Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 520
Filter
1.
Virus Res ; 345: 199390, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710287

ABSTRACT

Cnaphalocrocis medinalis granulovirus (CnmeGV), belonging to Betabaculovirus cnamedinalis, can infect the rice pest, the rice leaf roller. In 1979, a CnmeGV isolate, CnmeGV-EP, was collected from Enping County, China. In 2014, we collected another CnmeGV isolate, CnmeGV-EPDH3, at the same location and obtained the complete virus genome sequence using Illumina and ONT sequencing technologies. By combining these two virus isolates, we updated the genome annotation of CnmeGV and conducted an in-depth analysis of its genome features. CnmeGV genome contains abundant tandem repeat sequences, and the repeating units in the homologous regions (hrs) exhibit overlapping and nested patterns. The genetic variations within EPDH3 population show the high stability of CnmeGV genome, and tandem repeats are the only region of high genetic variation in CnmeGV genome replication. Some defective viral genomes formed by recombination were found within the population. Comparison analysis of the two virus isolates collected from Enping showed that the proteins encoded by the CnmeGV-specific genes were less conserved relative to the baculovirus core genes. At the genomic level, there are a large number of SNPs and InDels between the two virus isolates, especially in and around the bro genes and hrs. Additionally, we discovered that CnmeGV acquired a segment of non-ORF sequence from its host, which does not provide any new proteins but rather serves as redundant genetic material integrated into the viral genome. Furthermore, we observed that the host's transposon piggyBac has inserted into some virus genes. Together, dsDNA viruses could acquire non-coding genetic material from their hosts to expand the size of their genomes. These findings provide new insights into the evolution of dsDNA viruses.


Subject(s)
Genetic Variation , Genome, Viral , Animals , Phylogeny , China , Granulovirus/genetics , Granulovirus/classification , Granulovirus/isolation & purification , Whole Genome Sequencing , Oryza/virology , Tandem Repeat Sequences/genetics , Plant Diseases/virology , Recombination, Genetic
2.
Arch Virol ; 169(6): 128, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802709

ABSTRACT

A novel negative-sense single-stranded RNA mycovirus, designated as "Magnaporthe oryzae mymonavirus 1" (MoMNV1), was identified in the rice blast fungus Magnaporthe oryzae isolate NJ39. MoMNV1 has a single genomic RNA segment consisting of 10,515 nucleotides, which contains six open reading frames. The largest open reading frame contains 5837 bases and encodes an RNA replicase. The six open reading frames have no overlap and are arranged linearly on the genome, but the spacing of the genes is small, with a maximum of 315 bases and a minimum of 80 bases. Genome comparison and phylogenetic analysis indicated that MoMNV1 is a new member of the genus Penicillimonavirus of the family Mymonaviridae.


Subject(s)
Fungal Viruses , Genome, Viral , Open Reading Frames , Oryza , Phylogeny , Plant Diseases , RNA Viruses , RNA, Viral , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , Oryza/microbiology , Oryza/virology , Plant Diseases/microbiology , Plant Diseases/virology , RNA, Viral/genetics , Ascomycota/virology , Ascomycota/genetics , Viral Proteins/genetics , Magnaporthe/virology , Magnaporthe/genetics
3.
mBio ; 15(5): e0321123, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564693

ABSTRACT

Most arthropod-borne viruses produce intermittent epidemics in infected plants. However, the underlying mechanisms of these epidemics are unclear. Here, we demonstrated that rice stripe mosaic virus (RSMV), a viral pathogen, significantly increases the mortality of its overwintering vector, the leafhopper species Recilia dorsalis. Cold-stress assays indicated that RSMV reduces the cold tolerance of leafhoppers, a process associated with the downregulation of leafhopper cuticular protein genes. An RSMV-derived small RNA (vsiR-t00355379) was found to facilitate the downregulation of a leafhopper endocuticle gene that is mainly expressed in the abdomen (named RdABD-5) and is conserved across dipteran species. The downregulation of RdABD-5 expression in R. dorsalis resulted in fewer and thinner endocuticle lamellae, leading to decreased cold tolerance. This effect was correlated with a reduced incidence rate of RSMV in early-planted rice plants. These findings contribute to our understanding of the mechanism by which viral pathogens reduce cold tolerance in arthropod vectors and suggest an approach to managing the fluctuating prevalence of arboviruses. IMPORTANCE: Increasing arthropod vector dispersal rates have increased the susceptibility of crop to epidemic viral diseases. However, the incidence of some viral diseases fluctuates annually. In this study, we demonstrated that a rice virus reduces the cold tolerance of its leafhopper vector, Recilia dorsalis. This effect is linked to the virus-derived small RNA-mediated downregulation of a gene encoding a leafhopper abdominal endocuticle protein. Consequently, the altered structural composition of the abdominal endocuticle reduces the overwinter survival of leafhoppers, resulting in a lower incidence of RSMV infection in early-planted rice plants. Our findings illustrate the important roles of RNA interference in virus-vector insect-environment interactions and help explain the annual fluctuations of viral disease epidemics in rice fields.


Subject(s)
Cold Temperature , Hemiptera , Oryza , Plant Diseases , Animals , Hemiptera/virology , Plant Diseases/virology , Oryza/virology , Tenuivirus/genetics , Tenuivirus/physiology , Insect Vectors/virology , Insect Vectors/physiology
4.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674051

ABSTRACT

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform. However, it is necessary to determine the N-glycan structures of an RBD to investigate its efficacy and functionality as a vaccine candidate or diagnostic reagent. Here, we analyzed the N-glycan profile of the RBD produced in rice callus. Of the two potential N-glycan acceptor sites, we found that one was not utilized and the other contained a mixture of complex-type N-glycans. This differs from the heterogeneous mixture of N-glycans found when an RBD is expressed in other hosts, including Nicotiana benthamiana. By comparing the glycosylation profiles of different hosts, we can select platforms that produce RBDs with the most beneficial N-glycan structures for different applications.


Subject(s)
Oryza , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Oryza/metabolism , Oryza/genetics , Oryza/virology , Polysaccharides/metabolism , Glycosylation , Humans , SARS-CoV-2/metabolism , Protein Domains , Protein Binding , Plants, Genetically Modified/metabolism , COVID-19/virology , COVID-19/metabolism
5.
Pest Manag Sci ; 80(7): 3684-3690, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38459962

ABSTRACT

BACKGROUND: The Southern rice black-streaked dwarf virus (SRBSDV) transmitted by Sogatella furcifera constitutes a threat to sustainable rice production. However, most rice varieties are highly vulnerable to SRBSDV, whereas the occurrence of the viral disease varies significantly under field conditions. This study aimed to evaluate the potential of rice varietal resistance to S. furcifera in reducing SRBSDV transmission. RESULTS: Among the five rice varieties, Zhongzheyou8 and Deyou108 exhibited high resistance to S. furcifera, Baixiangnuo33 was susceptible, and TN1 and Diantun502 were highly susceptible. The S. furcifera generally showed non-preference for and low feeding on the Zhongzheyou8 and Deyou108 plants, which may explain the resistance of these varieties to S. furcifera. Transmission of SRBSDV by S. furcifera was significantly impaired on the resistant varieties, both inoculation and acquisition rates were much lower on Zhongzheyou8 than on TN1. The short durations of S. furcifera salivation and phloem-related activities and the low S. furcifera feeding amount may explain the reduced SRBSDV inoculation and acquisition rates associated with Zhongzheyou8. Spearman's rank correlation revealed a significant negative correlation between S. furcifera resistance and SRBSDV transmission among the tested varieties. CONCLUSION: The results indicate that rice varietal resistance to the vector S. furcifera hinders SRBSDV transmission, which is largely associated with the host plant selection and feeding behaviors of the vector. The current findings shed light on the management of the SRBSDV viral disease through incorporation of S. furcifera resistant rice varieties in the management protocol. © 2024 Society of Chemical Industry.


Subject(s)
Hemiptera , Oryza , Plant Diseases , Oryza/virology , Plant Diseases/virology , Animals , Hemiptera/virology , Hemiptera/physiology , Insect Vectors/virology , Insect Vectors/physiology , Disease Resistance , Reoviridae/physiology , Plant Viruses/physiology
6.
Plant Physiol ; 195(1): 850-864, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38330080

ABSTRACT

Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs.


Subject(s)
Oryza , Plant Diseases , Plant Immunity , Plant Proteins , Reoviridae , Tenuivirus , Viral Proteins , Oryza/virology , Oryza/immunology , Oryza/genetics , Plant Diseases/virology , Plant Diseases/immunology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/immunology , Tenuivirus/physiology , Tenuivirus/pathogenicity , Plant Viruses/physiology , CCAAT-Binding Factor/metabolism , CCAAT-Binding Factor/genetics , Disease Resistance/genetics
7.
Trends Plant Sci ; 29(6): 613-615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38114353

ABSTRACT

Maize rough dwarf disease (MRDD) threatens the sustainable production of major cereal crops. Recently, Xu et al. reported a new resistance gene, ZmGLK36, which promotes MRDD resistance in maize by increasing jasmonic acid (JA)-mediated defence. This discovery provides opportunities to develop resistance to rice black-streaked dwarf virus (RBSDV) in other cereal crops such as rice and wheat.


Subject(s)
Disease Resistance , Oryza , Plant Diseases , Plant Proteins , Triticum , Oryza/virology , Oryza/genetics , Plant Diseases/virology , Triticum/virology , Triticum/genetics , Disease Resistance/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Oxylipins/metabolism , Cyclopentanes/metabolism , Zea mays/virology , Zea mays/genetics , Gene Expression Regulation, Plant , Plant Viruses/physiology
8.
Proc Natl Acad Sci U S A ; 119(36): e2207848119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037368

ABSTRACT

Exosomes play a key role in virus exocytosis and transmission. The exportin family is usually responsible for cargo nucleocytoplasmic trafficking, and they are frequently found in exosomes. However, the function of exportins sorted in exosomes remains unknown. Here, we successfully isolated "cup holder"-like exosomes from the saliva of ∼30,000 small brown planthoppers, which are vectors of rice stripe virus (RSV). RSV virions were packed in comparatively large exosomes. Four viral genomic RNAs at a certain ratio were identified in the saliva exosomes. The virions contained in the saliva exosomes were capable of replicating and causing disease in rice plants. Interference with each phase of the insect exosome system affected the transmission of RSV from the insect vectors to rice plants. Fragmented exportin 6 was coimmunoprecipitated with viral nucleocapsid protein in saliva and sorted to exosomes via interactions with the cargo sorting protein VPS37a. When the expression of exportin 6 was knocked down, the amounts of RSV secreted in saliva and rice plants were reduced by 60% and 74%, respectively. These results showed that exportin 6 acted as a vehicle for transporting RSV into exosomes to overcome the barrier of insect salivary glands for horizontal transmission. Exportin 6 would represent an ideal target that could be manipulated to control the outbreak of insect-borne viruses in the future.


Subject(s)
Exosomes , Hemiptera , Karyopherins , Oryza , Tenuivirus , Animals , Exosomes/virology , Hemiptera/virology , Insect Vectors/virology , Karyopherins/metabolism , Oryza/virology , Plant Diseases/virology , Tenuivirus/pathogenicity
9.
J Mol Biol ; 434(16): 167715, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35798161

ABSTRACT

Viruses of the sobemovirus genus are plant viruses, most of which generate very important agricultural and financial losses. Among them, the rice yellow mottle virus (RYMV) is one of the most damaging pathogens devastating rice fields in Africa. RYMV infectivity and propagation rely on its protein P1, identified as a key movement and potential long-distance RNA silencing suppressor. Here we describe P1's complete 3D structure and dynamics obtained by an integrative approach combining X-Ray crystallography and NMR spectroscopy. We show that P1 is organized in two semi-independent and topologically unrelated domains, each harboring an original zinc finger. The two domains exhibit different affinities for zinc and sensitivities to oxidoreduction conditions, making the C-terminal P1 region a potential labile sensor of the plant redox status. An additional level of regulation resides on the capacity of P1 to oligomerize through its N-terminal domain. Coupling P1 structure information with site-directed mutagenesis and plant functional assays, we identified key residues in each zinc domain essential for infectivity and spread in rice tissues. Altogether, our results provide the first complete structure of a sobemoviral P1 movement protein and highlight structural and dynamical properties that may serve RYMV functions to infect and invade its host plant.


Subject(s)
Oryza , Plant Viruses , Viral Proteins , Zinc Fingers , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular , Oryza/virology , Plant Viruses/pathogenicity , Protein Domains , Viral Proteins/chemistry , Viral Proteins/genetics , Zinc/metabolism
10.
J Virol ; 96(7): e0214021, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35254088

ABSTRACT

Most plant viruses require insect vectors for transmission. One of the key steps for the transmission of persistent-circulative plant viruses is overcoming the gut barrier to enter epithelial cells. To date, little has been known about viral cofactors in gut epithelial cells of insect vectors. Here, we identified flotillin 2 as a plasma membrane protein that facilitates the infection of rice stripe virus (RSV) in its vector, the small brown planthopper. Flotillin 2 displayed a prominent plasma membrane location in midgut epithelial cells. The nucleocapsid protein of RSV and flotillin 2 colocalized on gut microvilli, and a nanomolar affinity existed between the two proteins. Knockout of flotillin 2 impeded the entry of virions into epithelial cells, resulting in a 57% reduction of RSV levels in planthoppers. The knockout of flotillin 2 decreased disease incidence in rice plants fed by viruliferous planthoppers from 40% to 11.7%. Furthermore, flotillin 2 mediated the infection of southern rice black-streaked dwarf virus in its vector, the white-backed planthopper. This work implies the potential of flotillin 2 as a target for controlling the transmission of rice stripe disease. IMPORTANCE Plant viral diseases are a major threat to world agriculture. The transmission of 80% of plant viruses requires vector insects, and 54% of vector-borne plant viruses are persistent-circulative viruses, which must overcome the barriers of gut cells with the help of proteins on the cell surface. Here, we identified flotillin 2 as a membrane protein that mediates the cell entry of rice stripe virus in its vector insect, small brown planthopper. Flotillin 2 displays a prominent cellular membrane location in midgut cells and can specifically bind to virions. The loss of flotillin 2 impedes the entry of virions into the midgut cells of vector insects and substantially suppresses viral transmission to rice. Therefore, flotillin 2 may be a promising target gene for manipulation in vector insects to control the transmission of rice stripe disease and perhaps that of other rice virus diseases in the future.


Subject(s)
Insect Proteins , Membrane Proteins , Oryza , Plant Viruses , Tenuivirus , Animals , Hemiptera/virology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Vectors/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Oryza/virology , Plant Diseases/virology , Plant Viruses/physiology , Tenuivirus/genetics , Tenuivirus/metabolism
11.
Viruses ; 14(2)2022 02 14.
Article in English | MEDLINE | ID: mdl-35215984

ABSTRACT

Ovarian tumor domain (OTU)-containing deubiquitinating enzymes (DUBs) are an essential DUB to maintain protein stability in plants and play important roles in plant growth development and stress response. However, there is little genome-wide identification and analysis of the OTU gene family in rice. In this study, we identified 20 genes of the OTU family in rice genome, which were classified into four groups based on the phylogenetic analysis. Their gene structures, conserved motifs and domains, chromosomal distribution, and cis elements in promoters were further studied. In addition, OTU gene expression patterns in response to plant hormone treatments, including SA, MeJA, NAA, BL, and ABA, were investigated by RT-qPCR analysis. The results showed that the expression profile of OsOTU genes exhibited plant hormone-specific expression. Expression levels of most of the rice OTU genes were significantly changed in response to rice stripe virus (RSV), rice black-streaked dwarf virus (RBSDV), Southern rice black-streaked dwarf virus (SRBSDV), and Rice stripe mosaic virus (RSMV). These results suggest that the rice OTU genes are involved in diverse hormone signaling pathways and in varied responses to virus infection, providing new insights for further functional study of OsOTU genes.


Subject(s)
Deubiquitinating Enzymes/genetics , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/virology , Plant Growth Regulators/metabolism , Genome-Wide Association Study , Phylogeny , Plant Diseases/virology , Plant Growth Regulators/pharmacology , Plant Viruses/pathogenicity , Real-Time Polymerase Chain Reaction , Reoviridae/pathogenicity , Tenuivirus/pathogenicity
12.
J Virol ; 96(2): e0171521, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34757837

ABSTRACT

Alternative splicing (AS) is a frequent posttranscriptional regulatory event occurring in response to various endogenous and exogenous stimuli in most eukaryotic organisms. However, little is known about the effects of insect-transmitted viruses on AS events in insect vectors. The present study used third-generation sequencing technology and RNA sequencing (RNA-Seq) to evaluate the AS response in the small brown planthopper Laodelphax striatellus to rice stripe virus (RSV). The full-length transcriptome of L. striatellus was obtained using single-molecule real-time sequencing technology (SMRT). Posttranscriptional regulatory events, including AS, alternative polyadenylation, and fusion transcripts, were analyzed. A total of 28,175 nonredundant transcript isoforms included 24,950 transcripts assigned to 8,500 annotated genes of L. striatellus, and 5,000 of these genes (58.8%) had AS events. RNA-Seq of the gut samples of insects infected by RSV for 8 d identified 3,458 differentially expressed transcripts (DETs); 2,185 of these DETs were transcribed from 1,568 genes that had AS events, indicating that 31.4% of alternatively spliced genes responded to RSV infection of the gut. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, experienced exon skipping, resulting in three transcript isoforms. These three isoforms differentially responded to RSV infection during development and in various organs. Injection of double-stranded RNAs targeting all or two isoforms indicated that three or at least two JNK2 isoforms facilitated RSV accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors. IMPORTANCE Alternative splicing (AS) is a regulatory mechanism that occurs after gene transcription. AS events can enrich protein diversity to promote the reactions of the organisms to various endogenous and exogenous stimulations. It is not known how insect vectors exploit AS events to cope with transmitted viruses. The present study used third-generation sequencing technology to obtain the profile of AS events in the small brown planthopper Laodelphax striatellus, which is an efficient vector for rice stripe virus (RSV). The results indicated that 31.4% of alternatively spliced genes responded to RSV infection in the gut of planthoppers. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, produced three transcript isoforms by AS. These three isoforms showed different responses to RSV infection, and at least two isoforms facilitated viral accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors.


Subject(s)
Alternative Splicing , Hemiptera/virology , Insect Vectors/virology , Tenuivirus/physiology , Animals , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/virology , Gene Fusion , Hemiptera/genetics , Insect Proteins/genetics , Insect Vectors/genetics , Mitogen-Activated Protein Kinase 9/genetics , Oryza/virology , Plant Diseases/virology , Polyadenylation , Protein Isoforms , Transcriptome/genetics
13.
Viruses ; 13(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34960733

ABSTRACT

Viral pathogens are a major threat to stable crop production. Using a backcross strategy, we find that integrating a dominant brown planthopper (BPH) resistance gene Bph3 into a high-yield and BPH-susceptible indica rice variety significantly enhances BPH resistance. However, when Bph3-carrying backcross lines are infested with BPH, these BPH-resistant lines exhibit sterile characteristics, displaying panicle enclosure and failure of seed production at their mature stage. As we suspected, BPH-mediated viral infections could cause the observed sterile symptoms, and we characterized rice-infecting viruses using deep metatranscriptomic sequencing. Our analyses revealed eight novel virus species and five known viruses, including a highly divergent virus clustered within a currently unclassified family. Additionally, we characterized rice plant antiviral responses using small RNA sequencing. The results revealed abundant virus-derived small interfering RNAs in sterile rice plants, providing evidence for Dicer-like and Argonaute-mediated immune responses in rice plants. Together, our results provide insights into the diversity of viruses in rice plants, and our findings suggest that multiple virus infections occur in rice plants.


Subject(s)
Hemiptera/virology , Oryza/virology , Plant Diseases/virology , RNA Viruses/genetics , RNA Viruses/isolation & purification , Animals , Disease Resistance , Hemiptera/physiology , Oryza/genetics , Oryza/immunology , Oryza/parasitology , Plant Diseases/parasitology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Plants, Genetically Modified/parasitology , Plants, Genetically Modified/virology , RNA Viruses/classification , Sequence Analysis, RNA , Transcriptome
14.
Int J Mol Sci ; 22(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34638638

ABSTRACT

Many vector-borne viruses possess the ability to manipulate vector behaviors to facilitate their transmission. There is evidence that the mechanism of this phenomenon has been described in part as direct manipulation through regulating vector chemosensation. Rice stripe virus (RSV) is transmitted by the small brown planthopper, Laodelphax striatellus (Fallen), in a persistent, circulative-propagative manner. The effect of RSV infection on the olfactory system of L. striatellus has not been fully elucidated. Here, we employed transcriptomic sequencing to analyze gene expression profiles in antennae, legs and heads (without antennae) from L. striatellus females and males with/without RSV infection. Comparisons of the differentially expressed genes (DEGs) among antennae, legs and heads indicated that tissue-specific changes in the gene expression profile were greater than sex-specific changes. A total of 17 olfactory related genes were differentially expressed in viruliferous antennae as compared to nonviruliferous antennae, including LstrOBP4/9, LstrCSP1/2/5, LstrGR28a/43a/43a-1, LstrIR1/2/NMDA1, LstrOR67/85e/56a/94 and LstrSNMP2/2-2. There are 23 olfactory related DEGs between viruliferous and nonviruliferous legs, including LstrOBP2/3/4/12/13, LstrCSP13/5/10, LstrIR1/2/Delta2/Delta2-1/kainate2/NMDA2, LstrOR12/21/31/68 and LstrORco. A low number of olfactory related DEGs were found between viruliferous and nonviruliferous heads, including LstrCSP1, LstrOBP2, LstrOR67 and LstrSNMP2-2. Among these DEGs, the expression patterns of LstrOBP2, LstrOBP3 and LstrOBP9 in three tissues was validated by quantitative real-time PCR. The demonstration of overall changes in the genes in L. striatellus' chemoreception organs in response to RSV infection would not only improve our understanding of the effect of RSV on the olfactory related genes of insect vectors but also provide insights into developing approaches to control the plant virus transmission and spread as well as pest management in the future.


Subject(s)
Chemoreceptor Cells/physiology , Hemiptera/genetics , Hemiptera/virology , Oryza/genetics , Oryza/virology , Tenuivirus/genetics , Transcriptome/genetics , Animals , Gene Expression Profiling/methods , Insect Proteins/genetics , Insect Vectors/genetics , Insect Vectors/virology , Plant Diseases/virology , Plant Viruses/genetics
15.
Viruses ; 13(10)2021 10 18.
Article in English | MEDLINE | ID: mdl-34696530

ABSTRACT

Rice black-streaked dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is a serious constraint in Chinese rice production. Breeding disease-resistant varieties through multigene aggregation is considered an effective way to control diseases, but few disease-resistant resources have been characterized thus far. To develop novel resources for resistance to RBSDV through CRISPR/Cas9-mediated genome editing, a guide RNA sequence targeting exon 1 of eIF4G was designed and cloned into a binary vector, pHUE401. This recombinant vector was used to generate mutations in the rice cultivar Nipponbare via Agrobacterium-mediated transformation. This approach produced heritable homozygous mutations in the transgene-free T1 generation. Sequence analysis of the eIF4G target region from T1 transgenic plants identified 3 bp deletion mutants, and analysis of the predicted amino acid sequence identified one amino acid deletion in mutants that possess near full-length eIF4G. Furthermore, our data suggest that eIF4G may plays an important role in rice normal development, as there were no eIF4G knock-out homozygous mutants in T1 generation plants. When homozygous mutant lines were inoculated with RBSDV, they exhibited enhanced tolerance to virus infection, without visibly affecting plant growth and development. However, the eif4g mutant plants showed the same sensitivity to rice stripe virus (RSV) infection as wild-type plants. Notably, the wild-type and mutant N-termini of eIF4G interacted directly with RBSDV P8 in yeast and in planta. Additionally, compared to wild-type plants, the eIF4G transcript level was reduced twofold in the mutant plants. These results indicate that site-specific mutation of rice eIF4G successfully conferred partial resistance specific to RBSDV associated with less transcription of eIF4G in mutants. Therefore, this study demonstrates that the novel eIF4G alleles generated by CRISPR/Cas9 represent valuable disease-resistant resources that can be used to develop RBSDV-resistant varieties.


Subject(s)
Eukaryotic Initiation Factor-4G/genetics , Oryza/genetics , Plant Viruses/genetics , Disease Resistance/genetics , Eukaryotic Initiation Factor-4G/metabolism , Food, Genetically Modified , Gene Editing/methods , Oryza/virology , Plant Breeding/methods , Plant Diseases/virology , Plant Viruses/pathogenicity , Plants, Genetically Modified/virology
16.
Mol Plant Pathol ; 22(10): 1256-1270, 2021 10.
Article in English | MEDLINE | ID: mdl-34390118

ABSTRACT

Vesicular trafficking is an important dynamic process that facilitates intracellular transport of biological macromolecules and their release into the extracellular environment. However, little is known about whether or how plant viruses utilize intracellular vesicles to their advantage. Here, we report that southern rice black-streaked dwarf virus (SRBSDV) enters intracellular vesicles in epithelial cells of its insect vector by engaging VAMP7 and Vti1a proteins in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. The major outer capsid protein P10 of SRBSDV was shown to interact with VAMP7 and Vti1a of the white-backed planthopper and promote the fusion of vesicles into a large vesicle, which finally fused with the plasma membrane to release virions from midgut epithelial cells. Downregulation of the expression of either VAMP7 or Vti1a did not affect viral entry and accumulation in the gut, but significantly reduced viral accumulation in the haemolymph. It also did not affect virus acquisition, but significantly reduced the virus transmission efficiency to rice. Our data reveal a critical mechanism by which a plant reovirus hijacks the vesicle transport system to overcome the midgut escape barrier in vector insects and provide new insights into the role of the SNARE complex in viral transmission and the potential for developing novel strategies of viral disease control.


Subject(s)
Hemiptera , Oryza , Plant Diseases/virology , Reoviridae/pathogenicity , SNARE Proteins , Animals , Hemiptera/virology , Insect Vectors/virology , Oryza/virology
17.
Viruses ; 13(8)2021 07 30.
Article in English | MEDLINE | ID: mdl-34452366

ABSTRACT

Southern rice black-streaked dwarf virus (SRBSDV), a Fijivirus in the Reoviridae family, is transmitted by the white-backed planthopper (Sogatella furcifera, WBPH), a long-distance migratory insect, and presents a serious threat to rice production in Asia. It was first discovered in China's Guangdong Province in 2001 and has been endemic in the south of China and north of Vietnam for two decades, with serious outbreaks in 2009, 2010, and 2017. In this study, we evaluated the resistance of 10 dominant rice varieties from southern China, where the virus overwinters and accumulates as a source of early spring reinfection, against this virus by artificial inoculation. The results showed that in all tested varieties there was no immune resistance, but there were differences in the infection rate, with incidence rates from 21% to 90.7%, and in symptom severity, with plant weight loss from 66.71% to 91.20% and height loss from 34.1% to 65.06%. Additionally, and valuably, the virus titer and the insect vector virus acquisition potency from diseased plants were significantly different among the varieties: an over sixfold difference was determined between resistant and susceptible varieties, and there was a positive correlation between virus accumulation and insect vector virus acquisition. The results can provide a basis for the selection of rice varieties in southern China to reduce the damage of SRBSDV in this area and to minimize the reinfection source and epidemics of the virus in other rice-growing areas.


Subject(s)
Microbial Viability , Reoviridae/drug effects , Reoviridae/genetics , Animals , China , Hemiptera/virology , Insect Vectors/virology , Oryza/virology , Plant Diseases/virology , Reoviridae/classification , Viral Load
18.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34290144

ABSTRACT

The importin α family belongs to the conserved nuclear transport pathway in eukaryotes. However, the biological functions of importin α in the plasma membrane are still elusive. Here, we report that importin α, as a plasma membrane-associated protein, is exploited by the rice stripe virus (RSV) to enter vector insect cells, especially salivary gland cells. When the expression of three importin α genes was simultaneously knocked down, few virions entered the salivary glands of the small brown planthopper, Laodelphax striatellus Through hemocoel inoculation of virions, only importin α2 was found to efficiently regulate viral entry into insect salivary-gland cells. Importin α2 bound the nucleocapsid protein of RSV with a relatively high affinity through its importin ß-binding (IBB) domain, with a dissociation constant KD of 9.1 µM. Furthermore, importin α2 and its IBB domain showed a distinct distribution in the plasma membrane through binding to heparin in heparan sulfate proteoglycan. When the expression of importin α2 was knocked down in viruliferous planthoppers or in nonviruliferous planthoppers before they acquired virions, the viral transmission efficiency of the vector insects in terms of the viral amount and disease incidence in rice was dramatically decreased. These findings not only reveal the specific function of the importin α family in the plasma membrane utilized by viruses, but also provide a promising target gene in vector insects for manipulation to efficiently control outbreaks of rice stripe disease.


Subject(s)
Cell Membrane/enzymology , Hemiptera/virology , Karyopherins/metabolism , Salivary Glands/virology , Tenuivirus/physiology , Virus Internalization , Animals , Cell Membrane/metabolism , Insect Vectors/virology , Karyopherins/genetics , Oryza/virology , Plant Diseases/virology
19.
Plant J ; 107(4): 1183-1197, 2021 08.
Article in English | MEDLINE | ID: mdl-34153146

ABSTRACT

Ferredoxin 1 (FD1) accepts and distributes electrons in the electron transfer chain of plants. Its expression is universally downregulated by viruses and its roles in plant immunity have been brought into focus over the past decade. However, the mechanism by which viruses regulate FD1 remains to be defined. In a previous report, we found that the expression of Nicotiana benthamiana FD1 (NbFD1) was downregulated following infection with potato virus X (PVX) and that NbFD1 regulates callose deposition at plasmodesmata to play a role in defense against PVX infection. We now report that NbFD1 is downregulated by rice stripe virus (RSV) infection and that silencing of NbFD1 also facilitates RSV infection, while viral infection was inhibited in a transgenic line overexpressing NbFD1, indicating that NbFD1 also functions in defense against RSV infection. Next, a RSV-derived small interfering RNA was identified that contributes to the downregulation of FD1 transcripts. Further analysis showed that the abscisic acid (ABA) which accumulates in RSV-infected plants also represses NbFD1 transcription. It does this by stimulating expression of ABA insensitive 5 (ABI5), which binds the ABA response element motifs in the NbFD1 promoter, resulting in negative regulation. Regulation of FD1 by ABA was also confirmed in RSV-infected plants of the natural host rice. The results therefore suggest a mechanism by which virus regulates chloroplast-related genes to suppress their defense roles.


Subject(s)
Ferredoxins/genetics , Nicotiana/virology , Oryza/virology , Plant Proteins/genetics , Tenuivirus/pathogenicity , Abscisic Acid , Arabidopsis/genetics , Disease Resistance/genetics , Down-Regulation , Ferredoxins/metabolism , Gene Expression Regulation, Plant , Host-Pathogen Interactions/physiology , Oryza/genetics , Oryza/metabolism , Plant Diseases/virology , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , RNA, Small Interfering , Tenuivirus/genetics , Nicotiana/genetics , Nicotiana/metabolism
20.
Genome Biol ; 22(1): 189, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34167554

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) is the most common RNA modification in eukaryotes and has been implicated as a novel epigenetic marker that is involved in various biological processes. The pattern and functional dissection of m6A in the regulation of several major human viral diseases have already been reported. However, the patterns and functions of m6A distribution in plant disease bursting remain largely unknown. RESULTS: We analyse the high-quality m6A methylomes in rice plants infected with two devastating viruses. We find that the m6A methylation is mainly associated with genes that are not actively expressed in virus-infected rice plants. We also detect different m6A peak distributions on the same gene, which may contribute to different antiviral modes between rice stripe virus or rice black-stripe dwarf virus infection. Interestingly, we observe increased levels of m6A methylation in rice plant response to virus infection. Several antiviral pathway-related genes, such as RNA silencing-, resistance-, and fundamental antiviral phytohormone metabolic-related genes, are also m6A methylated. The level of m6A methylation is tightly associated with its relative expression levels. CONCLUSIONS: We revealed the dynamics of m6A modification during the interaction between rice and viruses, which may act as a main regulatory strategy in gene expression. Our investigations highlight the significance of m6A modifications in interactions between plant and viruses, especially in regulating the expression of genes involved in key pathways.


Subject(s)
Adenine/analogs & derivatives , Oryza/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Plant Viruses/pathogenicity , RNA, Plant/genetics , Tenuivirus/pathogenicity , Adenine/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Host-Pathogen Interactions/genetics , Methylation , Molecular Sequence Annotation , Oryza/metabolism , Oryza/virology , Plant Diseases/virology , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Proteins/classification , Plant Proteins/metabolism , Plant Viruses/growth & development , Plant Viruses/metabolism , RNA Processing, Post-Transcriptional , RNA, Plant/metabolism , Tenuivirus/growth & development , Tenuivirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...