a model to study if vaccine-induced pathogen-specific immunity accompanied by a robust inflammatory insult may trigger autoimmunity in specific genetic backgrounds. METHODS: We studied 16 otherwise healthy adults with suspected SIRVA occurring following a single work-related influenza immunization campaign in 2017. We performed ultrasound, immunophenotypic analyses, HLA typing, and influenza- and self-reactivity functional immunoassays. Vaccine-related bone toxicity and T cell/osteoclast interactions were assessed in vitro. FINDINGS: Twelve of the 16 subjects had evidence of inflammatory tissue damage on imaging, including bone erosions in six. Tissue damage was associated with a robust peripheral blood T and B cell activation signature and extracellular matrix-reactive autoantibodies. All subjects with erosions were HLA-DRB1*04 positive and showed extracellular matrix-reactive HLA-DRB1*04 restricted T cell responses targeting heparan sulfate proteoglycan (HSPG). Antigen-specific T cells potently activated osteoclasts via RANK/RANK-L, and the osteoclast activation marker Trap5b was high in sera of patients with an erosive shoulder injury. In vitro, the vaccine component alpha-tocopheryl succinate recapitulated bone toxicity and stimulated osteoclasts. Auto-reactivity was transient, with no evidence of progression to rheumatoid arthritis or overt autoimmune disease. CONCLUSION: Vaccine misapplication, potentially a genetic predisposition, and vaccine components contribute to SIRVA. The association with autoimmunity risk allele HLA-DRB1*04 needs to be further investigated. Despite transient autoimmunity, SIRVA was not associated with progression to autoimmune disease during two years of follow-up.


Subject(s)
Inflammation/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Joint Capsule/immunology , Orthomyxoviridae/physiology , Osteoclasts/immunology , T-Lymphocytes/immunology , Adult , Autoimmunity , Chronic Disease , Extracellular Matrix/metabolism , Female , Genetic Predisposition to Disease , HLA-DRB1 Chains/genetics , Heparan Sulfate Proteoglycans/immunology , Histocompatibility Testing , Humans , Male , Receptor Activator of Nuclear Factor-kappa B/metabolism , Tartrate-Resistant Acid Phosphatase/blood , Vaccination/adverse effects , Young Adult
16.
Viruses ; 13(8)2021 07 27.
Article in English | MEDLINE | ID: mdl-34452337

ABSTRACT

Seasonal influenza is a common cause of hospital admission, especially in older people and those with comorbidities. The objective of this study was to determine influenza vaccine effectiveness (VE) in preventing intensive care admissions and shortening the length of stay (LOS) in hospitalized laboratory-confirmed influenza cases (HLCI) in Catalonia (Spain). A retrospective cohort study was carried out during the 2017-2018 season in HLCI aged ≥18 years from 14 public hospitals. Differences in means and proportions were assessed using a t-test or a chi-square test as necessary and the differences were quantified using standardized effect measures: Cohen's d for quantitative and Cohen's w for categorical variables. Adjusted influenza vaccine effectiveness in preventing severity was estimated by multivariate logistic regression where the adjusted VE = (1 - adjusted odds ratio) · 100%; adjustment was also made using the propensity score. We analyzed 1414 HLCI aged ≥18 years; 465 (33%) were vaccinated, of whom 437 (94%) were aged ≥60 years, 269 (57.8%) were male and 295 (63.4%) were positive for influenza type B. ICU admission was required in 214 (15.1%) cases. There were 141/1118 (12.6%) ICU admissions in patients aged ≥60 years and 73/296 (24.7%) in those aged <60 years (p < 0.001). The mean LOS and ICU LOS did not differ significantly between vaccinated and unvaccinated patients. There were 52/465 (11.2%) ICU admissions in vaccinated cases vs. 162/949 (17.1%) in unvaccinated cases. Patients admitted to the ICU had a longer hospital LOS (mean: 22.4 [SD 20.3] days) than those who were not (mean: 11.1 [SD 14.4] days); p < 0.001. Overall, vaccination was associated with a lower risk of ICU admission. Taking virus types A and B together, the estimated adjusted VE in preventing ICU admission was 31% (95% CI 1-52; p = 0.04). When stratified by viral type, the aVE was 40% for type A (95% CI -11-68; p = 0.09) and 25% for type B (95% CI -18-52; p = 0.21). Annual influenza vaccination may prevent ICU admission in cases of HLCI. A non-significantly shorter mean hospital stay was observed in vaccinated cases. Our results support the need to increase vaccination uptake and public perception of the benefits of influenza vaccination in groups at a higher risk of hospitalization and severe outcomes.


Subject(s)
Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Orthomyxoviridae/immunology , Adolescent , Adult , Aged , Female , Hospitalization/statistics & numerical data , Humans , Influenza Vaccines/immunology , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/virology , Laboratories/statistics & numerical data , Male , Middle Aged , Orthomyxoviridae/genetics , Orthomyxoviridae/physiology , Retrospective Studies , Seasons , Spain/epidemiology , Vaccination , Vaccine Efficacy , Young Adult
17.
Sci Rep ; 11(1): 17193, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433834

ABSTRACT

This paper addresses the development of predictive models for distinguishing pre-symptomatic infections from uninfected individuals. Our machine learning experiments are conducted on publicly available challenge studies that collected whole-blood transcriptomics data from individuals infected with HRV, RSV, H1N1, and H3N2. We address the problem of identifying discriminatory biomarkers between controls and eventual shedders in the first 32 h post-infection. Our exploratory analysis shows that the most discriminatory biomarkers exhibit a strong dependence on time over the course of the human response to infection. We visualize the feature sets to provide evidence of the rapid evolution of the gene expression profiles. To quantify this observation, we partition the data in the first 32 h into four equal time windows of 8 h each and identify all discriminatory biomarkers using sparsity-promoting classifiers and Iterated Feature Removal. We then perform a comparative machine learning classification analysis using linear support vector machines, artificial neural networks and Centroid-Encoder. We present a range of experiments on different groupings of the diseases to demonstrate the robustness of the resulting models.


Subject(s)
Computer Simulation , Influenza, Human/virology , Picornaviridae Infections/virology , Respiratory Syncytial Virus Infections/virology , Transcriptome , Virus Shedding , Biomarkers/metabolism , Gene Regulatory Networks , Humans , Influenza, Human/genetics , Influenza, Human/metabolism , Machine Learning , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Picornaviridae Infections/genetics , Picornaviridae Infections/metabolism , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Viruses/pathogenicity , Respiratory Syncytial Viruses/physiology , Rhinovirus/pathogenicity , Rhinovirus/physiology
18.
Biosensors (Basel) ; 11(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34436053

ABSTRACT

The global damage that a widespread viral infection can cause is evident from the ongoing COVID-19 pandemic. The importance of virus detection to prevent the spread of viruses has been reaffirmed by the pandemic and the associated social and economic damage. Surface plasmon resonance (SPR) in microscale and localized SPR (LSPR) in nanoscale virus sensing systems are thought to be useful as next-generation detection methods. Many studies have been conducted on ultra-sensitive technologies, especially those based on signal amplification. In some cases, it has been reported that even a low viral load can be measured, indicating that the virus can be detected in patients even in the early stages of the viral infection. These findings corroborate that SPR and LSPR are effective in minimizing false-positives and false-negatives that are prevalent in the existing virus detection techniques. In this review, the methods and signal responses of SPR and LSPR-based virus detection technologies are summarized. Furthermore, this review surveys some of the recent developments reported and discusses the limitations of SPR and LSPR-based virus detection as the next-generation detection technologies.


Subject(s)
Metal Nanoparticles/chemistry , SARS-CoV-2/physiology , Surface Plasmon Resonance/methods , Virion/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Dengue Virus/isolation & purification , Dengue Virus/physiology , Humans , Limit of Detection , Orthomyxoviridae/isolation & purification , Orthomyxoviridae/physiology , Point-of-Care Systems , SARS-CoV-2/isolation & purification , Virion/chemistry
19.
Front Immunol ; 12: 621440, 2021.
Article in English | MEDLINE | ID: mdl-34248930

ABSTRACT

The risk of severe outcomes following respiratory tract infections is significantly increased in individuals over 60 years, especially in those with chronic medical conditions, i.e., hypertension, diabetes, cardiovascular disease, dementia, chronic respiratory disease, and cancer. Down Syndrome (DS), the most prevalent intellectual disability, is caused by trisomy-21 in ~1:750 live births worldwide. Over the past few decades, a substantial body of evidence has accumulated, pointing at the occurrence of alterations, impairments, and subsequently dysfunction of the various components of the immune system in individuals with DS. This associates with increased vulnerability to respiratory tract infections in this population, such as the influenza virus, respiratory syncytial virus, SARS-CoV-2 (COVID-19), and bacterial pneumonias. To emphasize this link, here we comprehensively review the immunobiology of DS and its contribution to higher susceptibility to severe illness and mortality from respiratory tract infections.


Subject(s)
Down Syndrome/immunology , Immune System/physiology , Orthomyxoviridae/physiology , Respiratory Syncytial Viruses/physiology , Respiratory Tract Infections/immunology , SARS-CoV-2/physiology , Virus Diseases/immunology , Adult , Animals , COVID-19 , Down Syndrome/genetics , Down Syndrome/mortality , Humans , Pneumonia , Respiratory Tract Infections/genetics , Respiratory Tract Infections/mortality , Risk , Virus Diseases/genetics , Virus Diseases/mortality
20.
Nat Commun ; 12(1): 3249, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059675

ABSTRACT

Coronavirus disease 2019 (COVID-19) was detected in China during the 2019-2020 seasonal influenza epidemic. Non-pharmaceutical interventions (NPIs) and behavioral changes to mitigate COVID-19 could have affected transmission dynamics of influenza and other respiratory diseases. By comparing 2019-2020 seasonal influenza activity through March 29, 2020 with the 2011-2019 seasons, we found that COVID-19 outbreaks and related NPIs may have reduced influenza in Southern and Northern China and the United States by 79.2% (lower and upper bounds: 48.8%-87.2%), 79.4% (44.9%-87.4%) and 67.2% (11.5%-80.5%). Decreases in influenza virus infection were also associated with the timing of NPIs. Without COVID-19 NPIs, influenza activity in China and the United States would likely have remained high during the 2019-2020 season. Our findings provide evidence that NPIs can partially mitigate seasonal and, potentially, pandemic influenza.


Subject(s)
COVID-19/epidemiology , Influenza, Human/epidemiology , Models, Statistical , Pandemics , Respiratory Tract Infections/epidemiology , COVID-19/transmission , COVID-19/virology , China/epidemiology , Humans , Influenza, Human/transmission , Influenza, Human/virology , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Personal Protective Equipment , Physical Distancing , Quarantine/organization & administration , Respiratory Tract Infections/transmission , Respiratory Tract Infections/virology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Seasons , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...