Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 44(44): 19314-29, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26491831

ABSTRACT

Eight new ruthenium and five new osmium p-cymene half-sandwich complexes have been synthesized, characterized and evaluated for antimalarial activity. All complexes contain ligands that are based on a 4-chloroquinoline framework related to the antimalarial drug chloroquine. Ligands HL(1-8) are salicylaldimine derivatives, where HL(1) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine, and HL(2-8) contain non-hydrogen substituents in the 3-position of the salicylaldimine ring, viz. F, Cl, Br, I, NO2, OMe and (t)Bu for HL(2-8), respectively. Ligand HL(9) is also a salicylaldimine-containing ligand with substitutions in both 3- and 5-positions of the salicylaldimine moiety, i.e. N-(2-((2-hydroxy-3,5-di-tert-butylphenyl)methyl-imino)ethyl)-7-chloroquinolin-4-amine, while HL(10) is N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) The half sandwich metal complexes that have been investigated are [Ru(η(6)-cym)(L(1-8))Cl] (Ru-1-Ru-8, cym = p-cymene), [Os(η(6)-cym)(L(1-3,5,7))Cl] (Os-1-Os-3, Os-5, and Os-7), [M(η(6)-cym)(HL(9))Cl2] (M = Ru, Ru-HL(9); M = Os, Os-HL(9)) and [M(η(6)-cym)(L(10))Cl]Cl (M = Ru, Ru-10; M = Os, Os-10). In complexes Ru-1-Ru-8 and Ru-10, Os-1-Os-3, Os-5 and Os-7 and Os-10, the ligands were found to coordinate as bidentate N,O- and N,N-chelates, while in complexes Ru-HL(9) and Os-HL(9), monodentate coordination of the ligands through the quinoline nitrogen was established. The antimalarial activity of the new ligands and complexes was evaluated against chloroquine sensitive (NF54 and D10) and chloroquine resistant (Dd2) Plasmodium falciparum malaria parasite strains. Coordination of ruthenium and osmium arene moieties to the ligands resulted in lower antiplasmodial activities relative to the free ligands, but the resistance index is better for the ruthenium complexes compared to chloroquine. Overall, osmium complexes appeared to be less active than the corresponding ruthenium complexes.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Chloroquine/analogs & derivatives , Chloroquine/pharmacology , Osmium Compounds/chemical synthesis , Osmium Compounds/pharmacology , Ruthenium Compounds/chemical synthesis , Ruthenium Compounds/pharmacology , Animals , Chloroquine/chemical synthesis , Ligands , Models, Molecular , Molecular Structure , Plasmodium falciparum/drug effects , Structure-Activity Relationship , X-Ray Diffraction
2.
Inorg Chem ; 49(17): 7953-63, 2010 Sep 06.
Article in English | MEDLINE | ID: mdl-20704358

ABSTRACT

Hydroxypyr(id)ones are versatile ligands for the synthesis of organometallic anticancer agents, equipping them with fine-tunable pharmacological properties. Herein, we report on the preparation, mode of action, and in vitro anticancer activity of Ru(II)- and Os(II)-arene complexes with alkoxycarbonylmethyl-3-hydroxy-2-pyridone ligands. The hydrolysis and binding to amino acids proceed quickly, as characterized by NMR spectroscopy and ESI mass spectrometry. However, the reaction with amino acids causes cleavage of the pyridone ligands from the metal center because the amino acids act as multidentate ligands. A similar behavior was also observed during the reactions with the model proteins ubiquitin and cytochrome c, yielding mainly [protein + M(eta(6)-p-cymene)] adducts (M = Ru, Os). Notably the ligand cleavage of the Os derivative was significantly slower than of its Ru analogue, which could explain its higher activity in in vitro anticancer assays. Furthermore, the reaction of the compounds to 5'-GMP was characterized and coordination to the N7 of the guanine moiety was demonstrated by (1)H NMR spectroscopy and X-ray diffraction analysis. CDK2/Cyclin A protein kinase inhibition studies revealed potent activity of the Ru and Os complexes.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Osmium Compounds/chemistry , Osmium Compounds/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Ruthenium Compounds/chemistry , Ruthenium Compounds/pharmacology , Amino Acids/metabolism , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Crystallography, X-Ray , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Cytochromes c/metabolism , DNA/metabolism , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Neoplasms/drug therapy , Osmium Compounds/chemical synthesis , Pyridones/chemical synthesis , Ruthenium Compounds/chemical synthesis , Ubiquitin/metabolism
3.
Inorg Chem ; 46(26): 11003-16, 2007 Dec 24.
Article in English | MEDLINE | ID: mdl-18031033

ABSTRACT

A series of cis-dicyanoosmium(II) complexes [Os(PPh3)2(CN)2(N intersectionN)] (N intersectionN = Ph2phen (2a), bpy (2b), phen (2c), Ph2bpy (2d), tBu2bpy (2e)) and [Os(DMSO)2(CN)2(N intersectionN)] (3a-3e, N intersectionN = Br2phen (3f), Clphen (3g)), were synthesized and their spectroscopic and photophysical properties were examined, and [Os(PMe3)2(CN)2(phen)] (4) with axial PMe3 ligands was similarly prepared. The molecular structures of 2a, 2c, [2c.Zn(NO3)2]infinity, 2d, 2e, 3b, 3d, 3e, and 4 were determined by X-ray crystallographic analyses. The two CN ligands are cis to each other with mean Os-C bond distance of 2.0 A. The two PR3 (R = Ph, Me) or DMSO ligands are trans to each other with P/S-Os-P/S angles of approximately 177 degrees . The UV-vis absorption spectra of 2a-2e display an intense absorption band at 268-315 nm (epsilon = approximately (1.54-4.82) x 104 M-1 cm-1) that are attributed to pi --> pi*(N intersection N) and/or pi --> pi*(PPh3) transitions. The moderately intense absorption bands with lambdamax at 387-460 nm (epsilon = approximately (2.4-11.3) x 103 M(-1) cm(-1)) are attributed to a 1MLCT transition. A weak, broad absorption at 487-600 nm (epsilon = approximately 390-1900 M(-1) cm(-1)) is assigned to a 3MLCT transition. Excitation of 2a-2e in dichloromethane at 420 nm gives an emission with peak maximum at 654-703 nm and lifetime of 0.16-0.67 micros. The emission energies, lifetimes, and quantum yields show solvatochromic responses, and plots of numax, tau, and Phi, respectively, versus ET (solvent polarity parameter) show linear correlations, indicating that the emission is sensitive to the local environment. The broad structureless solid-state emission of 2a-2e at 298 (lambdamax 622-707 nm) and 77 (lambdamax 602-675 nm) K are assigned to 3MLCT excited states. The 77 K MeOH/EtOH (1:4) glassy solutions of 2a-2e also exhibit 3MLCT emissions with lambdamax = 560-585 nm. The 1MLCT absorption and 3MLCT emission of 3a-3g occur at lambdamax = 332-390 nm and 553-644 nm, respectively. In the presence of Zn(NO3)2, both the 1MLCT absorption and 3MLCT emission of 2c in acetonitrile blue-shift from 397 to 341 nm and 651 to 531 nm, respectively. The enhancement of emission intensity (I/Io) of 2e at 531 nm reached a maximum of approximately 810 upon the addition of two equivs of Zn(NO3)2. The crystallographic and spectroscopic evidence suggests that 2c undergoes binding of Zn2+ ions via the cyano moieties.


Subject(s)
Cyanides/chemistry , Imines/chemistry , Osmium Compounds/chemistry , Phosphines/chemistry , Safrole/analogs & derivatives , Acetonitriles , Crystallography, X-Ray , Iron/chemistry , Ligands , Methanol , Models, Molecular , Molecular Structure , Osmium Compounds/chemical synthesis , Photochemistry , Safrole/chemistry , Solutions , Spectrophotometry
4.
Inorg Chem ; 46(14): 5754-62, 2007 Jul 09.
Article in English | MEDLINE | ID: mdl-17566999

ABSTRACT

Reduction of trans-[OsL2(O)2] (1) (L-=[N(i-Pr2PS)2]-) with hydrazine hydrate afforded a dinitrogen complex 2, possibly "[OsL2(N2)(solv)]" (solv=H2O or THF), which reacted with RCN, R'NC, and SO2 to give trans-[OsL2(RCN)2] (R=Ph (3), 4-tolyl (4), 4-t-BuC6H4 (5)), trans-[OsL2(R'NC)2] (R'=2,6-Me2C6H3 (xyl) (6), t-Bu (7)), and [Os(L)2(SO2)(H2O)] (8) complexes, respectively. Protonation of compounds 2, 3, and 6 with HBF4 led to formation of dicationic trans-[Os(LH)2(N2)(H2O)][BF4]2 (9), trans-[Os(LH)2(PhCN)2][BF4]2 (10), and trans-[Os(LH)2(xylNC)2][BF4]2 (11), respectively. Treatment of 1 with phenylhydrazine and SnCl2 afforded trans-[OsL2(N2Ph)2] (12) and trans-[OsL2Cl2] (13), respectively. Air oxidation of compound 2 in hexane/MeOH gave the dimethoxy complex trans-[OsL2(OMe)2] (14), which in CH2Cl2 solution was readily air oxidized to 1. Compound 1 is capable of catalyzing aerobic oxidation of PPh3, possibly via an Os(IV) intermediate. The formal potentials for the Os-L complexes have been determined by cyclic voltammetry. The solid-state structures of compounds 4, 6, cis-8, 13, and 14 have been established by X-ray crystallography.


Subject(s)
Diphosphonates/chemistry , Osmium Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry , Catalysis , Crystallography, X-Ray , Electrochemistry , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Osmium Compounds/chemistry , Oxidation-Reduction
5.
Inorg Chem ; 46(12): 4857-67, 2007 Jun 11.
Article in English | MEDLINE | ID: mdl-17503809

ABSTRACT

Reactions of OsO4 with HSR (R=C6F5, C6F4H-4,) in refluxing ethanol afford [Os(SC6F5)3(SC6F4(SC6F5)-2)] (1) and [Os(SC6F4H-4)3(SC6F3H-4-(SC6F4H-4)-2)] (2), which involve the rupture of C-F bonds. At room temperature, the compound [Os(SC6F5)3(PMe2Ph)2] or [Os(SC6F5)4(PMe2Ph)] reacts with KOH(aq) in acetone, giving rise to [ Os(SC6F5)(SC6F4(SC6F4O-2)-2)(PMe2Ph)2] (3), through a process involving the rupture of two C-F bonds, while the compound [Os(SC6F4H)4(PPh3)] reacts with KOH(aq) in acetone to afford [Os(SC6F4H-4)2(SC6F3H-4-O-2)(PPh3)] (4), which also implies a C-F bond cleavage. Single-crystal X-ray diffraction studies of 1, 2, and 4 indicate that these compounds include five-coordinated metal ions in essentially trigonal-bipyramidal geometries, whereas these studies on the paramagnetic compound 3 show a six-coordinated osmium center in a distorted octahedral geometry. 19F, 1H, 31P{1H}, and COSY 19F-19F NMR studies for the diamagnetic 1, 2, and 4 compounds, including variable-temperature 19F NMR experiments, showed that these molecules are fluxional. Some of the activation parameters for these dynamic processes have been determined.


Subject(s)
Carbon/chemistry , Fluorine/chemistry , Osmium Compounds/chemical synthesis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Conformation , Osmium Compounds/chemistry
6.
Inorg Chem ; 46(12): 5023-33, 2007 Jun 11.
Article in English | MEDLINE | ID: mdl-17497853

ABSTRACT

The osmium(III) complex [(DMSO)2H][trans-OsIIICl4(DMSO)2] (1) has been prepared via stepwise reduction of OsO4 in concentrated HCl using N2H(4).2HCl and SnCl(2).2H2O in DMSO. 1 reacts with a number of azole ligands, namely, indazole (Hind), pyrazole (Hpz), benzimidazole (Hbzim), imidazole (Him), and 1H-1,2,4-triazole (Htrz), in organic solvents, affording novel complexes (H2ind)[OsIIICl4(Hind)(DMSO)] (2), (H2pz)[OsIIICl4(Hpz)(DMSO)] (3), (H2bzim)[OsIIICl4(Hbzim)(DMSO)] (4), (H2im)[OsIIICl4(Him)(DMSO)] (6), and (H2trz)[OsIIICl4(Htrz)(DMSO)] (7), which are close analogues of the antimetastatic complex NAMI-A. Metathesis reaction of 4 with benzyltriphenylphosphonium chloride in methanol led to the formation of (Ph3PCH2Ph)[OsIIICl4(Hbzim)(DMSO)] (5). The complexes were characterized by IR, UV-vis, ESI mass spectrometry, 1H NMR spectroscopy, cyclic voltammetry, and X-ray crystallography. In contrast to NAMI-A, 2-4, 6, and 7 are kinetically stable in aqueous solution and resistant to hydrolysis. Surprisingly, they show reasonable antiproliferative activity in vitro in two human cell lines, HT-29 (colon carcinoma) and SK-BR-3 (mammary carcinoma), when compared with analogous ruthenium compounds. Structure-activity relationships and the potential of the prepared complexes for further development are discussed.


Subject(s)
Antineoplastic Agents/chemistry , Dimethyl Sulfoxide/analogs & derivatives , Organometallic Compounds/chemistry , Osmium Compounds/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Dimethyl Sulfoxide/chemistry , Dimethyl Sulfoxide/pharmacology , Drug Stability , Humans , Molecular Structure , Organometallic Compounds/pharmacology , Osmium Compounds/chemical synthesis , Osmium Compounds/pharmacology , Ruthenium Compounds , Spectrum Analysis , Structure-Activity Relationship
7.
J Am Chem Soc ; 129(17): 5612-20, 2007 May 02.
Article in English | MEDLINE | ID: mdl-17408269

ABSTRACT

Cytosine methylation is one of the most important epigenetic events, and much effort has been directed to develop a simple reaction for methylcytosine detection. In this paper, we describe the design of tag-attachable ligands for direct methylcytosine labeling and their application to fluorescent and electrochemical assays. The effect of the location of bipyridine substituents on the efficiency of osmium complexation at methylcytosine was initially investigated. As a result, a bipyridine derivative with a substituent at the C4 position showed efficient complexation at the methylcytosine residue of single-stranded DNA in a reaction mixture containing potassium osmate and potassium hexacyanoferrate(III). On the basis of this result, a bipyridine derivative with a tag-attachable amino linker at the C4 position was synthesized. The efficiency of metal complex formation in the presence of the osmate and the synthetic ligand was clearly changed by the presence/absence of a methyl group at the C5 position of cytosine. The succinimidyl esters of functional labeling units were then attached to the bipyridine ligand fixed on the methylcytosine. These labels attached to methylcytosine enabled us to detect the target methylcytosine in DNA both fluorometrically and electrochemically. For example, we were able to fluorometrically obtain information on the methylation status at a specific site by means of fluorescence resonance energy transfer from a hybridized fluorescent DNA probe to a fluorescent label on methylcytosine. In addition, by the combination of electrochemically labeled methylcytosine and an electrode modified by probe DNAs, a methylcytosine-selective characteristic current signal was observed. This direct labeling of methylcytosine is a conceptually new methylation detection assay with many merits different from conventional assays.


Subject(s)
5-Methylcytosine/chemistry , DNA Methylation , Cytosine/chemistry , Electrochemistry , Electrodes , Genes, p53 , Gold , Indicators and Reagents , Ligands , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mutation , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Osmium Compounds/chemical synthesis , Osmium Compounds/chemistry , Oxidation-Reduction , Pyridines/chemistry , Spectrometry, Fluorescence
8.
Inorg Chem ; 46(10): 4049-59, 2007 May 14.
Article in English | MEDLINE | ID: mdl-17441712

ABSTRACT

Relatively little is known about the kinetics or the pharmacological potential of organometallic complexes of osmium compared to its lighter congeners, iron and ruthenium. We report the synthesis of seven new complexes, [(eta6-arene)Os(NN)Cl]+, containing different bidentate nitrogen (N,N) chelators, and a dichlorido complex, [(eta6-arene)Os(N)Cl2]. The X-ray crystal structures of seven complexes are reported: [(eta6-bip)Os(en)Cl]PF6 (1PF6), [(eta6-THA)Os(en)Cl]BF4 (2BF4), [(eta6-p-cym)Os(phen)Cl]PF6 (5PF6), [(eta6-bip)Os(dppz)Cl]PF6 (6PF6), [(eta6-bip)Os(azpy-NMe2)Cl]PF6 (7PF6), [(eta6-p-cym)Os(azpy-NMe2)Cl]PF6 (8PF6), and [(eta6-bip)Os(NCCH3-N)Cl2] (9), where THA = tetrahydroanthracene, en = ethylenediamine, p-cym = p-cymene, phen = phenanthroline, bip = biphenyl, dppz = [3,2-a: 2',3'-c]phenazine and azpy-NMe2 = 4-(2-pyridylazo)-N,N-dimethylaniline. The chelating ligand was found to play a crucial role in enhancing aqueous stability. The rates of hydrolysis at acidic pH* decreased when the primary amine N-donors (NN = en, t1/2 = 0.6 h at 318 K) are replaced with pi-accepting pyridine groups (e.g., NN = phen, t1/2 = 9.5 h at 318 K). The OsII complexes hydrolyze up to 100 times more slowly than their RuII analogues. The pK*a of the aqua adducts decreased with a similar trend (pK*a = 6.3 and 5.8 for en and phen adducts, respectively). [(eta6-bip)Os(en)Cl]PF6/BF4 (1PF6/BF4) and [(eta6-THA)Os(en)Cl]BF4 (2BF4) were cytotoxic toward both the human A549 lung and A2780 ovarian cancer cell lines, with IC50 values of 6-10 microM, comparable to the anticancer drug carboplatin. 1BF4 binds to both the N7 and phosphate of 5'-GMP (ratio of 2:1). The formation constant for the 9-ethylguanine (9EtG) adduct [(eta6-bip)M(en)(9EtG)]2+ was lower for OsII (log K = 3.13) than RuII (log K = 4.78), although the OsII adduct showed some kinetic stability. DNA intercalation of the dppz ligand in 6PF6 may play a role in its cytotoxicity. This work demonstrates that the nature of the chelating ligand can play a crucial role in tuning the chemical and biological properties of [(eta6-arene)Os(NN)Cl]+ complexes.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Guanine/chemistry , Osmium Compounds/chemical synthesis , Osmium Compounds/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Chelating Agents/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Ligands , Mass Spectrometry , Osmium Compounds/chemistry
9.
Molecules ; 10(6): 640-8, 2005 Jul 14.
Article in English | MEDLINE | ID: mdl-18007333

ABSTRACT

The synthesis, spectroscopic characterization and X-ray crystal structure of a new chiral triosmium alkylidyne carbonyl cluster, (R,S)-[Os3(mu-H)2(CO)9{mu3-CPPh2(eta(5)-C5H4)Fe(eta(5)-C5H3(PPh2)CH(Me)NM(2)}] (1) are described. Compound 1 crystallizes in the non-centrosymmetric space group P2(1) and its absolute configuration has been established.The structure consists of an Os3C metal core with one of the PPh2 moieties of the chiral ferrocenylphosphine bonded to the apical alkylidyne carbon atom to give a zwitterionic cluster complex, reminiscent of the phosphorus ylide.


Subject(s)
Osmium Compounds/chemical synthesis , Phosphines/chemistry , Crystallography, X-Ray , Ligands , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Osmium , Osmium Compounds/chemistry , Spectrum Analysis
10.
J Biol Inorg Chem ; 8(8): 815-22, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12920611

ABSTRACT

New and known homo- and heterodinuclear Ru(II) and Os(II) complexes with 4,4'-bipyridine (4,4'-bpy), pyrazine, and 4-pyCH=CHpy-4' as bridging ligands (LL) of the type [Cl(bpy)(2)M(LL)MCl(bpy)(2)]X(2) (bpy=2,2'-bipyridine; X=PF(6) or BF(4)) have been studied in their capacity to exchange electrons with a reduced active site of glucose oxidase (GO) from Aspergillus niger. Cyclic voltammograms (CVs) of the dimers in the aqueous buffered solution, when compared with CVs of the parent monomeric species [MCl(LL)(bpy)(2)]BF(4) and [MCl(2)(bpy)(2)] which could be generated at pH approximately 7, if the dimers undergo monomerization, indicate that the dimers are the dominating species under such conditions. All electrochemically oxidized dinuclear complexes studied show high rates of oxidation of GO reduced by D-glucose and the corresponding observed second-order rate constants are in the range (5-64)x10(5) M(-1) s(-1) at 25 degrees C. However, these values are lower than that for the mononuclear complex [OsCl(4,4'-bpy)(bpy)(2)]BF(4) (1.1x10(7) M(-1) s(-1)), suggesting that potentially two-electron dimeric mediators have no advantage compared with corresponding monomeric complexes of Ru(II) and Os(II). The structure of [OsCl(4,4'-bpy)(bpy)(2)]BF(4) was confirmed by X-ray crystallography. The monodentate 4,4'-bpy ligand is coordinated cis to the chloride. Its higher reactivity toward reduced GO is accounted for in terms of the antenna effect of the monodentate 4,4'-bpy ligand. The antenna length equals 9.2 A and matches the depth of the enzyme active site pocket of ca. 10 A. The mechanism of the antenna effect is discussed.


Subject(s)
Glucose Oxidase/chemistry , Osmium Compounds/chemistry , Ruthenium Compounds/chemistry , 2,2'-Dipyridyl/chemical synthesis , 2,2'-Dipyridyl/chemistry , Crystallization , Crystallography, X-Ray/methods , Dimerization , Osmium Compounds/chemical synthesis , Ruthenium Compounds/chemical synthesis
11.
Inorg Chem ; 40(4): 593-600, 2001 Feb 12.
Article in English | MEDLINE | ID: mdl-11225098

ABSTRACT

A series of (eta 6-arene)OsII complexes containing the saturated nitrogen donor ligands tmtacn, tacn, and NH3 are prepared and characterized. The electrochemical properties and photochemical reactions of these complexes are studied, and the solid-state structures for [(eta 6-p-cymene)Os(tacn)](PF6)2 (1) and [(eta 6-p-cymene)Os(tmtacn)](PF6)2 (2) are determined. Single-crystal X-ray data: 1, orthorhombic, space group Pbca-D2h15 (No. 61), with a = 14.716(3) A, b = 17.844(3) A, c = 18.350(4) A, V = 4819(2) A3, and Z = 8; 2, monoclinic, space group C2-C2(3) (No. 5), with a = 17.322(4) A, b = 10.481(3) A, c = 15.049(4) A, beta = 98.72 degrees, V = 2701(1) A3, and Z = 4.


Subject(s)
Heterocyclic Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Osmium Compounds/chemistry , Osmium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Electrochemistry , Ligands , Magnetic Resonance Spectroscopy , Models, Chemical , Oxidation-Reduction , Photochemistry , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...