Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45.879
Filter
1.
Sci Rep ; 14(1): 10610, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38719857

ABSTRACT

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Subject(s)
Arthritis, Rheumatoid , Chemokines , Cytokines , Fibroblasts , Histone-Lysine N-Methyltransferase , Histones , Myeloid-Lymphoid Leukemia Protein , Synovial Membrane , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Fibroblasts/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Cytokines/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Histones/metabolism , Chemokines/metabolism , Chemokines/genetics , Gene Expression Regulation , Tumor Necrosis Factor-alpha/metabolism , Promoter Regions, Genetic , Female , Male , Cells, Cultured , Middle Aged , RNA, Messenger/metabolism , RNA, Messenger/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Aged
2.
Sci Rep ; 14(1): 10568, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719877

ABSTRACT

Early diagnosis and treatment of pre- and early-stage osteoarthritis (OA) is important. However, the cellular and cartilaginous changes occurring during these stages remain unclear. We investigated the histological and immunohistochemical changes over time between pre- and early-stage OA in a rat model of traumatic injury. Thirty-six male rats were divided into two groups, control and OA groups, based on destabilization of the medial meniscus. Histological and immunohistochemical analyses of articular cartilage were performed on days 1, 3, 7, 10, and 14 postoperatively. Cell density of proteins associated with cartilage degradation increased from postoperative day one. On postoperative day three, histological changes, including chondrocyte death, reduced matrix staining, and superficial fibrillation, were observed. Simultaneously, a compensatory increase in matrix staining was observed. The Osteoarthritis Research Society International score increased from postoperative day seven, indicating thinner cartilage. On postoperative day 10, the positive cell density decreased, whereas histological changes progressed with fissuring and matrix loss. The proteoglycan 4-positive cell density increased on postoperative day seven. These findings will help establish an experimental model and clarify the mechanism of the onset and progression of pre- and early-stage traumatic OA.


Subject(s)
Cartilage, Articular , Disease Models, Animal , Disease Progression , Immunohistochemistry , Osteoarthritis , Animals , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Male , Rats , Osteoarthritis/pathology , Osteoarthritis/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Rats, Sprague-Dawley , Proteoglycans/metabolism
3.
BMC Oral Health ; 24(1): 540, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720327

ABSTRACT

OBJECTIVE: To investigate the effect of concentrated growth factor (CGF) combined with sodium hyaluronate (SH) on temporomandibular joint osteoarthritis (TMJOA). METHODS: Sixty patients with TMJOA who were diagnosed by cone-beam computed tomography (CBCT) between March 2020 and March 2023 at the Stomatological Hospital of Xi'an Jiaotong University were randomly divided into a control group (n = 30) and an experimental group (n = 30). The patients in the experimental group were treated with CGF + SH, and those in the control group were treated with SH only. The visual analogue scale (VAS) score indicating pain in the temporomandibular joint (TMJ) area; the Helkimo Clinical Dysfunction Index (Di); and changes in condylar CBCT at the first visit and 2 weeks, 3 months and 6 months after treatment were recorded. The CBCT data of the patients in the experimental and control groups were collected, and the three-dimensional CBCT image sequences were imported into Mimics Medical 19.0 software in DICOM format for condylar reconstruction. RESULTS: The VAS scores at 2 weeks, 3 months and 6 months after treatment were significantly lower in the experimental group than in the control group (P < 0.05), and the pain in the experimental group was significantly relieved. The Di was significantly lower in the experimental group than in the control group (P < 0.05), and the clinical function of the TMJ improved. After treatment, the CBCT score was significantly lower in the experimental group than in the control group (P < 0.05), and the condylar bone cortex was obviously repaired. Observation of the condylar bone cortex by three-dimensional reconstruction showed the same results as those obtained by CBCT. CONCLUSION: CGF combined with SH is effective in the treatment of TMJOA and can improve muscle pain, TMJ pain, Impaired TMJ function, Impaired range of movement, Pain on movement of the mandible and promote bone repair. THE REGISTRATION NUMBER (TRN): ChiCTR2400082712. THE DATE OF REGISTRATION: April 5, 2024.


Subject(s)
Cone-Beam Computed Tomography , Hyaluronic Acid , Osteoarthritis , Temporomandibular Joint Disorders , Humans , Hyaluronic Acid/therapeutic use , Hyaluronic Acid/administration & dosage , Female , Male , Osteoarthritis/drug therapy , Osteoarthritis/diagnostic imaging , Temporomandibular Joint Disorders/drug therapy , Temporomandibular Joint Disorders/diagnostic imaging , Adult , Middle Aged , Pain Measurement , Intercellular Signaling Peptides and Proteins/therapeutic use , Treatment Outcome
4.
PLoS One ; 19(5): e0302906, 2024.
Article in English | MEDLINE | ID: mdl-38718039

ABSTRACT

Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1ß-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.


Subject(s)
Cartilage, Articular , Chondrocytes , Interleukin-1beta , NF-kappa B , Osteoarthritis , Plant Extracts , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Rats , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Plant Extracts/pharmacology , Prunus/chemistry , Rats, Sprague-Dawley , Down-Regulation/drug effects , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Collagen Type II/metabolism , Mitogen-Activated Protein Kinases/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Fruit/chemistry , Aggrecans/metabolism , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Cells, Cultured , Male , MAP Kinase Signaling System/drug effects
5.
Sci Rep ; 14(1): 10099, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698019

ABSTRACT

The causal association between vitamin E status and osteoarthritis (OA) remains controversial in previous epidemiological studies. We employed a Mendelian randomization (MR) analysis to explore the causal relationship between circulating alpha-tocopherol levels (main forms of vitamin E in our body) and OA. The instrumental variables (IVs) of circulating alpha-tocopherol levels were obtained from a Genome-wide association study (GWAS) dataset of 7781 individuals of European descent. The outcome of OA was derived from the UK biobank. Two-sample MR analysis was used to estimate the causal relationship between circulating alpha-tocopherol levels and OA. The inverse-variance weighted (IVW) method was the primary analysis in this analysis. We used the MR-Egger method to determine horizontal pleiotropic in this work. The heterogeneity effect of instrumental IVs was detected by MR-Egger and IVW analyses. Sensitivity analysis was performed by removing single nucleotide polymorphism (SNP) one by one. Three SNPs (rs964184, rs2108622, and rs11057830) (P < 5E-8) strongly associated with circulating alpha-tocopherol levels were used in this analysis. The IVW-random effect indicated no causal relationship between circulating alpha-tocopherol levels and clinically diagnosed OA (OR = 0.880, 95% CI 0.626, 1.236, P = 0.461). Similarly, IVW analysis showed no causal association between circulating alpha-tocopherol levels and self-reported OA (OR = 0.980, 95% CI 0.954, 1.006, P = 0.139). Other methods of MR analyses and sensitivity analyses revealed consistent findings. MR-Egger and IVW methods indicated no significant heterogeneity between IVs. The MR-Egger intercept showed no horizontal pleiotropic. The results of this linear Mendelian randomization study indicate no causal association between genetically predicted alpha-tocopherol levels and the progression of OA. Alpha-tocopherol may not provide beneficial and more favorable outcomes for the progression of OA. Further MR analysis based on updated GWASs with more IVs is required to verify the results of our study.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoarthritis , Polymorphism, Single Nucleotide , alpha-Tocopherol , Humans , alpha-Tocopherol/blood , Osteoarthritis/genetics , Osteoarthritis/blood , Male , Female , Genetic Predisposition to Disease
6.
Sci Rep ; 14(1): 10232, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702404

ABSTRACT

This study aimed to quantitatively assess three-dimensional changes in the mandibular condyle with osteoarthritis using cone-beam computed tomography (CBCT). Pre- and post-treatment CBCT images of temporomandibular joints (TMJs) from 66 patients were used to assess longitudinal changes in condylar volume within individual patients using 3D slicer software. Total volume difference (dV), net increase (dV + , bone deposition), and net decrease (dV- , bone resorption) after treatment were analyzed based on clinical and radiological factors. Condyles with surface erosion at their first visit showed significantly decreased volume after treatment compared to condyles without erosion (p < 0.05). Amounts of bone resorption and deposition were higher in condyles with surface erosion (both p < 0.01). In patients with condylar erosion, the presence of joint pain was associated with a decrease in condylar volume and an increase in net resorption (both p < 0.01). When both joint pain and condylar erosion were present, patients with parafunctional habits showed reduced condylar volume after treatment (p < 0.05). Condylar volume change after treatment was negatively correlated with the duration of pain relief (R = - 0.501, p < 0.05). These results indicate that condylar erosion and TMJ pain could be significant variables affecting TMJ volume changes after treatment. Establishing appropriate treatment strategies is crucial for managing condylar erosion and TMJ pain.


Subject(s)
Cone-Beam Computed Tomography , Mandibular Condyle , Osteoarthritis , Humans , Cone-Beam Computed Tomography/methods , Female , Male , Mandibular Condyle/diagnostic imaging , Mandibular Condyle/pathology , Osteoarthritis/diagnostic imaging , Osteoarthritis/pathology , Middle Aged , Adult , Temporomandibular Joint/diagnostic imaging , Temporomandibular Joint/pathology , Aged , Temporomandibular Joint Disorders/diagnostic imaging , Temporomandibular Joint Disorders/pathology , Imaging, Three-Dimensional/methods
7.
Zhonghua Yi Xue Za Zhi ; 104(17): 1445-1452, 2024 May 07.
Article in Chinese | MEDLINE | ID: mdl-38706049

ABSTRACT

The prevalence of articular cartilage injuries and osteoarthritis (OA) is high, affecting a wide range of individuals. The self-repair ability of cartilage tissue is poor, and once damaged, it will irreversibly progress to OA. Mesenchymal stem cells (MSCs) play an important role in the field of regenerative medicine and are considered one of the most promising seed cells for cartilage repair and regeneration. In this article, based on the latest clinical research findings from both domestic and international sources, the theoretical basis, treatment goals, significance, sources, characteristics, clinical implementation plans, and efficacy of using MSCs for the treatment of cartilage injuries or osteoarthritis are reviewed. The article also discusses the challenges faced and future directions that need to be addressed in the clinical application of MSCs.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Cartilage, Articular/injuries , Mesenchymal Stem Cells/cytology , Knee Injuries/therapy , Osteoarthritis, Knee/therapy , Osteoarthritis/therapy
8.
Front Cell Infect Microbiol ; 14: 1401963, 2024.
Article in English | MEDLINE | ID: mdl-38803575

ABSTRACT

The understanding of the link between the gut-bone axis is growing yearly, but the mechanisms involved are not yet clear. Our study analyzed the role of Sestrin2 (SESN2)pathway in the gut-bone axis. We established an osteoarthritis (OA) model in Sprague-Dawley (SD) rats using the anterior cruciate ligament transection (ACLT) procedure, followed by a dietary intervention with varying levels of dietary fiber content for 8 weeks. By 16S rRNA sequencing of the gut microbiota, we found that high dietary fiber (HDF) intake could significantly increase the Bacillota-dominant gut microbiota. Meanwhile, enzyme linked immunosorbent assay (ELISA) and histological analysis showed that intervention with HDF could reduce the degree of bone and joint lesions and inflammation. We hypothesize that HDF increased the dominant flora of Bacillota, up-regulated the expression of SESN2 in knee joint, and reduced gut permeability, thereby reducing systemic inflammatory response and the degree of bone and joint lesions. Therefore, the present study confirms that changes in gut microbiota induced by increased dietary fiber intake delayed the onset of OA by promoting up-regulation of SESN2 expression at the knee joint to maintain chondrocyte activity and reduce synovial inflammation.


Subject(s)
Chondrocytes , Dietary Fiber , Disease Models, Animal , Gastrointestinal Microbiome , Osteoarthritis , Rats, Sprague-Dawley , Animals , Chondrocytes/metabolism , Osteoarthritis/microbiology , Osteoarthritis/pathology , Rats , Male , RNA, Ribosomal, 16S/genetics , Knee Joint/microbiology , Knee Joint/pathology
9.
Elife ; 132024 May 28.
Article in English | MEDLINE | ID: mdl-38805545

ABSTRACT

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that CBFB (subunit of a heterodimeric Cbfß/Runx1, Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfb in tamoxifen-induced Cbfbf/f;Col2a1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/Yap signaling and Tgfß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfb overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfb overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfb may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and Tgfß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfb overexpression could be an effective strategy for treatment of OA.


Subject(s)
Cartilage, Articular , Hippo Signaling Pathway , Homeostasis , Osteoarthritis , Transforming Growth Factor beta , YAP-Signaling Proteins , Animals , Cartilage, Articular/metabolism , Mice , Osteoarthritis/genetics , Osteoarthritis/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Wnt Signaling Pathway , beta Catenin/metabolism , beta Catenin/genetics , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
10.
Braz J Med Biol Res ; 57: e13238, 2024.
Article in English | MEDLINE | ID: mdl-38808885

ABSTRACT

Osteoarthritis (OA) is a highly prevalent joint disorder characterized by progressive degeneration of articular cartilage, subchondral bone remodeling, osteophyte formation, synovial inflammation, and meniscal damage. Although the etiology of OA is multifactorial, pro-inflammatory processes appear to play a key role in disease pathogenesis. Previous studies indicate that electroacupuncture (EA) exerts chondroprotective, anti-inflammatory, and analgesic effects in preclinical models of OA, but the mechanisms underlying these potential therapeutic benefits remain incompletely defined. This study aimed to investigate the effects of EA on OA development in a rat model, as well as to explore associated molecular mechanisms modulated by EA treatment. Forty rats were divided into OA, EA, antagomiR-214, and control groups. Following intra-articular injection of monosodium iodoacetate to induce OA, EA and antagomiR-214 groups received daily EA stimulation at acupoints around the knee joint for 21 days. Functional pain behaviors and chondrocyte apoptosis were assessed as outcome measures. The expression of microRNA-214 (miR-214) and its downstream targets involved in apoptosis and nociception, BAX and TRPV4, were examined. Results demonstrated that EA treatment upregulated miR-214 expression in OA knee cartilage. By suppressing pro-apoptotic BAX and pro-nociceptive TRPV4, this EA-induced miR-214 upregulation ameliorated articular pain and prevented chondrocyte apoptosis. These findings suggested that miR-214 plays a key role mediating EA's therapeutic effects in OA pathophysiology, and represents a promising OA treatment target for modulation by acupuncture.


Subject(s)
Apoptosis , Chondrocytes , Disease Models, Animal , Electroacupuncture , MicroRNAs , Osteoarthritis , Rats, Sprague-Dawley , TRPV Cation Channels , bcl-2-Associated X Protein , Animals , TRPV Cation Channels/metabolism , MicroRNAs/metabolism , Electroacupuncture/methods , Male , Osteoarthritis/therapy , Chondrocytes/metabolism , bcl-2-Associated X Protein/metabolism , Rats
11.
Front Endocrinol (Lausanne) ; 15: 1352671, 2024.
Article in English | MEDLINE | ID: mdl-38779455

ABSTRACT

Osteoarthritis is the most prevalent age-related degenerative joint disease and a leading cause of pain and disability in aged people. Its etiology is multifaceted, involving factors such as biomechanics, pro-inflammatory mediators, genetics, and metabolism. Beyond its evident impact on joint functionality and the erosion of patients' quality of life, OA exhibits symbiotic relationships with various systemic diseases, giving rise to various complications. This review reveals OA's extensive impact, encompassing osteoporosis, sarcopenia, cardiovascular diseases, diabetes mellitus, neurological disorders, mental health, and even cancer. Shared inflammatory processes, genetic factors, and lifestyle elements link OA to these systemic conditions. Consequently, recognizing these connections and addressing them offers opportunities to enhance patient care and reduce the burden of associated diseases, emphasizing the need for a holistic approach to managing OA and its complications.


Subject(s)
Comorbidity , Osteoarthritis , Humans , Osteoarthritis/epidemiology , Osteoporosis/epidemiology , Cardiovascular Diseases/epidemiology , Quality of Life , Sarcopenia/epidemiology , Diabetes Mellitus/epidemiology , Neoplasms/epidemiology , Nervous System Diseases/epidemiology
12.
Lipids Health Dis ; 23(1): 147, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760818

ABSTRACT

BACKGROUND: Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) exhibit potential as therapeutics for a variety of diseases. This observational and Mendelian randomization (MR) study aims to explore the relationship between omega-3 PUFAs and osteoarthritis (OA). METHODS: Excluding individuals under 20 years old and those with missing data on relevant variables in the National Health and Nutrition Examination Survey (NHANES) spanning from 2003 to 2016, a total of 22 834 participants were included in this cross-sectional study. Weighted multivariable-adjusted logistic regression was used to estimate the association between omega-3 PUFAs and OA in adults. Moreover, restricted cubic splines were utilized to examine the dose-response relationship between omega-3 PUFAs and OA. To further investigate the potential causal relationship between omega-3 PUFAs and OA risk, a two-sample MR study was conducted. Furthermore, the robustness of the findings was assessed using various methods. RESULTS: Omega-3 PUFAs intake were inversely associated with OA in adults aged 40 ∼ 59 after multivariable adjustment [Formula: see text], with a nonlinear relationship observed between omega-3 PUFAs intake and OA [Formula: see text]. The IVW results showed there was no evidence to suggest a causal relationship between omega-3 PUFAs and OA risk [Formula: see text]. CONCLUSIONS: Omega-3 PUFAs were inversely associated with OA in adults aged 40 ∼ 59. However, MR studies did not confirm a causal relationship between the two.


Subject(s)
Fatty Acids, Omega-3 , Mendelian Randomization Analysis , Nutrition Surveys , Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/epidemiology , Fatty Acids, Omega-3/administration & dosage , Male , Middle Aged , Female , Adult , Cross-Sectional Studies , Risk Factors
13.
J Nanobiotechnology ; 22(1): 271, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769545

ABSTRACT

BACKGROUND AND AIMS: Osteoarthritis (OA) is a prevalent degenerative joint disorder, marked by the progressive degeneration of joint cartilage, synovial inflammation, and subchondral bone hyperplasia. The synovial tissue plays a pivotal role in cartilage regulation. Exosomes (EXOs), small membrane-bound vesicles released by cells into the extracellular space, are crucial in mediating intercellular communication and facilitating the exchange of information between tissues. Our study aimed to devise a hydrogel microsphere infused with SOD3-enriched exosomes (S-EXOs) to protect cartilage and introduce a novel, effective approach for OA treatment. MATERIALS AND METHODS: We analyzed single-cell sequencing data from 4247 cells obtained from the GEO database. Techniques such as PCR, Western Blot, immunofluorescence (IF), and assays to measure oxidative stress levels were employed to validate the cartilage-protective properties of the identified key protein, SOD3. In vivo, OA mice received intra-articular injections of S-EXOs bearing hydrogel microspheres, and the effectiveness was assessed using safranine O (S.O) staining and IF. RESULTS: Single-cell sequencing data analysis suggested that the synovium influences cartilage via the exocrine release of SOD3. Our findings revealed that purified S-EXOs enhanced antioxidant capacity of chondrocytes, and maintained extracellular matrix metabolism stability. The S-EXO group showed a significant reduction in mitoROS and ROS levels by 164.2% (P < 0.0001) and 142.7% (P < 0.0001), respectively, compared to the IL-1ß group. Furthermore, the S-EXO group exhibited increased COL II and ACAN levels, with increments of 2.1-fold (P < 0.0001) and 3.1-fold (P < 0.0001), respectively, over the IL-1ß group. Additionally, the S-EXO group showed a decrease in MMP13 and ADAMTS5 protein expression by 42.3% (P < 0.0001) and 44.4% (P < 0.0001), respectively. It was found that S-EXO-containing hydrogel microspheres could effectively deliver SOD3 to cartilage and significantly mitigate OA progression. The OARSI score in the S-EXO microsphere group markedly decreased (P < 0.0001) compared to the OA group. CONCLUSION: The study demonstrated that the S-EXOs secreted by synovial fibroblasts exert a protective effect on chondrocytes, and microspheres laden with S-EXOs offer a promising therapeutic alternative for OA treatment.


Subject(s)
Chondrocytes , Exosomes , Osteoarthritis , Oxidative Stress , Superoxide Dismutase , Synovial Membrane , Animals , Osteoarthritis/therapy , Osteoarthritis/metabolism , Exosomes/metabolism , Mice , Oxidative Stress/drug effects , Chondrocytes/metabolism , Humans , Superoxide Dismutase/metabolism , Synovial Membrane/metabolism , Male , Disease Progression , Nanoparticles/chemistry , Mice, Inbred C57BL , Hydrogels/chemistry , Microspheres , Cartilage, Articular/metabolism , Extracellular Matrix/metabolism
14.
Elife ; 122024 May 21.
Article in English | MEDLINE | ID: mdl-38770735

ABSTRACT

Osteoarthritis (OA) is a degenerative disease with a high prevalence in the elderly population, but our understanding of its mechanisms remains incomplete. Analysis of serum exosomal small RNA sequencing data from clinical patients and gene expression data from OA patient serum and cartilage obtained from the GEO database revealed a common dysregulated miRNA, miR-199b-5p. In vitro cell experiments demonstrated that miR-199b-5p inhibits chondrocyte vitality and promotes extracellular matrix degradation. Conversely, inhibition of miR-199b-5p under inflammatory conditions exhibited protective effects against damage. Local viral injection of miR-199b-5p into mice induced a decrease in pain threshold and OA-like changes. In an OA model, inhibition of miR-199b-5p alleviated the pathological progression of OA. Furthermore, bioinformatics analysis and experimental validation identified Gcnt2 and Fzd6 as potential target genes of MiR-199b-5p. Thus, these results indicated that MiR-199b-5p/Gcnt2 and Fzd6 axis might be a novel therapeutic target for the treatment of OA.


Subject(s)
Frizzled Receptors , MicroRNAs , Osteoarthritis , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology , Osteoarthritis/metabolism , Animals , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Mice , Humans , Male , Mice, Inbred C57BL , Chondrocytes/metabolism , Disease Models, Animal , Gene Expression Regulation
15.
PLoS One ; 19(5): e0303506, 2024.
Article in English | MEDLINE | ID: mdl-38771826

ABSTRACT

OBJECTIVE: To elucidate potential molecular mechanisms differentiating osteoarthritis (OA) and rheumatoid arthritis (RA) through a bioinformatics analysis of differentially expressed genes (DEGs) in patient synovial cells, aiming to provide new insights for clinical treatment strategies. MATERIALS AND METHODS: Gene expression datasets GSE1919, GSE82107, and GSE77298 were downloaded from the Gene Expression Omnibus (GEO) database to serve as the training groups, with GSE55235 being used as the validation dataset. The OA and RA data from the GSE1919 dataset were merged with the standardized data from GSE82107 and GSE77298, followed by batch effect removal to obtain the merged datasets of differential expressed genes (DEGs) for OA and RA. Intersection analysis was conducted on the DEGs between the two conditions to identify commonly upregulated and downregulated DEGs. Enrichment analysis was then performed on these common co-expressed DEGs, and a protein-protein interaction (PPI) network was constructed to identify hub genes. These hub genes were further analyzed using the GENEMANIA online platform and subjected to enrichment analysis. Subsequent validation analysis was conducted using the GSE55235 dataset. RESULTS: The analysis of differentially expressed genes in the synovial cells from patients with Osteoarthritis (OA) and Rheumatoid Arthritis (RA), compared to a control group (individuals without OA or RA), revealed significant changes in gene expression patterns. Specifically, the genes APOD, FASN, and SCD were observed to have lower expression levels in the synovial cells of both OA and RA patients, indicating downregulation within the pathological context of these diseases. In contrast, the SDC1 gene was found to be upregulated, displaying higher expression levels in the synovial cells of OA and RA patients compared to normal controls.Additionally, a noteworthy observation was the downregulation of the transcription factor PPARG in the synovial cells of patients with OA and RA. The decrease in expression levels of PPARG further validates the alteration in lipid metabolism and inflammatory processes associated with the pathogenesis of OA and RA. These findings underscore the significance of these genes and the transcription factor not only as biomarkers for differential diagnosis between OA and RA but also as potential targets for therapeutic interventions aimed at modulating their expression to counteract disease progression. CONCLUSION: The outcomes of this investigation reveal the existence of potentially shared molecular mechanisms within Osteoarthritis (OA) and Rheumatoid Arthritis (RA). The identification of APOD, FASN, SDC1, TNFSF11 as key target genes, along with their downstream transcription factor PPARG, highlights common potential factors implicated in both diseases. A deeper examination and exploration of these findings could pave the way for new candidate targets and directions in therapeutic research aimed at treating both OA and RA. This study underscores the significance of leveraging bioinformatics approaches to unravel complex disease mechanisms, offering a promising avenue for the development of more effective and targeted treatments.


Subject(s)
Arthritis, Rheumatoid , Gene Expression Profiling , Osteoarthritis , Protein Interaction Maps , Synovial Membrane , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Humans , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Protein Interaction Maps/genetics , Synovial Membrane/metabolism , Synovial Membrane/pathology , Computational Biology/methods , Gene Regulatory Networks , Gene Expression Regulation , Databases, Genetic
16.
Acta Ortop Mex ; 38(2): 123-128, 2024.
Article in Spanish | MEDLINE | ID: mdl-38782480

ABSTRACT

INTRODUCTION: pain in the pubic symphysis, even if studied in athletes, still sets out diagnostic and therapeutic challenges in other patient groups. Within this context, refractory osteorthritis of the pubic symphysis presents itself as an issue lacking clear therapeutic consensus. MATERIAL AND METHODS: two women over 65 years old and presenting osteoarthritis of the pubic symphysis were evaluated. Following unsuccessful conventional therapies, arthrodesis via subpubic plate, wire suture and autologous graft from the iliac crest was performed. RESULTS: after a one-year of following, both patients experienced clinical and radiographic improvement. Bone arthrodesis was achieved without significant complications, proving to be a viable surgical option. CONCLUSION: this study supports the medium and long-term efficacy of arthrodesis of the pubic symphysis in refractory cases of osteoarthrisis. Therefore, the technique can be considered a surgical option in the management of said condition.


INTRODUCCIÓN: el dolor en la sínfisis púbica, aunque estudiado en atletas, plantea desafíos diagnósticos y terapéuticos en otros grupos. En este contexto, la artrosis refractaria de la sínfisis púbica se presenta como un problema sin consenso terapéutico claro. MATERIAL Y MÉTODOS: se evaluaron dos mujeres mayores de 65 años con artrosis de la sínfisis púbica. Tras terapias convencionales infructuosas, se optó por la artrodesis mediante placa suprapúbica, sutura alámbrica e injerto óseo autólogo de la rama íleo-púbica. RESULTADOS: después de un año de seguimiento, ambas pacientes experimentaron mejoría clínica y radiográfica. La artrodesis se consolidó sin complicaciones evidentes, proporcionando una opción quirúrgica viable. CONCLUSIÓN: este estudio respalda la eficacia a medio y largo plazo de la artrodesis de la sínfisis púbica en casos refractarios de artrosis. La técnica utilizada puede considerarse como una opción quirúrgica eficaz en el manejo de esta condición.


Subject(s)
Arthrodesis , Osteitis , Pubic Symphysis , Humans , Arthrodesis/methods , Female , Osteitis/surgery , Osteitis/etiology , Pubic Symphysis/surgery , Aged , Osteoarthritis/surgery
17.
Ter Arkh ; 95(12): 1192-1196, 2024 Jan 31.
Article in Russian | MEDLINE | ID: mdl-38785060

ABSTRACT

The article discusses the issue and our own experience of local therapy for osteoarthritis of the ankle joint with injections of linear hyaluronic acid under ultrasound navigation. Since the ankle joint is difficult in terms of surgical treatment in general and endoprosthetics in particular, a course of intra-articular injection of 1% Flexotron® Forte hyaluronate, especially in the early stages of dystrophic changes in cartilage, is a promising method for relieving pain, chondroprotection and preserving the biomechanics of the joint, and ultrasound navigation when performing manipulation, it ensures the most accurate introduction of the drug into the joint cavity.


Subject(s)
Ankle Joint , Hyaluronic Acid , Osteoarthritis , Hyaluronic Acid/administration & dosage , Humans , Ankle Joint/diagnostic imaging , Osteoarthritis/drug therapy , Injections, Intra-Articular/methods , Ultrasonography, Interventional/methods , Viscosupplements/administration & dosage , Treatment Outcome
18.
Clin Rheumatol ; 43(6): 2079-2091, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720162

ABSTRACT

Osteoarthritis (OA) is one of the most prevalent musculoskeletal disorders and a primary cause of pain and disability among the elderly population. Research on the relationship between metalloproteins (MPs) and OA is limited, and causality remains unclear. Our objective is to utilize Mendelian randomization (MR) to explore the possible causal relationship between MPs and OA. The data on MPs were derived from a Genome-Wide Association Study (GWAS) analysis involving 3301 samples. The GWAS data for OA were obtained from an analysis involving 462,933 European individuals. In this study, a variety of two-sample Mendelian randomization methods (two-sample MR) to evaluate the causal effect of MPs on OA, including inverse variance weighted method (IVW), MR-Egger method, weighted median method (WM), simple mode, weight mode, and Wald ratio. The primary MR analysis using the IVW method reveals a significant negative correlation between Metallothionein-1F (MT-1F), zinc finger protein 134 (ZNF134), calcium/calmodulin-dependent protein kinase type 1D (CAMK1D), and EF-hand calcium-binding domain-containing protein 14 (EFCAB14) with the occurrence of osteoarthritis (OA) (p value < 0.05). However, no causal relationship was observed in the opposite direction between these MPs and OA. Notably, even in combined models accounting for confounding factors, the negative association between these four MPs and OA remained significant. Sensitivity analysis demonstrated no evidence of horizontal pleiotropy or heterogeneity, and leave-one-out analysis confirmed the robustness of the results. In this study, we have established a conspicuous association between four distinct MPs and OA. This discovery augments our understanding of potential avenues for the diagnosis and treatment of this condition. Key Points • The MR method was employed to assess the relationship between MPs and OA. • A total of four types of MPs have demonstrated inhibitory effects on the occurrence of OA.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoarthritis , Humans , Osteoarthritis/genetics , Risk Factors , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
20.
FASEB J ; 38(9): e23640, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690715

ABSTRACT

Osteoarthritis (OA) is the main cause of cartilage damage and disability. This study explored the biological function of S-phase kinase-associated protein 2 (SKP2) and Kruppel-like factor 11 (KLF11) in OA progression and its underlying mechanisms. C28/I2 chondrocytes were stimulated with IL-1ß to mimic OA in vitro. We found that SKP2, Jumonji domain-containing protein D3 (JMJD3), and Notch receptor 1 (NOTCH1) were upregulated, while KLF11 was downregulated in IL-1ß-stimulated chondrocytes. SKP2/JMJD3 silencing or KLF11 overexpression repressed apoptosis and extracellular matrix (ECM) degradation in chondrocytes. Mechanistically, SKP2 triggered the ubiquitination and degradation of KLF11 to transcriptionally activate JMJD3, which resulted in activation of NOTCH1 through inhibiting H3K27me3. What's more, the in vivo study found that KLF11 overexpression delayed OA development in rats via restraining apoptosis and maintaining the balance of ECM metabolism. Taken together, ubiquitination and degradation of KLF11 regulated by SKP2 contributed to OA progression by activation of JMJD3/NOTCH1 pathway. Our findings provide promising therapeutic targets for OA.


Subject(s)
Chondrocytes , Jumonji Domain-Containing Histone Demethylases , Osteoarthritis , Receptor, Notch1 , S-Phase Kinase-Associated Proteins , Ubiquitination , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Animals , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Rats , Chondrocytes/metabolism , Chondrocytes/pathology , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Male , Signal Transduction , Rats, Sprague-Dawley , Humans , Apoptosis , Repressor Proteins/metabolism , Repressor Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...