Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.035
Filter
1.
Physiol Plant ; 176(3): e14369, 2024.
Article in English | MEDLINE | ID: mdl-38828612

ABSTRACT

High temperature (HT) affects the production of chlorophyll (Chl) pigment and inhibits cellular processes that impair photosynthesis, and growth and development in plants. However, the molecular mechanisms underlying heat stress in rice are not fully understood yet. In this study, we identified two mutants varying in leaf color from the ethylmethanesulfonate mutant library of indica rice cv. Zhongjiazao-17, which showed pale-green leaf color and variegated leaf phenotype under HT conditions. Mut-map revealed that both mutants were allelic, and their phenotype was controlled by a single recessive gene PALE GREEN LEAF 10 (PGL10) that encodes NADPH:protochlorophyllide oxidoreductase B, which is required for the reduction of protochlorophyllide into chlorophyllide in light-dependent tetrapyrrole biosynthetic pathway-based Chl synthesis. Overexpression-based complementation and CRISPR/Cas9-based knockout analyses confirmed the results of Mut-map. Moreover, qRT-PCR-based expression analysis of PGL10 showed that it expresses in almost all plant parts with the lowest expression in root, followed by seed, third leaf, and then other green tissues in both mutants, pgl10a and pgl10b. Its protein localizes in chloroplasts, and the first 17 amino acids from N-terminus are responsible for signals in chloroplasts. Moreover, transcriptome analysis performed under HT conditions revealed that the genes involved in the Chl biosynthesis and degradation, photosynthesis, and reactive oxygen species detoxification were differentially expressed in mutants compared to WT. Thus, these results indicate that PGL10 is required for maintaining chloroplast function and plays an important role in rice adaptation to HT stress conditions by controlling photosynthetic activity.


Subject(s)
Oryza , Photosynthesis , Plant Proteins , Oryza/genetics , Oryza/physiology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Chloroplasts/metabolism , Hot Temperature , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Chlorophyll/metabolism , Mutation , Heat-Shock Response/genetics , Loss of Function Mutation , Phenotype , Oxidoreductases Acting on CH-CH Group Donors
2.
Theor Appl Genet ; 137(7): 154, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856926

ABSTRACT

KEY MESSAGE: Our findings highlight a valuable breeding resource, demonstrating the potential to concurrently enhance grain shape, thermotolerance, and alkaline tolerance by manipulating Gγ protein in rice. Temperate Geng/Japonica (GJ) rice yields have improved significantly, bolstering global food security. However, GJ rice breeding faces challenges, including enhancing grain quality, ensuring stable yields at warmer temperatures, and utilizing alkaline land. In this study, we employed CRISPR/Cas9 gene-editing technology to knock out the GS3 locus in seven elite GJ varieties with superior yield performance. Yield component measurements revealed that GS3 knockout mutants consistently enhanced grain length and reduced plant height in diverse genetic backgrounds. The impact of GS3 on the grain number per panicle and setting rate depended on the genetic background. GS3 knockout did not affect milling quality and minimally altered protein and amylose content but notably influenced chalkiness-related traits. GS3 knockout indiscriminately improved heat and alkali stress tolerance in the GJ varieties studied. Transcriptome analysis indicated differential gene expression between the GS3 mutants and their wild-type counterparts, enriched in biological processes related to photosynthesis, photosystem II stabilization, and pathways associated with photosynthesis and cutin, suberine, and wax biosynthesis. Our findings highlight GS3 as a breeding resource for concurrently improving grain shape, thermotolerance, and alkaline tolerance through Gγ protein manipulation in rice.


Subject(s)
Edible Grain , Oryza , Plant Breeding , Plant Proteins , Thermotolerance , Oryza/genetics , Oryza/physiology , Oryza/growth & development , Oryza/metabolism , Thermotolerance/genetics , Edible Grain/genetics , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phenotype , Gene Editing , Alkalies , CRISPR-Cas Systems , Plants, Genetically Modified/genetics
3.
Planta ; 259(6): 149, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724681

ABSTRACT

MAIN CONCLUSION: The rice SnRK2 members SAPK4, SAPK5, SAPK7 and SAPK10 are positive regulators involved in the regulation of rice flowering, while other single mutants exhibited no effect on rice flowering. The rice SnRK2 family, comprising 10 members known as SAPK (SnRK2-Associated Protein Kinase), is pivotal in the abscisic acid (ABA) pathway and crucial for various biological processes, such as drought resistance and salt tolerance. Additionally, these members have been implicated in the regulation of rice heading date, a key trait influencing planting area and yield. In this study, we utilized gene editing technology to create mutants in the Songjing 2 (SJ2) background, enabling a comprehensive analyze the role of each SAPK member in rice flowering. We found that SAPK1, SAPK2, and SAPK3 may not directly participate in the regulatory network of rice heading date, while SAPK4, SAPK5, and SAPK7 play positive roles in rice flowering regulation. Notably, polygene deletion resulted in an additive effect on delaying flowering. Our findings corroborate the previous studies indicating the positive regulatory role of SAPK10 in rice flowering, as evidenced by delayed flowering observed in sapk9/10 double mutants. Moving forward, our future research will focus on analyzing the molecular mechanisms underlying SAPKs involvement in rice flowering regulation, aiming to enhance our understanding of the rice heading date relationship network and lay a theoretical foundation for breeding efforts to alter rice ripening dates.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/growth & development , Oryza/physiology , Oryza/enzymology , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation , Gene Editing , Stress, Physiological/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Abscisic Acid/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
4.
BMC Plant Biol ; 24(1): 419, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760728

ABSTRACT

BACKGROUND: Rice (Oryza sativa L.) is one of the most important food crops in the world and the application of nitrogen fertilizer is an effective means of ensuring stable and high rice yields. However, excessive application of nitrogen fertilizer not only causes a decline in the quality of rice, but also leads to a series of environmental costs. Nitrogen reutilization is closely related to leaf senescence, and nitrogen deficiency will lead to early functional leaf senescence, whereas moderate nitrogen application will help to delay leaf senescence and promote the production of photosynthetic assimilation products in leaves to achieve yield increase. Therefore, it is important to explore the mechanism by which nitrogen affects rice senescence, to search for genes that are tolerant to low nitrogen, and to delay the premature senescence of rice functional leaves. RESULTS: The present study was investigated the transcriptional changes in flag leaves between full heading and mature grain stages of rice (O. sativa) sp. japonica 'NanGeng 5718' under varying nitrogen (N) application: 0 kg/ha (no nitrogen; 0N), 240 kg/ha (moderate nitrogen; MN), and 300 kg/ha (high nitrogen; HN). Compared to MN condition, a total of 10427 and 8177 differentially expressed genes (DEGs) were detected in 0N and HN, respectively. We selected DEGs with opposite expression trends under 0N and HN conditions for GO and KEGG analyses to reveal the molecular mechanisms of nitrogen response involving DEGs. We confirmed that different N applications caused reprogramming of plant hormone signal transduction, glycolysis/gluconeogenesis, ascorbate and aldarate metabolism and photosynthesis pathways in regulating leaf senescence. Most DEGs of the jasmonic acid, ethylene, abscisic acid and salicylic acid metabolic pathways were up-regulated under 0N condition, whereas DEGs related to cytokinin and ascorbate metabolic pathways were induced in HN. Major transcription factors include ERF, WRKY, NAC and bZIP TF families have similar expression patterns which were induced under N starvation condition. CONCLUSION: Our results revealed that different nitrogen levels regulate rice leaf senescence mainly by affecting hormone levels and ascorbic acid biosynthesis. Jasmonic acid, ethylene, abscisic acid and salicylic acid promote early leaf senescence under low nitrogen condition, ethylene and ascorbate delay senescence under high nitrogen condition. In addition, ERF, WRKY, NAC and bZIP TF families promote early leaf senescence. The relevant genes can be used as candidate genes for the regulation of senescence. The results will provide gene reference for further genomic studies and new insights into the gene functions, pathways and transcription factors of N level regulates leaf senescence in rice, thereby improving NUE and reducing the adverse effects of over-application of N.


Subject(s)
Gene Expression Profiling , Nitrogen , Oryza , Plant Leaves , Transcription Factors , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Oryza/physiology , Nitrogen/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Senescence/genetics , Gene Expression Regulation, Plant , Biosynthetic Pathways/genetics , Transcriptome , Fertilizers , Genes, Plant
5.
Braz J Biol ; 84: e282495, 2024.
Article in English | MEDLINE | ID: mdl-38747865

ABSTRACT

Rice (Oryza sativa L.) grown in many countries around the world with different climatic conditions and a huge number of environmental stresses, both biotic (fungi, bacteria, viruses, insects) and abiotic (cold, drought, salinity) limit rice productivity. In this regard, breeders and scientists are trying to create rice lines that are resistant to multiple stresses. The aim of this work was to screen and select cold and blast resistant rice breeding lines (RBLs) using molecular markers. Molecular screening of RBLs and parental varieties to cold tolerance was carried out using markers RM24545, RM1377, RM231 and RM569 associated with QTLs (qPSST-3, qPSST-7, qPSST-9). It was discovered that the presence of three QTLs characterizes the cold resistance of studied genotypes, and the absence of one of them leads to cold sensitivity. As a result, 21 cold-resistant out of the 28 studied RBLs were identified. These cold resistant 21 RBLs were further tested to blast resistance using markers Pi-ta, Pita3, Z56592, 195R-1, NMSMPi9-1, TRS26, Pikh MAS, MSM6, 9871.T7E2b, RM224 and RM1233. It was revealed that 16 RBLs from 21 studied lines contain 5-6 blast resistance genes. In accordance with the blast resistance strategy, the presence of 5 or more genes ensures the formation of stable resistance to Magnaporthe oryzae. Thus, 16 lines resistant to multiple stresses, such as cold and blast disease were developed. It should be noted that 6 of these selected lines are high-yielding, which is very important in rice breeding program. These RBLs can be used in breeding process as starting lines, germplasm exchange as a source of resistant genes for the development of new rice varieties resistant to multiple stress factors.


Subject(s)
Oryza , Plant Breeding , Stress, Physiological , Oryza/genetics , Oryza/microbiology , Oryza/physiology , Stress, Physiological/genetics , Disease Resistance/genetics , Quantitative Trait Loci/genetics , Genotype , Genetic Markers , Plant Diseases/genetics , Plant Diseases/microbiology , Cold Temperature
6.
Physiol Plant ; 176(3): e14348, 2024.
Article in English | MEDLINE | ID: mdl-38769068

ABSTRACT

Climate change has become increasingly intertwined with the occurrence and severity of droughts. As global temperatures rise due to greenhouse gas emissions, weather patterns are altered, leading to shifts in precipitation levels and distribution. These exacerbate the risk of drought in many regions, with potentially devastating consequences. A comprehensive transcriptome analysis was performed on Keteki Joha, an aromatic rice from North East India, with the aim of elucidating molecular responses to drought. Numerous genes linked to drought were activated, with both ABA-dependent and ABA-independent pathways playing crucial roles. Upregulated genes were enriched with gene ontology terms with response to abscisic acid and abscisic acid-activated signalling pathway, suggesting the existence of an ABA-dependent pathway for drought mitigation. The upregulated genes were also enriched with responses to stress, water, heat, jasmonic acid, and hydrogen peroxide, indicating the presence of an ABA-independent pathway alongside the ABA-dependent mechanism. Weighted Correlation Network Analysis (WGCNA) identified 267 genes that specifically govern drought mitigation in Keteki Joha. The late embryogenesis abundant (LEA) gene family emerges as the most overrepresented in both RNA sequencing data and WGCNA analysis, suggesting their dominant role in mitigating drought. Notably, 31 LEA genes were induced in seedlings and 32 in mature stages under drought stress. The LEA3-1, LEA14/WSI18, RAB16A, RAB16B, DHN1, DHN6, LEA1, LEA3, LEA17, and LEA33 exhibited and established co-expression with numerous other drought stress-related genes, indicating their inseparable role in alleviating drought. Consequently, LEA genes have been proposed to be primary and crucial responders to drought in Keteki Joha.


Subject(s)
Abscisic Acid , Droughts , Gene Expression Regulation, Plant , Gene Regulatory Networks , Oryza , Oryza/genetics , Oryza/physiology , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Genes, Plant , Transcriptome/genetics
7.
Physiol Plant ; 176(3): e14360, 2024.
Article in English | MEDLINE | ID: mdl-38797869

ABSTRACT

Potassium (K+) is an essential macronutrient for appropriate plant development and physiology. However, little is known about the mechanisms involved in the regulation of leaf water relations by K under water deficit. A pot experiment with two K supplies of 0.45 and 0 g K2O per pot (3 kg soil per pot) and two watering conditions (well-watered and water-deficit) was conducted to explore the effects of K deficiency on canopy transpiration characteristics, leaf water status, photosynthesis, and hydraulic traits in two rice genotypes with contrasting resistance to drought. The results showed that K deficiency reduced canopy transpiration rate by decreasing stomatal conductance, which led to higher canopy temperatures, resulting in limited water deficit tolerance in rice. In addition, K deficiency led to further substantial reductions in leaf relative water content and water potential under water deficit, which increased the imbalance in leaf water relations under water deficit. Notably, K deficiency limited leaf gas exchange by reducing leaf hydraulic conductance, but decreased the intrinsic water use efficiency under water deficit, especially for the drought-resistant cultivar. Further analysis of the underlying process of leaf hydraulic resistance revealed that the key limiting factor of leaf hydraulic conductance under K deficiency was the outside-xylem hydraulic conductance rather than the xylem hydraulic conductance. Overall, our results provide a comprehensive perspective for assessing leaf water relations under K deficiency, water deficit, and their combined stresses, which will be useful for optimal rice fertilization strategies.


Subject(s)
Droughts , Oryza , Plant Leaves , Plant Transpiration , Potassium , Water , Oryza/physiology , Oryza/genetics , Oryza/metabolism , Plant Leaves/physiology , Plant Leaves/metabolism , Water/metabolism , Plant Transpiration/physiology , Potassium/metabolism , Photosynthesis/physiology , Plant Stomata/physiology , Xylem/physiology , Xylem/metabolism
8.
Plant Physiol Biochem ; 211: 108683, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714129

ABSTRACT

Jasmonic acid (JA) plays crucial functions in plant stress response, and the synergistic interaction between JA and abscisic acid (ABA) signaling is implicated to help plants adapt to environmental challenges, whereas the underlying molecular mechanism still needs to be revealed. Here, we report that OsJAZ10, a repressor in the JA signaling, represses rice drought tolerance via inhibition of JA and ABA biosynthesis. Function loss of OsJAZ10 markedly enhances, while overexpression of OsJAZ10ΔJas reduces rice drought tolerance. The osjaz10 mutant is more sensitive to exogenous ABA and MeJA, and produces higher levels of ABA and JA after drought treatment, indicating OsJAZ10 represses the biosynthesis of these two hormones. Mechanistic study demonstrated that OsJAZ10 physically interacts with OsMYC2. Transient transcriptional regulation assays showed that OsMYC2 activates the expression of ABA-biosynthetic gene OsNCED2, JA-biosynthetic gene OsAOC, and drought-responsive genes OsRAB21 and OsLEA3, while OsJAZ10 prevents OsMYC2 transactivation of these genes. Further, the electrophoretic mobility shift assay (EMSA) confirmed that OsMYC2 directly binds to the promoters of OsNCED2 and OsRAB21. Electrical activity has been proposed to activate JA biosynthesis. Interestingly, OsJAZ10 inhibits the propagation of osmotic stress-elicited systemic electrical signals, indicated by the significantly increased PEG-elicited slow wave potentials (SWPs) in osjaz10 mutant, which is in accordance with the elevated JA levels. Collectively, our findings establish that OsJAZ10 functions as a negative regulator in rice drought tolerance by repressing JA and ABA biosynthesis, and reveal an important mechanism that plants integrate electrical events with hormone signaling to enhance the adaption to environmental stress.


Subject(s)
Abscisic Acid , Cyclopentanes , Droughts , Gene Expression Regulation, Plant , Oryza , Oxylipins , Plant Proteins , Signal Transduction , Oryza/genetics , Oryza/metabolism , Oryza/physiology , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Drought Resistance
9.
Ecotoxicol Environ Saf ; 278: 116413, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728942

ABSTRACT

Cadmium contamination can lead to a decrease in crop yield and quality. However, Cd-tolerant rice can improve rice resistance genes, improve crop tolerance to heavy metals, and protect plants from oxidative damage. In this study, Japonica rice: Chunyou 987 and Indica rice: Chuanzhong you 3607 were used to reveal the molecular response mechanism of Cd-tolerant rice under cadmium concentration of 3 mg/kg through comparative experiments combined with physiology and proteomics. The results showed that compared with indica rice, japonica rice showed more robust resistance to Cd stress and effectively retained many Cd ions in roots. Moreover, it enhanced its enzymatic and non-enzymatic anti-oxidative stress mechanism, which increased the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) by 47.37%, 21.75%, and 55.42%, respectively. The contents of non-enzymatic antioxidant substances ascorbic acid (AsA), glutathione (GSH), cysteine (Cys), proline (PRO), anthocyanins (OPC), and flavonoids were increased by 25.32%, 42.67%, 21.43%, 50.81%, 33.23%, and 72.16%, respectively. Through proteomics analysis, it was found that in response to the damage caused by cadmium stress, Japonica rice makes Photosynthesis functional proteins (psbO and PetH), Photosynthesis antenna proteins (LHCA and ASCAB9), Carbon fixation functional proteins (PEPC and OsAld), Porphyrin metabolism functional proteins (OsRCCR1 and SE5), Glyoxylate and dicarboxylate The expression of metabolism functional proteins (CATC and GLO4.) and Glutathione metabolism functional proteins (APX8 and OsGSTU13) were significantly up-regulated, which stimulated the antioxidant stress mechanism and photosynthetic system, and constructed a robust energy supply system to ensure the normal metabolic activities of life. Strengthening the mechanisms of plant homeostasis. In summary, this study revealed the molecular mechanism of tolerance to Cd stress in japonica rice, and the results of this study will provide a possible way to improve Cd-resistant rice seedlings.


Subject(s)
Cadmium , Oryza , Oxidative Stress , Proteomics , Soil Pollutants , Oryza/drug effects , Oryza/genetics , Oryza/physiology , Cadmium/toxicity , Soil Pollutants/toxicity , Oxidative Stress/drug effects , Photosynthesis/drug effects , Antioxidants/metabolism , Plant Roots/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/drug effects , Superoxide Dismutase/metabolism
10.
New Phytol ; 243(1): 195-212, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708439

ABSTRACT

Water plays crucial roles in expeditious growth and osmotic stress of bamboo. Nevertheless, the molecular mechanism of water transport remains unclear. In this study, an aquaporin gene, PeTIP4-3, was identified through a joint analysis of root pressure and transcriptomic data in moso bamboo (Phyllostachys edulis). PeTIP4-3 was highly expressed in shoots, especially in the vascular bundle sheath cells. Overexpression of PeTIP4-3 could increase drought and salt tolerance in transgenic yeast and rice. A co-expression pattern of PeSAPK4, PeMYB99 and PeTIP4-3 was revealed by WGCNA. PeMYB99 exhibited an ability to independently bind to and activate PeTIP4-3, which augmented tolerance to drought and salt stress. PeSAPK4 could interact with and phosphorylate PeMYB99 in vivo and in vitro, wherein they synergistically accelerated PeTIP4-3 transcription. Overexpression of PeMYB99 and PeSAPK4 also conferred drought and salt tolerance in transgenic rice. Further ABA treatment analysis indicated that PeSAPK4 enhanced water transport in response to stress via ABA signaling. Collectively, an ABA-mediated cascade of PeSAPK4-PeMYB99-PeTIP4-3 is proposed, which governs water transport in moso bamboo.


Subject(s)
Aquaporins , Droughts , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Plants, Genetically Modified , Water , Plant Proteins/metabolism , Plant Proteins/genetics , Water/metabolism , Oryza/genetics , Oryza/metabolism , Oryza/physiology , Aquaporins/metabolism , Aquaporins/genetics , Biological Transport , Poaceae/genetics , Poaceae/physiology , Models, Biological , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Salt Tolerance/genetics , Phosphorylation , Protein Binding/drug effects , Stress, Physiological
11.
Plant Physiol Biochem ; 211: 108682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714133

ABSTRACT

Constant change in global climate has become the most important limiting factor to crop productivity. Asymmetrical precipitations are causing recurrent flood events around the world. Submergence is one of the most detrimental abiotic stresses for sustainable rice production in the rainfed ecosystems of Southeast Asia. Therefore, the development of submergence-tolerant rice is an essential requirement to encounter food security. Submergence tolerance in rice is governed by the major quantitative trait locus (QTL) designated as Submergence1 (Sub1) near the centromere of chromosome 9. The introduction of the Sub1 in high-yielding rice varieties producing near-isogenic lines (NILs) has shown extreme submergence tolerance. The present study aimed to understand the responses of rice genotype IR64 and its Sub1 NIL IR64 Sub1 following one week of complete submergence treatment. Submergence imposed severe nitro-oxidative stress in both the rice genotypes, consequently disrupting the cellular redox homeostasis. In this study, IR64 exhibited higher NADPH oxidase activity accompanied by increased reactive oxygen species, reactive nitrogen species, and malondialdehyde buildups and cell death under submergence. Higher accumulations of 1-Aminocyclopropane-1-carboxylic acid, gibberellic acid, and Indole-3-acetic acid were also observed in IR64 which accelerated the plant growth and root cortical aerenchyma development following submergence. In contrast, IR64 Sub1 had enhanced submergence tolerance associated with an improved antioxidant defense system with sustainable morpho-physiological activities and restricted root aerenchyma formation. The comprehensive analyses of the responses of rice genotypes with contrasting submergence tolerance may demonstrate the intricacies of rice under complete submergence and may potentially contribute to improving stress resilience by advancing our understanding of the mechanisms of submergence tolerance in rice.


Subject(s)
Oryza , Plant Growth Regulators , Quantitative Trait Loci , Oryza/genetics , Oryza/metabolism , Oryza/physiology , Quantitative Trait Loci/genetics , Plant Growth Regulators/metabolism , Oxidative Stress/genetics , Signal Transduction , Reactive Oxygen Species/metabolism , Adaptation, Physiological/genetics , Floods , Gene Expression Regulation, Plant , Genotype
12.
Plant Physiol Biochem ; 211: 108721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739961

ABSTRACT

Pongamia (Millettia pinnata Syn. Pongamia pinnata), a mangrove associate plant, exhibits good stress tolerance, making it a treasure of genetic resources for crop improvement. NAC proteins are plant-specific transcription factors, which have been elucidated to participate in the regulation and tolerance of abiotic stresses (such as salt and drought). Here, we identified a salt-induced gene from Pongamia, MpNAC1, which encodes an NAC factor sharing five highly conserved domains with other NACs and exhibits close homology to AtNAC19/AtNAC55/AtNAC72 in Arabidopsis. MpNAC1 showed nuclear localization and transcriptional activator activity. MpNAC1-overexpressing Arabidopsis exhibited significantly stronger salt and drought tolerance compared with wild-type plants. The expression levels of stress-responsive genes were activated in transgenic Arabidopsis. Furthermore, the heterologous expression of MpNAC1 also enhanced the salt and drought tolerance of transgenic rice. The major agronomic traits, such as plant height and tiller number, panicle length, grain size, and yield, were similar between the transgenic lines and wild type under normal field growth conditions. RNA-Seq analysis revealed that MpNAC1 significantly up-regulated stress-responsive genes and activated the biosynthesis of secondary metabolites such as flavonoids, resulting in increased stress tolerance. Taken together, the MpNAC1 increased salt and drought stress tolerance in transgenic plants and did not retard the plant growth and development under normal growth conditions, suggesting the potential of MpNAC1 in breeding stress-resilient crops.


Subject(s)
Arabidopsis , Droughts , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Transcription Factors , Arabidopsis/genetics , Oryza/genetics , Oryza/physiology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Salt Tolerance/genetics , Millettia/genetics , Millettia/metabolism , Stress, Physiological/genetics
13.
Plant Sci ; 345: 112119, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759757

ABSTRACT

Domain of unknown function (DUF) protein families, which are uncharacterized and numerous within the Pfam database. Recently, studies have demonstrated that DUFs played crucial roles in plant development, but whether, or how, they function in drought resistance remain unclear. In this study, we identified the Os03g0321500 gene, encoding OsbZIP72 binding protein 1 (OsBBP1), as a target of OsbZIP72 using chromatin immunoprecipitation sequencing in rice. OsBBP1 is a novel member of DUFs, which localize both in the nuclei and cytoplasm of rice protoplasts. Furthermore, yeast one-hybrid and electrophoretic mobility shift assays confirmed the specific binding between OsbZIP72 and OsBBP1. Additionally, a luciferase reporter analysis illustrated that OsbZIP72 activated the expression of OsBBP1. Drought tolerance experiments demonstrate that the OsBBP1 CRISPER-CAS9 transgenic mutants were sensitive to drought stress, but the transgenic OsBBP1 over-expressing rice plants showed enhanced drought resistance. Moreover, drought tolerance experiments in a paddy field suggested that OsBBP1 contributed to less yield or yield-related losses under drought conditions. Mechanistically, OsBBP1 might confer drought resistance by inducing more efficient reactive oxygen species (ROS) scavenging. Several ROS scavenging-related genes showed increased expression levels in OsBBP1 overexpression lines and decreased expression levels in OsBBP1 CRISPER-CAS9 mutants under drought conditions. Thus, OsBBP1, acting downstream of OsbZIP72, contributes to drought resistance and causes less yield or yield-related losses under drought conditions.


Subject(s)
Droughts , Oryza , Plant Proteins , Oryza/genetics , Oryza/physiology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Stress, Physiological/genetics , Drought Resistance
14.
Chemosphere ; 360: 142357, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768791

ABSTRACT

Soil salinization and sodication harm soil fertility and crop production, especially in dry regions. To combat this, using biochar combined with gypsum, lime, and farm manure is a promising solution for improving salt-affected soils. In a pot experiment, cotton stick biochar (BC) was applied at a rate of 20 t/ha in combination with gypsum (G), lime (L), and farm manure (F) at rates of 5 and 10 t/ha. These were denoted as BCG-5, BCL-5, BCF-5, BCG-10, BCL-10, and BCF-10. Three different types of soils with electrical conductivity (EC) to sodium adsorption ratio (SAR) ratios of 2.45:13.7, 9.45:22, and 11.56:40 were used for experimentation. The application of BCG-10 led to significant improvements in rice biomass, chlorophyll content, and overall growth. It was observed that applying BCG-10 to soils increased the membrane stability index by 75% in EC:SAR (2.45:13.7), 97% in EC:SAR (9.45:22), and 40% in EC:SAR (11.56:40) compared to respective control treatments. After BCG-10 was applied, the hydrogen peroxide in leaves dropped by 29%, 23%, and 21% in EC:SAR (2.45:13.7), EC:SAR (9.45:22), and EC:SAR (11.56:40) soils, relative to their controls, respectively. The application of BCG-10 resulted in glycine betaine increases of 60, 119, and 165% in EC: SAR (2.45:13.7), EC: SAR (9.45:22), and EC: SAR (11.56:40) soils. EC: SAR (2.45:13.7), EC: SAR (9.45:22), and EC: SAR (11.56:40) soils all had 70, 109, and 130% more ascorbic acid in BCG-10 applied treatment, respectively. The results of this experiment show that BCG-10 increased the growth and physiological traits of rice plants were exposed to different levels of salt stress. This was achieved by lowering hydrogen peroxide levels, making plant cells more stable, and increasing non-enzymatic activity.


Subject(s)
Oryza , Salt Stress , Calcium Sulfate , Manure , Oryza/physiology , Salt Tolerance , Soil/chemistry , Climate
15.
Physiol Plant ; 176(2): e14305, 2024.
Article in English | MEDLINE | ID: mdl-38659134

ABSTRACT

High night temperature stress is one of the main environmental factors affecting rice yield and quality. More and more evidence shows that microRNA (miRNA) plays an important role in various abiotic stresses. However, the molecular network of miRNA regulation on rice tolerance to high night temperatures remains unclear. Here, small RNA, transcriptome and degradome sequencing were integrated to identify differentially expressed miRNAs, genes, and key miRNA-target gene pairs in rice heat-sensitive and heat-tolerant lines at the filling stage suffering from high night temperature stress. It was discovered that there were notable differences in the relative expression of 102 miRNAs between the two rice lines under stress. Meanwhile, 5263 and 5405 mRNAs were differentially expressed in the heat-sensitive line and heat-tolerant line, and functional enrichment analysis revealed that these genes were involved in heat-related processes and pathways. The miRNAs-mRNAs target relationship was further verified by degradome sequencing. Eventually, 49 miRNAs-222 mRNAs target pairs with reverse expression patterns showed significant relative expression changes between the heat-tolerant and the heat-sensitive line, being suggested to be responsible for the heat tolerance difference of these two rice lines. Functional analysis of these 222 mRNA transcripts showed that high night temperature-responsive miRNAs targeted these mRNAs involved in many heat-related biological processes, such as transcription regulation, chloroplast regulation, mitochondrion regulation, protein folding, hormone regulation and redox process. This study identified possible miRNA-mRNA regulation relationships in response to high night temperature stress in rice and potentially contributed to heat resistance breeding of rice in the future.


Subject(s)
Gene Expression Regulation, Plant , MicroRNAs , Oryza , Oryza/genetics , Oryza/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Plant/genetics , Stress, Physiological/genetics , Hot Temperature , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , Transcriptome/genetics , Gene Expression Profiling , Heat-Shock Response/genetics
16.
BMC Plant Biol ; 24(1): 321, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654179

ABSTRACT

BACKGROUND: pOsNAR2.1:OsNAR2.1 expression could significantly increase nitrogen uptake efficiency and grain yield of rice. RESULT: This study reported the effects of overexpression of OsNAR2.1 by OsNAR2.1 promoter on physiological and agronomic traits associated with drought tolerance. In comparison to the wild-type (WT), the pOsNAR2.1:OsNAR2.1 transgenic lines exhibited a significant improvement in survival rate when subjected to drought stress and then irrigation. Under limited water supply conditions, compared with WT, the photosynthesis and water use efficiency (WUE) of transgenic lines were increased by 39.2% and 28.8%, respectively. Finally, the transgenic lines had 25.5% and 66.4% higher grain yield than the WT under full watering and limited water supply conditions, respectively. Compared with the WT, the agronomic nitrogen use efficiency (NUE) of transgenic lines increased by 25.5% and 66.4% under full watering and limited water supply conditions, and the N recovery efficiency of transgenic lines increased by 29.3% and 50.2%, respectively. The interaction between OsNAR2.1 protein and OsPLDα1 protein was verified by yeast hybrids. After drought treatment, PLDα activity on the plasma membrane of the transgenic line increased 85.0% compared with WT. CONCLUSION: These results indicated that pOsNAR2.1:OsNAR2.1 expression could improve the drought resistance of rice by increasing nitrogen uptake and regulating the expression of OsPLDα1.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Promoter Regions, Genetic , Drought Resistance , Nitrogen/metabolism , Oryza/genetics , Oryza/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified
17.
Chemosphere ; 358: 142190, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685336

ABSTRACT

Selenium pollution can lead to a decrease in crop yield and quality. However, the toxicological mechanisms of high Se concentrations on crops remain unclear. This study aimed to elucidate the physiological and proteomic molecular responses to Se stress in Oryza sativa. The results showed that under selenium stress, enzymatic activities of catalase, peroxidase, and superoxide dismutase in indica rice decreased by 61%, 28%, and 68%, respectively. The contents of non-enzymatic antioxidant substances ascorbic acid, glutathione, cysteine, proline, anthocyanidin, and flavonoids were decreased by 13%, 39%, 46%, 32%, 20%, and 5%, respectively, which significantly inhibited the antioxidant stress process of plants. At the same time, the results of proteomics analysis showed that rice seedlings, under Se stress, are involved in photosynthesis, photosynthesis-antenna proteins, carbon fixation, porphyrin metabolism, glyoxylate, and dicarboxylate. The differentially expressed proteins in metabolism and glutathione metabolism pathways showed a downward trend. It significantly inhibited the anti-oxidative stress, photosynthesis, and energy cycling process in plant cells, destroyed the homeostasis balance of rice plants, and inhibited the growth and development of rice. This finding reveals the molecular toxicological mechanism of Se stress on rice seedlings and provides a possible way to improve Se-resistant rice seedlings.


Subject(s)
Oryza , Photosynthesis , Proteomics , Selenium , Oryza/drug effects , Oryza/metabolism , Oryza/physiology , Photosynthesis/drug effects , Selenium/toxicity , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Plant Proteins/metabolism , Antioxidants/metabolism , Seedlings/drug effects , Seedlings/metabolism , Stress, Physiological/drug effects , Glutathione/metabolism , Catalase/metabolism , Soil Pollutants/toxicity , Peroxidase/metabolism
18.
Planta ; 259(6): 128, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639776

ABSTRACT

MAIN CONCLUSION: Differential expression of 128 known and 111 novel miRNAs in the panicle of Nagina 22 under terminal drought stress targeting transcription factors, stress-associated genes, etc., enhances drought tolerance and helps sustain agronomic performance under terminal drought stress. Drought tolerance is a complex multigenic trait, wherein the genes are fine-tuned by coding and non-coding components in mitigating deleterious effects. MicroRNA (miRNA) controls gene expression at post-transcriptional level either by cleaving mRNA (transcript) or by suppressing its translation. miRNAs are known to control developmental processes and abiotic stress tolerance in plants. To identify terminal drought-responsive novel miRNA in contrasting rice cultivars, we constructed small RNA (sRNA) libraries from immature panicles of drought-tolerant rice [Nagina 22 (N 22)] and drought-sensitive (IR 64) cultivars grown under control and terminal drought stress. Our analysis of sRNA-seq data resulted in the identification of 169 known and 148 novel miRNAs in the rice cultivars. Among the novel miRNAs, 68 were up-regulated while 43 were down-regulated in the panicle of N 22 under stress. Interestingly, 31 novel miRNAs up-regulated in N 22 were down-regulated in IR 64, whereas 4 miRNAs down-regulated in N 22 were up-regulated in IR 64 under stress. To detect the effects of miRNA on mRNA expression level, transcriptome analysis was performed, while differential expression of miRNAs and their target genes was validated by RT-qPCR. Targets of the differentially expressed miRNAs include transcription factors and stress-associated genes involved in cellular/metabolic/developmental processes, response to abiotic stress, programmed cell death, photosynthesis, panicle/seed development, and grain yield. Differential expression of the miRNAs could be validated in an independent set of the samples. The findings might be useful in genetic improvement of drought-tolerant rice.


Subject(s)
MicroRNAs , Oryza , MicroRNAs/genetics , MicroRNAs/metabolism , Oryza/physiology , Droughts , Gene Expression Profiling , Stress, Physiological/genetics , Transcription Factors/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Plant , Transcriptome/genetics
19.
Sci Total Environ ; 929: 172725, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663610

ABSTRACT

Solar-induced chlorophyll fluorescence (SIF) has been found to be robustly correlated with gross primary productivity (GPP) based on satellite datasets. However, it is unclear whether nitrogen affects the relationship between SIF and GPP at the canopy scale. Here, seasonal dynamics of SIF, GPP, vegetation physiology and canopy structure were measured synchronously throughout growing season along the nitrogen gradient in a rice paddy of China's subtropical region. Our results found that the slope of SIF against GPP was not constant, showing an increasing trend from low to high nitrogen levels. The sensitivity of SIF to nitrogen was larger than that of GPP. Nitrogen enrichment versus deficiency had asymmetrical effects on the SIF-GPP relationship. The steeper slope of SIF against GPP under high nitrogen level was mainly attributed to the promotion of canopy fluorescence efficiency (ΦF) rather than the variation of canopy fluorescence escape probability (Fesc). These results emphasize the vital role of nitrogen in exploring mechanisms underlying SIF dynamics and decoding GPP from SIF.


Subject(s)
Chlorophyll , Nitrogen , China , Fluorescence , Sunlight , Oryza/physiology , Oryza/growth & development , Photosynthesis , Environmental Monitoring
20.
J Plant Physiol ; 297: 154257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688043

ABSTRACT

The chemical form and physiological activity of iron (Fe) in soil are dependent on soil pH and redox potential (Eh), and Fe levels in soils are frequently elevated to the point of causing Fe toxicity in plants, with inhibition of normal physiological activities and of growth and development. In this review, we describe how iron toxicity triggers important physiological changes, including nitric-oxide (NO)-mediated potassium (K+) efflux at the tips of roots and accumulation of reactive oxygen species (ROS) and reactive nitrogen (RNS) in roots, resulting in physiological stress. We focus on the root system, as the first point of contact with Fe in soil, and describe the key processes engaged in Fe transport, distribution, binding, and other mechanisms that are drawn upon to defend against high-Fe stress. We describe the root-system regulation of key physiological processes and of morphological development through signaling substances such as ethylene, auxin, reactive oxygen species, and nitric oxide, and discuss gene-expression responses under high Fe. We especially focus on studies on the physiological and molecular mechanisms in rice and Arabidopsis under high Fe, hoping to provide a valuable theoretical basis for improving the ability of crop roots to adapt to soil Fe toxicity.


Subject(s)
Iron , Plant Roots , Iron/metabolism , Iron/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Arabidopsis/physiology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Oryza/physiology , Oryza/metabolism , Oryza/genetics , Oryza/drug effects , Gene Expression Regulation, Plant/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...