Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.921
Filter
1.
Mol Med ; 30(1): 74, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831316

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage destruction and inflammation. CC chemokine receptor 1 (CCR1), a member of the chemokine family and its receptor family, plays a role in the autoimmune response. The impact of BX471, a specific small molecule inhibitor of CCR1, on CCR1 expression in cartilage and its effects on OA remain underexplored. METHODS: This study used immunohistochemistry (IHC) to assess CCR1 expression in IL-1ß-induced mouse chondrocytes and a medial meniscus mouse model of destabilization of the medial meniscus (DMM). Chondrocytes treated with varying concentrations of BX471 for 24 h were subjected to IL-1ß (10 ng/ml) treatment. The levels of the aging-related genes P16INK4a and P21CIP1 were analyzed via western blotting, and senescence-associated ß-galactosidase (SA-ß-gal) activity was measured. The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), aggrecan (AGG), and the transcription factor SOX9 were determined through western blotting and RT‒qPCR. Collagen II, matrix metalloproteinase 13 (MMP13), and peroxisome proliferator-activated receptor (PPAR)-γ expression was analyzed via western blot, RT‒qPCR, and immunofluorescence. The impact of BX471 on inflammatory metabolism-related proteins under PPAR-γ inhibition conditions (using GW-9662) was examined through western blotting. The expression of MAPK signaling pathway-related molecules was assessed through western blotting. In vivo, various concentrations of BX471 or an equivalent medium were injected into DMM model joints. Cartilage destruction was evaluated through Safranin O/Fast green and hematoxylin-eosin (H&E) staining. RESULTS: This study revealed that inhibiting CCR1 mitigates IL-1ß-induced aging, downregulates the expression of iNOS, COX-2, and MMP13, and alleviates the IL-1ß-induced decrease in anabolic indices. Mechanistically, the MAPK signaling pathway and PPAR-γ may be involved in inhibiting the protective effect of CCR1 on chondrocytes. In vivo, BX471 protected cartilage in a DMM model. CONCLUSION: This study demonstrated the expression of CCR1 in chondrocytes. Inhibiting CCR1 reduced the inflammatory response, alleviated cartilage aging, and retarded degeneration through the MAPK signaling pathway and PPAR-γ, suggesting its potential therapeutic value for OA.


Subject(s)
Chondrocytes , Disease Models, Animal , Osteoarthritis , PPAR gamma , Receptors, CCR1 , Animals , Mice , Osteoarthritis/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/pathology , PPAR gamma/metabolism , Chondrocytes/metabolism , Chondrocytes/drug effects , Receptors, CCR1/metabolism , Receptors, CCR1/antagonists & inhibitors , Male , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Cyclooxygenase 2/metabolism , Nitric Oxide Synthase Type II/metabolism
2.
Adv Rheumatol ; 64(1): 46, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849923

ABSTRACT

BACKGROUND: Fibroblast-like synoviocytes (FLSs) are involved in osteoarthritis (OA) pathogenesis through pro-inflammatory cytokine production. TAK-242, a TLR4 blocker, has been found to have a significant impact on the gene expression profile of pro-inflammatory cytokines such as IL1-ß, IL-6, TNF-α, and TLR4, as well as the phosphorylation of Ikßα, a regulator of the NF-κB signaling pathway, in OA-FLSs. This study aims to investigate this effect because TLR4 plays a crucial role in inflammatory responses. MATERIALS AND METHODS: Ten OA patients' synovial tissues were acquired, and isolated FLSs were cultured in DMEM in order to assess the effectiveness of TAK-242. The treated FLSs with TAK-242 and Lipopolysaccharides (LPS) were analyzed for the mRNA expression level of IL1-ß, IL-6, TNF-α, and TLR4 levels by Real-Time PCR. Besides, we used western blot to assess the protein levels of Ikßα and pIkßα. RESULTS: The results represented that TAK-242 effectively suppressed the gene expression of inflammatory cytokines IL1-ß, IL-6, TNF-α, and TLR4 which were overexpressed upon LPS treatment. Additionally, TAK-242 inhibited the phosphorylation of Ikßα which was increased by LPS treatment. CONCLUSION: According to our results, TAK-242 shows promising inhibitory effects on TLR4-mediated inflammatory responses in OA-FLSs by targeting the NF-κB pathway. TLR4 inhibitors, such as TAK-242, may be useful therapeutic agents to reduce inflammation and its associated complications in OA patients, since traditional and biological treatments may not be adequate for all of them.


Subject(s)
Cytokines , Interleukin-1beta , Interleukin-6 , Lipopolysaccharides , NF-kappa B , Signal Transduction , Sulfonamides , Synoviocytes , Toll-Like Receptor 4 , Tumor Necrosis Factor-alpha , Humans , Signal Transduction/drug effects , Synoviocytes/drug effects , Synoviocytes/metabolism , NF-kappa B/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Toll-Like Receptor 4/metabolism , Cytokines/metabolism , Interleukin-6/metabolism , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Fibroblasts/metabolism , Fibroblasts/drug effects , Osteoarthritis/metabolism , Osteoarthritis/drug therapy , Cells, Cultured , Phosphorylation , RNA, Messenger/metabolism , Male , Female , Middle Aged
3.
J Orthop Surg Res ; 19(1): 325, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822418

ABSTRACT

OBJECTIVE: Muscle wasting frequently occurs following joint trauma. Previous research has demonstrated that joint distraction in combination with treadmill exercise (TRE) can mitigate intra-articular inflammation and cartilage damage, consequently delaying the advancement of post-traumatic osteoarthritis (PTOA). However, the precise mechanism underlying this phenomenon remains unclear. Hence, the purpose of this study was to examine whether the mechanism by which TRE following joint distraction delays the progression of PTOA involves the activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), as well as its impact on muscle wasting. METHODS: Quadriceps samples were collected from patients with osteoarthritis (OA) and normal patients with distal femoral fractures, and the expression of PGC-1α was measured. The hinged external fixator was implanted in the rabbit PTOA model. One week after surgery, a PGC-1α agonist or inhibitor was administered for 4 weeks prior to TRE. Western blot analysis was performed to detect the expression of PGC-1α and Muscle atrophy gene 1 (Atrogin-1). We employed the enzyme-linked immunosorbent assay (ELISA) technique to examine pro-inflammatory factors. Additionally, we utilized quantitative real-time polymerase chain reaction (qRT-PCR) to analyze genes associated with cartilage regeneration. Synovial inflammation and cartilage damage were evaluated through hematoxylin-eosin staining. Furthermore, we employed Masson's trichrome staining and Alcian blue staining to analyze cartilage damage. RESULTS: The decreased expression of PGC-1α in skeletal muscle in patients with OA is correlated with the severity of OA. In the rabbit PTOA model, TRE following joint distraction inhibited the expressions of muscle wasting genes, including Atrogin-1 and muscle ring finger 1 (MuRF1), as well as inflammatory factors such as interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in skeletal muscle, potentially through the activation of PGC-1α. Concurrently, the production of IL-1ß, IL-6, TNF-α, nitric oxide (NO), and malondialdehyde (MDA) in the synovial fluid was down-regulated, while the expression of type II collagen (Col2a1), Aggrecan (AGN), SRY-box 9 (SOX9) in the cartilage, and superoxide dismutase (SOD) in the synovial fluid was up-regulated. Additionally, histological staining results demonstrated that TRE after joint distraction reduced cartilage degeneration, leading to a significant decrease in OARSI scores.TRE following joint distraction could activate PGC-1α, inhibit Atrogin-1 expression in skeletal muscle, and reduce C-telopeptides of type II collagen (CTX-II) in the blood compared to joint distraction alone. CONCLUSION: Following joint distraction, TRE might promote the activation of PGC-1α in skeletal muscle during PTOA progression to exert anti-inflammatory effects in skeletal muscle and joint cavity, thereby inhibiting muscle wasting and promoting cartilage regeneration, making it a potential therapeutic intervention for treating PTOA.


Subject(s)
Disease Progression , Muscle, Skeletal , Muscular Atrophy , Osteoarthritis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Rabbits , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Osteoarthritis/etiology , Osteoarthritis/metabolism , Osteoarthritis/prevention & control , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Male , Humans , Physical Conditioning, Animal/physiology , Female , Disease Models, Animal
4.
Front Endocrinol (Lausanne) ; 15: 1393550, 2024.
Article in English | MEDLINE | ID: mdl-38854686

ABSTRACT

Osteoarthritis (OA) is an intricate pathological condition that primarily affects the entire synovial joint, especially the hip, hand, and knee joints. This results in inflammation in the synovium and osteochondral injuries, ultimately causing functional limitations and joint dysfunction. The key mechanism responsible for maintaining articular cartilage function is chondrocyte metabolism, which involves energy generation through glycolysis, oxidative phosphorylation, and other metabolic pathways. Some studies have shown that chondrocytes in OA exhibit increased glycolytic activity, leading to elevated lactate production and decreased cartilage matrix synthesis. In OA cartilage, chondrocytes display alterations in mitochondrial activity, such as decreased ATP generation and increased oxidative stress, which can contribute to cartilage deterioration. Chondrocyte metabolism also involves anabolic processes for extracellular matrix substrate production and energy generation. During OA, chondrocytes undergo considerable metabolic changes in different aspects, leading to articular cartilage homeostasis deterioration. Numerous studies have been carried out to provide tangible therapies for OA by using various models in vivo and in vitro targeting chondrocyte metabolism, although there are still certain limitations. With growing evidence indicating the essential role of chondrocyte metabolism in disease etiology, this literature review explores the metabolic characteristics and changes of chondrocytes in the presence of OA, both in vivo and in vitro. To provide insight into the complex metabolic reprogramming crucial in chondrocytes during OA progression, we investigate the dynamic interaction between metabolic pathways, such as glycolysis, lipid metabolism, and mitochondrial function. In addition, this review highlights prospective future research directions for novel approaches to diagnosis and treatment. Adopting a multifaceted strategy, our review aims to offer a comprehensive understanding of the metabolic intricacies within chondrocytes in OA, with the ultimate goal of identifying therapeutic targets capable of modulating chondrocyte metabolism for the treatment of OA.


Subject(s)
Cartilage, Articular , Chondrocytes , Osteoarthritis , Chondrocytes/metabolism , Chondrocytes/pathology , Humans , Osteoarthritis/metabolism , Osteoarthritis/pathology , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Glycolysis
5.
J Cell Mol Med ; 28(11): e18472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842129

ABSTRACT

Excessive load on the temporomandibular joint (TMJ) is a significant factor in the development of TMJ osteoarthritis, contributing to cartilage degeneration. The specific mechanism through which excessive load induces TMJ osteoarthritis is not fully understood; however, mechanically-activated (MA) ion channels play a crucial role. Among these channels, Piezo1 has been identified as a mediator of chondrocyte catabolic responses and is markedly increased in osteoarthritis. Our observations indicate that, under excessive load conditions, endoplasmic reticulum stress in chondrocytes results in apoptosis of the TMJ chondrocytes. Importantly, using the Piezo1 inhibitor GsMTx4 demonstrates its potential to alleviate this condition. Furthermore, Piezo1 mediates endoplasmic reticulum stress in chondrocytes by inducing calcium ion influx. Our research substantiates the role of Piezo1 as a pivotal ion channel in mediating chondrocyte overload. It elucidates the link between excessive load, cell apoptosis, and calcium ion influx through Piezo1. The findings underscore Piezo1 as a key player in the pathogenesis of TMJ osteoarthritis, shedding light on potential therapeutic interventions for this condition.


Subject(s)
Apoptosis , Calcium , Chondrocytes , Endoplasmic Reticulum Stress , Ion Channels , Osteoarthritis , Temporomandibular Joint , Chondrocytes/metabolism , Chondrocytes/pathology , Ion Channels/metabolism , Ion Channels/genetics , Animals , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology , Calcium/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Humans , Mice , Signal Transduction , Spider Venoms , Intercellular Signaling Peptides and Proteins
6.
J Cell Mol Med ; 28(11): e18476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842136

ABSTRACT

Osteoarthritis (OA) is a complicated disease that involves apoptosis and mitophagy. MST1 is a pro-apoptotic factor. Hence, decreasing its expression plays an anti-apoptotic effect. This study aims to investigate the protective effect of MST1 inhibition on OA and the underlying processes. Immunofluorescence (IF) was used to detect MST1 expression in cartilage tissue. Western Blot, ELISA and IF were used to analyse the expression of inflammation, extracellular matrix (ECM) degradation, apoptosis and mitophagy-associated proteins. MST1 expression in chondrocytes was inhibited using siRNA and shRNA in vitro and in vivo. Haematoxylin-Eosin, Safranin O-Fast Green and alcian blue staining were used to evaluate the therapeutic effect of inhibiting MST1. This study discovered that the expression of MST1 was higher in OA patients. Inhibition of MST1 reduced inflammation, ECM degradation and apoptosis and enhanced mitophagy in vitro. MST1 inhibition slows OA progression in vivo. Inhibiting MST1 suppressed apoptosis, inflammation and ECM degradation via promoting Parkin-mediated mitophagy and the Nrf2-NF-κB axis. The results suggest that MST1 is a possible therapeutic target for the treatment of osteoarthritis as its inhibition delays the progression of OA through the Nrf2-NF-κB axis and mitophagy.


Subject(s)
Apoptosis , Chondrocytes , Disease Progression , Mitophagy , NF-E2-Related Factor 2 , NF-kappa B , Osteoarthritis , Signal Transduction , Ubiquitin-Protein Ligases , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Mitophagy/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , NF-kappa B/metabolism , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Chondrocytes/metabolism , Chondrocytes/pathology , Apoptosis/genetics , Male , Mice , Extracellular Matrix/metabolism , Gene Knockdown Techniques , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins
7.
Front Immunol ; 15: 1361606, 2024.
Article in English | MEDLINE | ID: mdl-38846937

ABSTRACT

Introduction: Pathological changes in the articular cartilage (AC) and synovium are major manifestations of osteoarthritis (OA) and are strongly associated with pain and functional limitations. Exosome-derived microRNAs (miRNAs) are crucial regulatory factors in intercellular communication and can influence the progression of OA by participating in the degradation of chondrocytes and the phenotypic transformation in the polarization of synovial macrophages. However, the specific relationships and pathways of action of exosomal miRNAs in the pathological progression of OA in both cartilage and synovium remain unclear. Methods: This study evaluates the effects of fibroblast-like synoviocyte (FLS)-derived exosomes (FLS-Exos), influenced by miR-146a, on AC degradation and synovial macrophage polarization. We investigated the targeted relationship between miR-146a and TRAF6, both in vivo and in vitro, along with the involvement of the NF-κB signaling pathway. Results: The expression of miR-146a in the synovial exosomes of OA rats was significantly higher than in healthy rats. In vitro, the upregulation of miR-146a reduced chondrocyte apoptosis, whereas its downregulation had the opposite effect. In vivo, exosomes derived from miR-146a-overexpressing FLSs (miR-146a-FLS-Exos) reduced AC injury and chondrocyte apoptosis in OA. Furthermore, synovial proliferation was reduced, and the polarization of synovial macrophages shifted from M1 to M2. Mechanistically, the expression of TRAF6 was inhibited by targeting miR-146a, thereby modulating the Toll-like receptor 4/TRAF6/NF-κB pathway in the innate immune response. Discussion: These findings suggest that miR-146a, mediated through FLS-Exos, may alleviate OA progression by modulating cartilage degradation and macrophage polarization, implicating the NF-κB pathway in the innate immune response. These insights highlight the therapeutic potential of miR-146a as a protective agent in OA, underscoring the importance of exosomal miRNAs in the pathogenesis and potential treatment of the disease.


Subject(s)
Exosomes , Macrophages , MicroRNAs , Osteoarthritis , Synoviocytes , TNF Receptor-Associated Factor 6 , MicroRNAs/genetics , Animals , Exosomes/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/immunology , Rats , Macrophages/immunology , Macrophages/metabolism , Synoviocytes/metabolism , Synoviocytes/pathology , Male , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , NF-kappa B/metabolism , Signal Transduction , Rats, Sprague-Dawley , Fibroblasts/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Synovial Membrane/immunology , Cells, Cultured , Apoptosis , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Macrophage Activation
8.
Arthritis Res Ther ; 26(1): 118, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851726

ABSTRACT

BACKGROUND: Primary osteoarthritis (OA) occurs without identifiable underlying causes such as previous injuries or specific medical conditions. Age is a major contributing factor to OA, and as one ages, various joint tissues undergo gradual change, including degeneration of the articular cartilage, alterations in subchondral bone (SCB) morphology, and inflammation of the synovium. METHODS: We investigated the prevalence of primary OA in aged, genetically diverse UM-HET3 mice. Articular cartilage (AC) integrity and SCB morphology were assessed in 182 knee joints of 22-25 months old mice using the Osteoarthritis Research Society International (OARSI) scoring system and micro-CT, respectively. Additionally, we explored the effects of methylene blue (MB) and mitoquinone (MitoQ), two agents that affect mitochondrial function, on the prevalence and progression of OA during aging. RESULTS: Aged UM-HET3 mice showed a high prevalence of primary OA in both sexes. Significant positive correlations were found between cumulative AC (cAC) scores and synovitis in both sexes, and osteophyte formation in female mice. Ectopic chondrogenesis did not show significant correlations with cAC scores. Significant direct correlations were found between AC scores and inflammatory markers in chondrocytes, including matrix metalloproteinase-13, inducible nitric oxide synthase, and the NLR family pyrin domain containing-3 inflammasome in both sexes, indicating a link between OA severity and inflammation. Additionally, markers of cell cycle arrest, such as p16 and ß-galactosidase, also correlated with AC scores. In male mice, no significant correlations were found between SCB morphology traits and cAC scores, while in female mice, significant correlations were found between cAC scores and tibial SCB plate bone mineral density. Notably, MB and MitoQ treatments influenced the disease's progression in a sex-specific manner. MB treatment significantly reduced cAC scores at the medial knee joint, while MitoQ treatment reduced cAC scores, but these did not reach significance. CONCLUSIONS: Our study provides comprehensive insights into the prevalence and progression of primary OA in aged UM-HET3 mice, highlighting the sex-specific effects of MB and MitoQ treatments. The correlations between AC scores and various pathological factors underscore the multifaceted nature of OA and its association with inflammation and subchondral bone changes.


Subject(s)
Aging , Osteoarthritis , Animals , Male , Female , Mice , Aging/pathology , Aging/genetics , Osteoarthritis/genetics , Osteoarthritis/pathology , Osteoarthritis/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Methylene Blue/pharmacology , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Disease Models, Animal , Disease Progression
9.
BMC Musculoskelet Disord ; 25(1): 451, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844905

ABSTRACT

OBJECTIVE: Temporomandibular joint osteoarthritis (TMJOA) is a chronic degenerative joint disorder characterized by extracellular matrix degeneration and inflammatory response of condylar cartilage. ß-arrestin2 is an important regulator of inflammation response, while its role in TMJOA remains unknown. The objective of this study was to investigate the role of ß-arrestin2 in the development of TMJOA at the early stage and the underlying mechanism. METHODS: A unilateral anterior crossbite (UAC) model was established on eight-week-old wild-type (WT) and ß-arrestin2 deficiency mice to simulate the progression of TMJOA. Hematoxylin-eosin (HE) staining and microcomputed tomography (micro-CT) analysis were used for histological and radiographic assessment. Immunohistochemistry was performed to detect the expression of inflammatory and degradative cytokines, as well as autophagy related factors. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay was carried out to assess chondrocyte apoptosis. RESULTS: The loss of ß-arrestin2 aggravated cartilage degeneration and subchondral bone destruction in the model of TMJOA at the early stage. Furthermore, in UAC groups, the expressions of degradative (Col-X) and inflammatory (TNF-α and IL-1ß) factors in condylar cartilage were increased in ß-arrestin2 null mice compared with WT mice. Moreover, the loss of ß-arrestin2 promoted apoptosis and autophagic process of chondrocytes at the early stage of TMJOA. CONCLUSION: In conclusion, we demonstrated for the first time that ß-arrestin2 plays a protective role in the development of TMJOA at the early stage, probably by inhibiting apoptosis and autophagic process of chondrocytes. Therefore, ß-arrestin2 might be a potential therapeutic target for TMJOA, providing a new insight for the treatment of TMJOA at the early stage.


Subject(s)
Cartilage, Articular , Disease Models, Animal , Mandibular Condyle , Mice, Knockout , Osteoarthritis , Temporomandibular Joint Disorders , beta-Arrestin 2 , Animals , Osteoarthritis/metabolism , Osteoarthritis/pathology , beta-Arrestin 2/metabolism , beta-Arrestin 2/genetics , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Mandibular Condyle/pathology , Mandibular Condyle/metabolism , Mandibular Condyle/diagnostic imaging , Mice , Temporomandibular Joint Disorders/metabolism , Temporomandibular Joint Disorders/pathology , Temporomandibular Joint Disorders/diagnostic imaging , Temporomandibular Joint Disorders/etiology , Chondrocytes/metabolism , Chondrocytes/pathology , Mice, Inbred C57BL , Apoptosis , Temporomandibular Joint/pathology , Temporomandibular Joint/metabolism , Temporomandibular Joint/diagnostic imaging , Male , X-Ray Microtomography , Autophagy/physiology
10.
BMC Musculoskelet Disord ; 25(1): 447, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844896

ABSTRACT

BACKGROUND: Although various anti-inflammatory medicines are widely recommended for osteoarthritis (OA) treatment, no significantly clinical effect has been observed. This study aims to examine the effects of vitamin B6, a component that has been reported to be capable of alleviating inflammation and cell death in various diseases, on cartilage degeneration in OA. METHODS: Collagen-induced arthritis (CIA) mice model were established and the severity of OA in cartilage was determined using the Osteoarthritis Research Society International (OARSI) scoring system. The mRNA and protein levels of indicators associated with extracellular matrix (ECM) metabolism, apoptosis and inflammation were detected. The effect of vitamin B6 (VB6) on the mice were assessed using HE staining and masson staining. The apoptosis rate of cells was assessed using TdT-mediated dUTP nick end labeling. RESULTS: Our results showed a trend of improved OARSI score in mice treated with VB6, which remarkably inhibited the hyaline cartilage thickness, chondrocyte disordering, and knees hypertrophy. Moreover, the VB6 supplementation reduced the protein expression of pro-apoptosis indicators, including Bax and cleaved caspase-3 and raised the expression level of anti-apoptosis marker Bcl-2. Importantly, VB6 improved ECM metabolism in both in vivo and in vitro experiments. CONCLUSIONS: This study demonstrated that VB6 alleviates OA through regulating ECM metabolism, inflammation and apoptosis in chondrocytes and CIA mice. The findings in this study provide a theoretical basis for targeted therapy of OA, and further lay the theoretical foundation for studies of mechanisms of VB6 in treating OA.


Subject(s)
Apoptosis , Arthritis, Experimental , Chondrocytes , Inflammation , Osteoarthritis , Vitamin B 6 , Animals , Apoptosis/drug effects , Mice , Vitamin B 6/pharmacology , Vitamin B 6/therapeutic use , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Osteoarthritis/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Male , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Mice, Inbred DBA , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
11.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732111

ABSTRACT

Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.


Subject(s)
Cartilage, Articular , Chondrocytes , Glycosphingolipids , Osteoarthritis , Regeneration , Humans , Osteoarthritis/therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Glycosphingolipids/metabolism , Signal Transduction , Gangliosides/metabolism
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732122

ABSTRACT

Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.


Subject(s)
Chondrocytes , Glucosamine , Homeostasis , Kruppel-Like Factor 4 , Reactive Oxygen Species , Silybin , Glucosamine/pharmacology , Glucosamine/metabolism , Humans , Silybin/pharmacology , Glycosylation/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Homeostasis/drug effects , Reactive Oxygen Species/metabolism , Kruppel-Like Factor 4/metabolism , Cell Line , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cartilage/metabolism , Cartilage/drug effects , Oxidative Stress/drug effects , Osteoarthritis/metabolism , Osteoarthritis/drug therapy
13.
FASEB J ; 38(10): e23636, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752683

ABSTRACT

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common forms of arthritis with undefined etiology and pathogenesis. Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ), which act as sensors for cellular mechanical and inflammatory cues, have been identified as crucial players in the regulation of joint homeostasis. Current studies also reveal a significant association between YAP/TAZ and the pathogenesis of OA and RA. The objective of this review is to elucidate the impact of YAP/TAZ on different joint tissues and to provide inspiration for further studying the potential therapeutic implications of YAP/TAZ on arthritis. Databases, such as PubMed, Cochran Library, and Embase, were searched for all available studies during the past two decades, with keywords "YAP," "TAZ," "OA," and "RA."


Subject(s)
Adaptor Proteins, Signal Transducing , Arthritis, Rheumatoid , Osteoarthritis , Transcription Factors , YAP-Signaling Proteins , Humans , Transcription Factors/metabolism , Animals , Arthritis, Rheumatoid/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , YAP-Signaling Proteins/metabolism , Osteoarthritis/metabolism , Osteoarthritis/etiology , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Joints/metabolism , Joints/pathology , Trans-Activators/metabolism , Trans-Activators/genetics
14.
Arthritis Res Ther ; 26(1): 100, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741149

ABSTRACT

BACKGROUND: Exploring the pathogenesis of osteoarthritis (OA) is important for its prevention, diagnosis, and treatment. Therefore, we aimed to construct novel signature genes (c-FRGs) combining cuproptosis-related genes (CRGs) with ferroptosis-related genes (FRGs) to explore the pathogenesis of OA and aid in its treatment. MATERIALS AND METHODS: Differentially expressed c-FRGs (c-FDEGs) were obtained using R software. Enrichment analysis was performed and a protein-protein interaction (PPI) network was constructed based on these c-FDEGs. Then, seven hub genes were screened. Three machine learning methods and verification experiments were used to identify four signature biomarkers from c-FDEGs, after which gene set enrichment analysis, gene set variation analysis, single-sample gene set enrichment analysis, immune function analysis, drug prediction, and ceRNA network analysis were performed based on these signature biomarkers. Subsequently, a disease model of OA was constructed using these biomarkers and validated on the GSE82107 dataset. Finally, we analyzed the distribution of the expression of these c-FDEGs in various cell populations. RESULTS: A total of 63 FRGs were found to be closely associated with 11 CRGs, and 40 c-FDEGs were identified. Bioenrichment analysis showed that they were mainly associated with inflammation, external cellular stimulation, and autophagy. CDKN1A, FZD7, GABARAPL2, and SLC39A14 were identified as OA signature biomarkers, and their corresponding miRNAs and lncRNAs were predicted. Finally, scRNA-seq data analysis showed that the differentially expressed c-FRGs had significantly different expression distributions across the cell populations. CONCLUSION: Four genes, namely CDKN1A, FZD7, GABARAPL2, and SLC39A14, are excellent biomarkers and prospective therapeutic targets for OA.


Subject(s)
Computational Biology , Ferroptosis , Osteoarthritis , Osteoarthritis/genetics , Osteoarthritis/metabolism , Ferroptosis/genetics , Computational Biology/methods , Humans , Animals , Protein Interaction Maps/genetics , Gene Expression Profiling/methods , Biomarkers/metabolism , Biomarkers/analysis , Gene Regulatory Networks/genetics , Machine Learning
15.
Front Immunol ; 15: 1384372, 2024.
Article in English | MEDLINE | ID: mdl-38765007

ABSTRACT

Osteoarthritis (OA) and Rheumatoid Arthritis (RA) are significant health concerns with notable prevalence and economic impact. RA, affecting 0.5% to 1.0% of the global population, leads to chronic joint damage and comorbidities. OA, primarily afflicting the elderly, results in joint degradation and severe pain. Both conditions incur substantial healthcare expenses and productivity losses. The cGAS-STING pathway, consisting of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), is a crucial component of mammalian immunity. This pathway is responsible for detecting foreign DNA, particularly double-stranded DNA (dsDNA), triggering innate immune defense responses. When cGAS recognizes dsDNA, it catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which then binds to and activates STING. Activated STING, in turn, initiates downstream signaling events leading to the production of interferons and other immune mediators. The cGAS-STING pathway is essential for defending against viral infections and maintaining cellular balance. Dysregulation of this pathway has been implicated in various inflammatory diseases, including arthritis, making it a target for potential therapeutic interventions. Understanding the intricate molecular signaling network of cGAS-STING in these arthritis forms offers potential avenues for targeted therapies. Addressing these challenges through improved early detection, comprehensive management, and interventions targeting the cGAS-STING pathway is crucial for alleviating the impact of OA and RA on individuals and healthcare systems. This review offers an up-to-date comprehension of the cGAS-STING pathway's role in the development and therapeutic approaches for these arthritis types.


Subject(s)
Arthritis, Rheumatoid , Membrane Proteins , Nucleotidyltransferases , Osteoarthritis , Signal Transduction , Humans , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/therapy , Osteoarthritis/immunology , Osteoarthritis/therapy , Osteoarthritis/metabolism , Osteoarthritis/etiology , Animals
16.
PeerJ ; 12: e17032, 2024.
Article in English | MEDLINE | ID: mdl-38770093

ABSTRACT

Purpose: This study seeks to identify potential clinical biomarkers for osteoarthritis (OA) using bioinformatics and investigate OA mechanisms through cellular assays. Methods: Differentially Expressed Genes (DEGs) from GSE52042 (four OA samples, four control samples) were screened and analyzed with protein-protein interaction (PPI) analysis. Overlapping genes in GSE52042 and GSE206848 (seven OA samples, and seven control samples) were identified and evaluated using Gene Set Enrichment Analysis (GSEA) and clinical diagnostic value analysis to determine the hub gene. Finally, whether and how the hub gene impacts LPS-induced OA progression was explored by in vitro experiments, including Western blotting (WB), co-immunoprecipitation (Co-IP), flow cytometry, etc. Result: Bioinformatics analysis of DEGs (142 up-regulated and 171 down-regulated) in GSE52042 identified two overlapping genes (U2AF2, TPX2) that exhibit significant clinical diagnostic value. These genes are up-regulated in OA samples from both GSE52042 and GSE206848 datasets. Notably, TPX2, which AUC = 0.873 was identified as the hub gene. In vitro experiments have demonstrated that silencing TPX2 can alleviate damage to chondrocytes induced by lipopolysaccharide (LPS). Furthermore, there is a protein interaction between TPX2 and MMP13 in OA. Excessive MMP13 can attenuate the effects of TPX2 knockdown on LPS-induced changes in OA protein expression, cell growth, and apoptosis. Conclusion: In conclusion, our findings shed light on the molecular mechanisms of OA and suggested TPX2 as a potential therapeutic target. TPX2 could promote the progression of LPS-induced OA by up-regulating the expression of MMP13, which provides some implications for clinical research.


Subject(s)
Cell Cycle Proteins , Chondrocytes , Disease Progression , Lipopolysaccharides , Matrix Metalloproteinase 13 , Microtubule-Associated Proteins , Osteoarthritis , Up-Regulation , Lipopolysaccharides/pharmacology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/chemically induced , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrocytes/drug effects , Computational Biology , Protein Interaction Maps
17.
J Nanobiotechnology ; 22(1): 271, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769545

ABSTRACT

BACKGROUND AND AIMS: Osteoarthritis (OA) is a prevalent degenerative joint disorder, marked by the progressive degeneration of joint cartilage, synovial inflammation, and subchondral bone hyperplasia. The synovial tissue plays a pivotal role in cartilage regulation. Exosomes (EXOs), small membrane-bound vesicles released by cells into the extracellular space, are crucial in mediating intercellular communication and facilitating the exchange of information between tissues. Our study aimed to devise a hydrogel microsphere infused with SOD3-enriched exosomes (S-EXOs) to protect cartilage and introduce a novel, effective approach for OA treatment. MATERIALS AND METHODS: We analyzed single-cell sequencing data from 4247 cells obtained from the GEO database. Techniques such as PCR, Western Blot, immunofluorescence (IF), and assays to measure oxidative stress levels were employed to validate the cartilage-protective properties of the identified key protein, SOD3. In vivo, OA mice received intra-articular injections of S-EXOs bearing hydrogel microspheres, and the effectiveness was assessed using safranine O (S.O) staining and IF. RESULTS: Single-cell sequencing data analysis suggested that the synovium influences cartilage via the exocrine release of SOD3. Our findings revealed that purified S-EXOs enhanced antioxidant capacity of chondrocytes, and maintained extracellular matrix metabolism stability. The S-EXO group showed a significant reduction in mitoROS and ROS levels by 164.2% (P < 0.0001) and 142.7% (P < 0.0001), respectively, compared to the IL-1ß group. Furthermore, the S-EXO group exhibited increased COL II and ACAN levels, with increments of 2.1-fold (P < 0.0001) and 3.1-fold (P < 0.0001), respectively, over the IL-1ß group. Additionally, the S-EXO group showed a decrease in MMP13 and ADAMTS5 protein expression by 42.3% (P < 0.0001) and 44.4% (P < 0.0001), respectively. It was found that S-EXO-containing hydrogel microspheres could effectively deliver SOD3 to cartilage and significantly mitigate OA progression. The OARSI score in the S-EXO microsphere group markedly decreased (P < 0.0001) compared to the OA group. CONCLUSION: The study demonstrated that the S-EXOs secreted by synovial fibroblasts exert a protective effect on chondrocytes, and microspheres laden with S-EXOs offer a promising therapeutic alternative for OA treatment.


Subject(s)
Chondrocytes , Exosomes , Osteoarthritis , Oxidative Stress , Superoxide Dismutase , Synovial Membrane , Animals , Osteoarthritis/therapy , Osteoarthritis/metabolism , Exosomes/metabolism , Mice , Oxidative Stress/drug effects , Chondrocytes/metabolism , Humans , Superoxide Dismutase/metabolism , Synovial Membrane/metabolism , Male , Disease Progression , Nanoparticles/chemistry , Mice, Inbred C57BL , Hydrogels/chemistry , Microspheres , Cartilage, Articular/metabolism , Extracellular Matrix/metabolism
18.
Elife ; 122024 May 21.
Article in English | MEDLINE | ID: mdl-38770735

ABSTRACT

Osteoarthritis (OA) is a degenerative disease with a high prevalence in the elderly population, but our understanding of its mechanisms remains incomplete. Analysis of serum exosomal small RNA sequencing data from clinical patients and gene expression data from OA patient serum and cartilage obtained from the GEO database revealed a common dysregulated miRNA, miR-199b-5p. In vitro cell experiments demonstrated that miR-199b-5p inhibits chondrocyte vitality and promotes extracellular matrix degradation. Conversely, inhibition of miR-199b-5p under inflammatory conditions exhibited protective effects against damage. Local viral injection of miR-199b-5p into mice induced a decrease in pain threshold and OA-like changes. In an OA model, inhibition of miR-199b-5p alleviated the pathological progression of OA. Furthermore, bioinformatics analysis and experimental validation identified Gcnt2 and Fzd6 as potential target genes of MiR-199b-5p. Thus, these results indicated that MiR-199b-5p/Gcnt2 and Fzd6 axis might be a novel therapeutic target for the treatment of OA.


Subject(s)
Frizzled Receptors , MicroRNAs , Osteoarthritis , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology , Osteoarthritis/metabolism , Animals , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Mice , Humans , Male , Mice, Inbred C57BL , Chondrocytes/metabolism , Disease Models, Animal , Gene Expression Regulation
19.
PLoS One ; 19(5): e0303506, 2024.
Article in English | MEDLINE | ID: mdl-38771826

ABSTRACT

OBJECTIVE: To elucidate potential molecular mechanisms differentiating osteoarthritis (OA) and rheumatoid arthritis (RA) through a bioinformatics analysis of differentially expressed genes (DEGs) in patient synovial cells, aiming to provide new insights for clinical treatment strategies. MATERIALS AND METHODS: Gene expression datasets GSE1919, GSE82107, and GSE77298 were downloaded from the Gene Expression Omnibus (GEO) database to serve as the training groups, with GSE55235 being used as the validation dataset. The OA and RA data from the GSE1919 dataset were merged with the standardized data from GSE82107 and GSE77298, followed by batch effect removal to obtain the merged datasets of differential expressed genes (DEGs) for OA and RA. Intersection analysis was conducted on the DEGs between the two conditions to identify commonly upregulated and downregulated DEGs. Enrichment analysis was then performed on these common co-expressed DEGs, and a protein-protein interaction (PPI) network was constructed to identify hub genes. These hub genes were further analyzed using the GENEMANIA online platform and subjected to enrichment analysis. Subsequent validation analysis was conducted using the GSE55235 dataset. RESULTS: The analysis of differentially expressed genes in the synovial cells from patients with Osteoarthritis (OA) and Rheumatoid Arthritis (RA), compared to a control group (individuals without OA or RA), revealed significant changes in gene expression patterns. Specifically, the genes APOD, FASN, and SCD were observed to have lower expression levels in the synovial cells of both OA and RA patients, indicating downregulation within the pathological context of these diseases. In contrast, the SDC1 gene was found to be upregulated, displaying higher expression levels in the synovial cells of OA and RA patients compared to normal controls.Additionally, a noteworthy observation was the downregulation of the transcription factor PPARG in the synovial cells of patients with OA and RA. The decrease in expression levels of PPARG further validates the alteration in lipid metabolism and inflammatory processes associated with the pathogenesis of OA and RA. These findings underscore the significance of these genes and the transcription factor not only as biomarkers for differential diagnosis between OA and RA but also as potential targets for therapeutic interventions aimed at modulating their expression to counteract disease progression. CONCLUSION: The outcomes of this investigation reveal the existence of potentially shared molecular mechanisms within Osteoarthritis (OA) and Rheumatoid Arthritis (RA). The identification of APOD, FASN, SDC1, TNFSF11 as key target genes, along with their downstream transcription factor PPARG, highlights common potential factors implicated in both diseases. A deeper examination and exploration of these findings could pave the way for new candidate targets and directions in therapeutic research aimed at treating both OA and RA. This study underscores the significance of leveraging bioinformatics approaches to unravel complex disease mechanisms, offering a promising avenue for the development of more effective and targeted treatments.


Subject(s)
Arthritis, Rheumatoid , Gene Expression Profiling , Osteoarthritis , Protein Interaction Maps , Synovial Membrane , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Humans , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Protein Interaction Maps/genetics , Synovial Membrane/metabolism , Synovial Membrane/pathology , Computational Biology/methods , Gene Regulatory Networks , Gene Expression Regulation , Databases, Genetic
20.
J Pharm Biomed Anal ; 245: 116196, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723559

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease primarily affecting the cartilage. The therapeutic potential of the Dipsacus asper-Achyranthes bidentate herb pair for OA has been acknowledged, yet its precise mechanism remains elusive. In this study, we conducted a comprehensive analysis of metabolomic changes and therapeutic outcomes in osteoarthritic rats, employing a gas chromatography-mass spectrometry-based metabolomics approach in conjunction with histopathological and biochemical assessments. The rats were divided into six groups: control, model, positive control, Dipsacus asper treated, Achyranthes bidentata treated, and herb pair treated groups. Compared to the model group, significant reductions in levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and iNOS were observed in the treated groups. Multivariate statistical analyses were employed to investigate metabolite profile changes in serum samples and identify potential biomarkers, revealing 45 differential biomarkers, with eighteen validated using standard substances. These analytes exhibited excellent linearity across a wide concentration range (R2>0.9990), with intra- and inter-day precision RSD values below 4.69% and 4.83%, respectively. Recoveries of the eighteen analytes ranged from 93.97% to 106.59%, with RSD values under 5.72%, underscoring the method's reliability. Treatment with the herbal pair effectively restored levels of unsaturated fatty acids such as linoleic acid and arachidonic acid, along with glucogenic amino acids. Additionally, levels of phosphoric acid and citric acid were reversed, indicating restoration of energy metabolism. Collectively, these findings highlight the utility of metabolomic analysis in evaluating therapeutic efficacy and elucidating the underlying molecular mechanisms of herb pairs in OA treatment.


Subject(s)
Achyranthes , Biomarkers , Energy Metabolism , Fatty Acids, Unsaturated , Gas Chromatography-Mass Spectrometry , Metabolomics , Osteoarthritis , Rats, Sprague-Dawley , Animals , Metabolomics/methods , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Achyranthes/chemistry , Rats , Energy Metabolism/drug effects , Male , Gas Chromatography-Mass Spectrometry/methods , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/blood , Biomarkers/blood , Dipsacaceae/chemistry , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...