Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.106
Filter
1.
Ther Adv Respir Dis ; 18: 17534666241253694, 2024.
Article in English | MEDLINE | ID: mdl-38803144

ABSTRACT

BACKGROUND: Given the rarity of tracheobronchopathia osteochondroplastica (TO), many young doctors in primary hospitals are unable to identify TO based on bronchoscopy findings. OBJECTIVES: To build an artificial intelligence (AI) model for differentiating TO from other multinodular airway diseases by using bronchoscopic images. DESIGN: We designed the study by comparing the imaging data of patients undergoing bronchoscopy from January 2010 to October 2022 by using EfficientNet. Bronchoscopic images of 21 patients with TO at Anhui Chest Hospital from October 2019 to October 2022 were collected for external validation. METHODS: Bronchoscopic images of patients with multinodular airway lesions (including TO, amyloidosis, tumors, and inflammation) and without airway lesions in the First Affiliated Hospital of Guangzhou Medical University were collected. The images were randomized (4:1) into training and validation groups based on different diseases and utilized for deep learning by convolutional neural networks (CNNs). RESULTS: We enrolled 201 patients with multinodular airway disease (38, 15, 75, and 73 patients with TO, amyloidosis, tumors, and inflammation, respectively) and 213 without any airway lesions. To find multinodular lesion images for deep learning, we utilized 2183 bronchoscopic images of multinodular lesions (including TO, amyloidosis, tumor, and inflammation) and compared them with images without any airway lesions (1733). The accuracy of multinodular lesion identification was 98.9%. Further, the accuracy of TO detection based on the bronchoscopic images of multinodular lesions was 89.2%. Regarding external validation (using images from 21 patients with TO), all patients could be diagnosed with TO; the accuracy was 89.8%. CONCLUSION: We built an AI model that could differentiate TO from other multinodular airway diseases (mainly amyloidosis, tumors, and inflammation) by using bronchoscopic images. The model could help young physicians identify this rare airway disease.


Subject(s)
Bronchoscopy , Osteochondrodysplasias , Predictive Value of Tests , Tracheal Diseases , Humans , Tracheal Diseases/diagnostic imaging , Tracheal Diseases/pathology , Tracheal Diseases/diagnosis , Middle Aged , Male , Female , Adult , Diagnosis, Differential , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/pathology , Reproducibility of Results , Deep Learning , Aged , China , Image Interpretation, Computer-Assisted , Neural Networks, Computer , Artificial Intelligence
2.
Medwave ; 24(3): e2792, 2024 04 08.
Article in English, Spanish | MEDLINE | ID: mdl-38588532

ABSTRACT

Introduction: Osteochondroplastic tracheobronchopathy is a rare benign chronic disease of unknown etiology. Bronchoscopy remains the gold standard for diagnosing osteochondroplastic tracheobronchopathy. Its typical findings are described as a cobblestone, rock garden, mountainscape, or stalactite cave appearance. The present work aims to show the main clinical features of this rare pathology. Clinical cases: The clinical data of four middle-aged patients, three men and one woman, were analyzed. The main clinical symptoms were chronic cough, dyspnea, and dysphonia. The patient's preliminary diagnosis was made by computed axial tomography of the chest, confirmed by bronchoscopy and histopathological examination. Treatment included medication for symptoms and, in one case, cryosurgery and argon plasma coagulation. Discussion: Diagnosing osteochondroplastic tracheobronchopathy was not easy, given its uncommon nature and non-specific symptoms often found in other pathologies. No case series articles on this pathology have been published in Peru. Therefore, we used the original articles published in other countries to reference our findings. Conclusion: Osteochondroplastic tracheopathy is a benign disease that typically affects adults. Men are more likely to be affected. Its clinical manifestations are non-specific and frequently of pharyngeal origin, and the cause is not yet defined. Chest computed axial tomography combined with bronchoscopy are the main diagnostic procedures. There is no standard treatment with consistent therapeutic effects.


Introducción: La traqueobroncopatía osteocondroplástica es una rara enfermedad crónica benigna de etiología desconocida. La broncoscopía sigue siendo el estándar de oro para el reconocimiento de traqueopatía osteocondroplástica. Sus hallazgos típicos se describen como un empedrado, un jardín de rocas, una apariencia de paisaje montañoso o de una cueva con estalactitas. El objetivo del presente trabajo es mostrar las principales características clínicas de una patología poco conocida. Casos clínicos: Se analizaron los datos clínicos de cuatro pacientes de mediana edad, tres fueron hombres y una mujer. Los principales síntomas clínicos fueron tos crónica, disnea, disfonía. Los pacientes tuvieron un diagnóstico preliminar mediante tomografía axial computarizada de tórax, confirmado por examen video broncoscópico e histopatológico. El tratamiento incluyó medicamentos para los síntomas y en un solo caso criocirugía y coagulación con argón plasma. Discusión: El diagnóstico de traqueobroncopatía osteocondroplástica no fue sencillo por ser una entidad rara, cuyos síntomas son inespecíficos y muy frecuentes en otras patologías. En Perú no se han publicado artículos de serie de casos sobre esta patología. Por lo tanto, tomamos como referencia artículos originales publicados en otros países para compararlos con nuestros hallazgos. Conclusión: La traqueopatía osteocondroplástica es una enfermedad benigna que predispone a los adultos, los hombres tienen más probabilidades de verse afectados. Sus manifestaciones clínicas son inespecíficas; frecuentemente de origen faríngeo y la causa no está aún definida. La tomografía axial computarizada de tórax combinada con video broncoscopía son los principales procedimientos para el diagnóstico. No existe un estándar de tratamiento con efectos terapéuticos consistentes.


Subject(s)
Bronchial Diseases , Osteochondrodysplasias , Tracheal Diseases , Female , Humans , Male , Middle Aged , Bronchial Diseases/diagnosis , Bronchial Diseases/pathology , Bronchoscopy , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/pathology , Tomography, X-Ray Computed , Tracheal Diseases/diagnosis , Tracheal Diseases/therapy , Tracheal Diseases/pathology
3.
Pestic Biochem Physiol ; 201: 105847, 2024 May.
Article in English | MEDLINE | ID: mdl-38685209

ABSTRACT

Thiram, a widely used organic pesticide in agriculture, exhibits both bactericidal and insecticidal effects. However, prolonged exposure to thiram has been linked to bone deformities and cartilage damage, contributing to the development of tibial dyschondroplasia (TD) in broilers and posing a significant threat to global agricultural production. TD, a prevalent nutritional metabolic disease, manifests as clinical symptoms like unstable standing, claudication, and sluggish movement in affected broilers. In recent years, there has been growing recognition of the regulatory role of long non-coding RNA (lncRNA) in tibial cartilage formation among broilers through diverse signaling pathways. This study employs in vitro experimental models, growth performance analysis, and clinical observation to assess broilers' susceptibility to thiram pollution. Transcriptome sequencing analysis revealed a significant elevation in the expression of lncRNA MSTRG.74.1 in both the con group and the thiram-induced in vitro group. The results showed that lncRNA MSTRG.74.1 plays a pivotal role in influencing the proliferation and abnormal differentiation of chondrocytes. This regulation occurs through the negative modulation of apoptotic genes, including Bax, Cytc, Bcl2, Apaf1, and Caspase3, along with genes Atg5, Beclin1, LC3b, and protein p62. Moreover, the overexpression of lncRNA MSTRG.74.1 was found to regulate broiler chondrocyte development by upregulating BNIP3. In summary, this research sheds light on thiram-induced abnormal chondrocyte proliferation in TD broilers, emphasizing the significant regulatory role of the lncRNA MSTRG.74.1-BNIP3 axis, which will contribute to our understanding of the molecular mechanisms underlying TD development in broilers exposed to thiram.


Subject(s)
Cell Proliferation , Chickens , Chondrocytes , RNA, Long Noncoding , Thiram , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Thiram/toxicity , Cell Proliferation/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Osteochondrodysplasias/chemically induced , Osteochondrodysplasias/genetics , Osteochondrodysplasias/veterinary , Osteochondrodysplasias/pathology , Apoptosis/drug effects
4.
Am J Med Genet A ; 194(7): e63603, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38511620

ABSTRACT

There is an emerging body of evidence showing that young patients, post haematopoietic stem cell transplantation (HSCT), can develop skeletal changes that mimic an osteochondrodysplasia process. The key discriminator is that these children have had otherwise normal growth and skeletal development before the therapeutic intervention (HSCT), typically for a haematological malignancy. Herein we present that case of a boy who underwent HSCT for Haemophagocytic Lymphohistiocytosis (HLH) aged 2 years. Following Intervention with HSCT this boy's growth has severely decelerated (stature less than 1st centile matched for age) and he has developed a spondyloepiphyseal dysplasia.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphohistiocytosis, Hemophagocytic , Osteochondrodysplasias , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Child, Preschool , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/pathology , Lymphohistiocytosis, Hemophagocytic/etiology , Growth Disorders/pathology , Growth Disorders/etiology , Growth Disorders/genetics
5.
Am J Med Genet A ; 194(6): e63562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38337186

ABSTRACT

Biallelic pathogenic variants in RMRP, the gene encoding the RNA component of RNase mitochondrial RNA processing enzyme complex, have been reported in individuals with cartilage hair hypoplasia (CHH). CHH is prevalent in Finnish and Amish populations due to a founder pathogenic variant, n.71A > G. Based on the manifestations in the Finnish and Amish individuals, the hallmarks of CHH are prenatal-onset growth failure, metaphyseal dysplasia, hair hypoplasia, immunodeficiency, and other extraskeletal manifestations. Herein, we report six Japanese individuals with CHH from four families. All probands presented with moderate short stature with mild metaphyseal dysplasia or brachydactyly. One of them had hair hypoplasia and the other immunodeficiency. By contrast, the affected siblings of two families showed only mild short stature. We also reviewed all previously reported 13 Japanese individuals. No n.71A > G allele was detected. The proportions of Japanese versus Finnish individuals were 0% versus 70% for birth length < -2.0 SD, 84% versus 100% for metaphyseal dysplasia and 26% versus 88% for hair hypoplasia. Milder manifestations in the Japanese individuals may be related to the difference of genotypes. The mildest form of CHH phenotypes is mild short stature without overt skeletal alteration or extraskeletal manifestation and can be termed "RMRP-related short stature".


Subject(s)
Hair , Hair/abnormalities , Osteochondrodysplasias , Osteochondrodysplasias/congenital , Humans , Female , Male , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Hair/pathology , Child , Hirschsprung Disease/genetics , Hirschsprung Disease/pathology , Hirschsprung Disease/diagnosis , Dwarfism/genetics , Dwarfism/pathology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/pathology , Child, Preschool , Phenotype , Japan/epidemiology , RNA, Long Noncoding/genetics , Pedigree , Mutation/genetics , Alleles , Adolescent , Genotype , East Asian People
6.
J Hum Genet ; 69(6): 235-244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38424183

ABSTRACT

Dyssegmental dysplasia (DD) is a severe skeletal dysplasia comprised of two subtypes: lethal Silverman-Handmaker type (DDSH) and nonlethal Rolland-Desbuquois type (DDRD). DDSH is caused by biallelic pathogenic variants in HSPG2 encoding perlecan, whereas the genetic cause of DDRD remains undetermined. Schwartz-Jampel syndrome (SJS) is also caused by biallelic pathogenic variants in HSPG2 and is an allelic disorder of DDSH. In SJS and DDSH, 44 and 8 pathogenic variants have been reported in HSPG2, respectively. Here, we report that five patients with DDRD carried four pathogenic variants in HSPG2: c.9970 G > A (p.G3324R), c.559 C > T (p.R187X), c7006 + 1 G > A, and c.11562 + 2 T > G. Two patients were homozygous for p.G3324R, and three patients were heterozygous for p.G3324R. Haplotype analysis revealed a founder haplotype spanning 85,973 bp shared in the five patients. SJS, DDRD, and DDSH are allelic disorders with pathogenic variants in HSPG2.


Subject(s)
Haplotypes , Heparan Sulfate Proteoglycans , Osteochondrodysplasias , Female , Humans , Male , Alleles , Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/pathology , Founder Effect , Heparan Sulfate Proteoglycans/genetics , Mutation , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Fetal Diseases
7.
Clin Genet ; 106(1): 47-55, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38378010

ABSTRACT

Skeletal dysplasias (SKDs) are a heterogeneous group of more than 750 genetic disorders characterized by abnormal development, growth, and maintenance of bones or cartilage in the human skeleton. SKDs are often caused by variants in early patterning genes and in many cases part of multiple malformation syndromes and occur in combination with non-skeletal phenotypes. The aim of this study was to investigate the underlying genetic cause of congenital SKDs in highly consanguineous Pakistani families, as well as in sporadic and familial SKD cases from India using multigene panel sequencing analysis. Therefore, we performed panel sequencing of 386 bone-related genes in 7 highly consanguineous families from Pakistan and 27 cases from India affected with SKDs. In the highly consanguineous families, we were able to identify the underlying genetic cause in five out of seven families, resulting in a diagnostic yield of 71%. Whereas, in the sporadic and familial SKD cases, we identified 12 causative variants, corresponding to a diagnostic yield of 44%. The genetic heterogeneity in our cohorts was very high and we were able to detect various types of variants, including missense, nonsense, and frameshift variants, across multiple genes known to cause different types of SKDs. In conclusion, panel sequencing proved to be a highly effective way to decipher the genetic basis of SKDs in highly consanguineous families as well as sporadic and or familial cases from South Asia. Furthermore, our findings expand the allelic spectrum of skeletal dysplasias.


Subject(s)
Consanguinity , Pedigree , Humans , Male , Female , Pakistan/epidemiology , India/epidemiology , Osteochondrodysplasias/genetics , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/pathology , Phenotype , Child , Mutation , Bone Diseases, Developmental/genetics , Genetic Predisposition to Disease , Child, Preschool , High-Throughput Nucleotide Sequencing , Genetic Heterogeneity
8.
Clin Genet ; 104(1): 121-126, 2023 07.
Article in English | MEDLINE | ID: mdl-36896672

ABSTRACT

PKDCC encodes a component of Hedgehog signalling required for normal chondrogenesis and skeletal development. Although biallelic PKDCC variants have been implicated in rhizomelic shortening of limbs with variable dysmorphic features, this association was based on just two patients. In this study, data from the 100 000 Genomes Project was used in conjunction with exome sequencing and panel-testing results accessed via international collaboration to assemble a cohort of eight individuals from seven independent families with biallelic PKDCC variants. The allelic series included six frameshifts, a previously described splice-donor site variant and a likely pathogenic missense variant observed in two families that was supported by in silico structural modelling. Database queries suggested that the prevalence of this condition is between 1 of 127 and 1 of 721 in clinical cohorts with skeletal dysplasia of unknown aetiology. Clinical assessments, combined with data from previously published cases, indicate a predominantly upper limb involvement. Micrognathia, hypertelorism and hearing loss appear to be commonly co-occurring features. In conclusion, this study strengthens the link between biallelic inactivation of PKDCC and rhizomelic limb-shortening and will enable clinical testing laboratories to better interpret variants in this gene.


Subject(s)
Dwarfism , Osteochondrodysplasias , Humans , Hedgehog Proteins , Osteochondrodysplasias/pathology , Prevalence , RNA Splice Sites
9.
Skeletal Radiol ; 52(1): 115-118, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35776137

ABSTRACT

INTRODUCTION: Dominant pathogenic mutations in the TRPV4 gene give rise to a wide spectrum of abnormal phenotypes, including bone dysplasia as well as spinal muscular atrophy and hereditary motor and sensory neuropathy. Spondyloepimetaphyseal dysplasias (SEMDs) are autosomal dominant skeletal dysplasias characterized by mild epiphyseal dysplasia, flared metaphyses, prominent joints, spondyler dysplasia, and brachydactyly with various carpal, metacarpal, and finger malformations. CASE PRESENTATION: We present a boy who has the clinical and radiological signs of SEMD-M with a dominant TRPV4 mutation. He also has some striking findings that have not been seen in these patients before, and they may be able to provide assistance to medical professionals in the process of diagnosis.These include a shorter distance between his lumbar vertebrae, congenital contractures, and an arachnoid cyst.


Subject(s)
Bone Diseases, Developmental , Osteochondrodysplasias , Male , Humans , TRPV Cation Channels/genetics , Phenotype , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Mutation , Bone Diseases, Developmental/pathology
10.
Bone ; 167: 116614, 2023 02.
Article in English | MEDLINE | ID: mdl-36400164

ABSTRACT

BACKGROUND: Metaphyseal chondrodysplasias are a heterogeneous group of diseases characterized by short and bowed long bones and metaphyseal abnormality. The aim of this study is to investigate the genetic etiology and prognostic findings in patients with metaphyseal dysplasia. METHODS: Twenty-four Turkish patients were included in this study and 13 of them were followed for 2-21 years. COL10A1, RMRP sequencing and whole exome sequencing were performed. RESULTS: Results: Seven heterozygous pathogenic variants in COL10A1 were detected in 17 patients with Schmid type metaphyseal chondrodysplasia(MCDS). The phenotype was more severe in patients with heterozygous missense variants (one in signal peptide domain at the N-terminus of the protein, the other, class-1 group mutation at NC1 domain) compared to the patients with truncating variants. Short stature and coxa vara deformity appeared after 3 and 5 years of age, respectively, while large femoral head resolved after the age of 13 years in MCDS group. Interestingly, one patient with severe phenotype also had a biallelic missense variant in NC1 domain of COL10A1. Three patients with biallelic mutations in RMRP had prenatal onset short stature with short limb, and typical findings of cartilage hair hypoplasia (CHH). While immunodeficiency or recurrent infections were not observed, resistant congenital anemia was detected in one. Biallelic mutation in LBR was described in a patient with prenatal onset short stature, short and curved limb and metaphyseal abnormalities. Unlike previously reported patients, this patient had ectodermal findings, similar to CHH. A biallelic COL2A1 mutation was also found in the patient with lower limb deformities and metaphyseal involvement without vertebral and epiphyseal changes. CONCLUSION: Long-term clinical characteristics are presented in a metaphyseal dysplasia cohort, including rare types caused by biallelic COL10A1, COL2A1, and LBR variants. We also point out that the domains where mutations on COL10A1 take place are important in the genotype-phenotype relationship.


Subject(s)
Bone Diseases , Osteochondrodysplasias , Humans , Collagen Type II/genetics , Mutation/genetics , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Lamin B Receptor
11.
Eur J Med Genet ; 65(12): 104640, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36243336

ABSTRACT

Spondyloepimetaphyseal dysplasia-Shohat type (SEMDSH) is an ultra-rare type of skeletal dysplasia. Only nine patients from six families have been reported and genetically confirmed to have biallelic pathogenic variants in the DDRGK1 gene. We present a patient with typical clinical features of the disorder, including disproportionate short-limbed short stature, short neck, short chest with pectus carinatum, exaggerated lumbar lordosis and marked genu vara. Our patient further showed microcephaly, unilateral choanal atresia and antenatal fractures, features that were not reported before in association with this disorder. Radiological changes over time were presented, including delayed epiphyseal ossification, broad metaphysis with marked irregularities that progressed with age, fibular overgrowth, and characteristic spine changes with early platyspondyly and squaring of vertebral bodies at a later age. Exome sequencing revealed a homozygous pathogenic donor splice site variant in the DDRGK1 gene (NM_023935.3:c.408+1G > A). This mutation was also previously identified in patients from Iraqi descent. Our study expands the phenotypic spectrum of SEMDSH, emphasizes the radiological changes with age in SEMDSH patients, and recommends prolonged follow-up for these cases better to delineate the phenotype and surveillance for possible complications.


Subject(s)
Dwarfism , Osteochondrodysplasias , Pregnancy , Animals , Female , Humans , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Phenotype , Exome Sequencing
12.
Hum Mutat ; 43(12): 2116-2129, 2022 12.
Article in English | MEDLINE | ID: mdl-36150098

ABSTRACT

Spondylo-epi-metaphyseal dysplasias with joint laxity, type 3 (SEMDJL3) is a genetic skeletal disorder characterized by multiple joint dislocations, caused by biallelic pathogenic variants in the EXOC6B gene. Only four individuals from two families have been reported to have this condition to date. The molecular pathogenesis related to primary ciliogenesis has not been enumerated in subjects with SEMDJL3. In this study, we report two additional affected individuals from unrelated families with biallelic pathogenic variants, c.2122+15447_2197-59588del and c.401T>G in EXOC6B identified by exome sequencing. One of the affected individuals had an intellectual disability and central nervous system anomalies, including hydrocephalus, hypoplastic mesencephalon, and thin corpus callosum. Using the fibroblast cell lines, we demonstrate the primary evidence for the abrogation of exocytosis in an individual with SEMDLJ3 leading to impaired primary ciliogenesis. Osteogenesis differentiation and pathways related to the extracellular matrix were also found to be reduced. Additionally, we provide a review of the clinical and molecular profile of all the mutation-proven patients reported hitherto, thereby further characterizing SEMDJL3. SEMDJL3 with biallelic pathogenic variants in EXOC6B might represent yet another ciliopathy with central nervous system involvement and joint dislocations.


Subject(s)
Joint Dislocations , Joint Instability , Osteochondrodysplasias , Humans , Joint Instability/genetics , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Mutation , GTP-Binding Proteins/genetics
13.
Genes (Basel) ; 13(9)2022 08 24.
Article in English | MEDLINE | ID: mdl-36140680

ABSTRACT

Multiple epiphyseal dysplasias (MED) are a clinically and genetically heterogeneous group of skeletal dysplasias with a predominant lesion in the epiphyses of tubular bones. Variants in the SLC26A2 gene cause their autosomal recessive form (rMED or MED type 4). The accumulation of data regarding the genotype−phenotype correlation can help in the diagnosis and proper management of these patients. The aim of this study was to survey the clinical and genetic characteristics of 55 patients with MED type 4 caused by variants in the SLC26A2 gene. Diagnosis confirmation was carried out by radiography and custom panel sequencing consisting of 166 genes responsible for the development of hereditary skeletal pathology. This was followed by the validation of the identified variants using automated Sanger sequencing (for six patients) and the direct automatic Sanger sequencing of the coding sequence and the adjacent intron regions of the SLC26A2 gene for 49 patients. Based on the clinical and genetic analysis of our sample of patients, two main MED type 4 phenotypes with early and late clinical manifestations were identified. An early and more severe form of the disease was observed in patients with the c.835C > T variant (p.Arg279Trp), and the late and milder form of the disease was observed in patients with the c.1957T > A variant (p.Cys653Ser) in the homozygous or compound heterozygous state with c.26 + 2T > C. It was also shown that only three pathogenic variants were found in 95.3% of the alleles of Russian patients with MED type 4: c.1957T > A (p.Cys653Ser), c.835C > T (p.Arg279Trp), and c.26 + 2T > C; thus, it can be assumed that the primary analysis of these variants will contribute to the optimal molecular genetic diagnostics of MED type 4.


Subject(s)
Osteochondrodysplasias , Anion Transport Proteins/genetics , Humans , Mutation , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Patella/abnormalities , Sulfate Transporters/genetics
14.
Eur J Med Genet ; 65(10): 104595, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36007841

ABSTRACT

BACKGROUND: Pathogenic variants in the transmembrane sulfate transporter protein SLC26A2 are associated with different phenotypes of inherited chondrodysplasias. As limited data is published from India, in this study we sought to elucidate the molecular basis of inherited chondrodysplasias in an Indian cohort. METHODS: Molecular screening of 32 fetuses with antenatally diagnosed lethal skeletal dysplasia was performed by next generation sequencing and Sanger sequencing. The genotype-protein phenotype characterization was done using computational biology techniques like homology modelling, stability and pathogenicity predictions. RESULTS: We identified five rare autosomal recessive SLC26A2 [NM_000112.4] variants, including three homozygous c.796dupA(p.Thr266Asnfs*12), c.1724delA(p.Lys575Serfs*10), and c.1375_1377dup(p.Val459dup) and two heterozygous variants (c.532C > T(p.Arg178*)) and (c.1382C > T(p.Ala461Val)) in compound heterozygous form in a total of four foetuses. Genotype-protein phenotype annotations highlighted that the clinically severe achondrogenesis 1B causative c.796dupA(p.Thr266Asnfs*12) and c.1724delA(p.Lys575Serfs*10)variants impact SLC26A2 protein structure by deletion of the protein core and transmembrane STAS domains, respectively. In clinically moderate atelosteogenesis type 2 phenotype, the c.1382C > T(p.Ala461Val) variant is predicted to distort alpha helix conformation and alter the bonding properties and free energy dynamics of transmembrane domains and the c.532C > T(p.Arg178*) variant results in loss of both core transmembrane and STAS domains of the SLC26A2 protein. The c.1375_1377dup(p.Val459dup) variant identified in clinically milder atelosteogenesis type II-diastrophic dysplasia spectrum lethal phenotype is predicted to decrease the Qualitative Model Energy Analysis (QMean), which affects major geometrical aspects of the SLC26A2 protein structure. CONCLUSION: We expand the spectrum of SLC26A2 related lethal chondrodysplasia and report three novel variants correlating clinical severity and protein phenotype within the lethal spectrum of this rare dysplasia. We demonstrate the relevance of structural characterization to aid novel variant reclassification to provide better prenatal management and reproductive options to families with lethal antenatal skeletal disorder.


Subject(s)
Computational Biology , Osteochondrodysplasias , Anion Transport Proteins/genetics , Female , Genotype , Humans , Mutation , Osteochondrodysplasias/pathology , Phenotype , Pregnancy , Sulfate Transporters/genetics
15.
Phytomedicine ; 104: 154296, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35809377

ABSTRACT

BACKGROUND: Apoptosis is thought to be involved in all processes, including normal cell cycle, immune system, atrophy, embryonic development, and chemical-induced cellular damage. However, if the normal apoptotic process fails, the results might be disastrous, e.g., chondrocytes damage in tibial dyschondroplasia (TD). TD is a worldwide issue in the poultry sector due to thiram toxicity. Thiram (Tetramethyl thiuram disulfide) is a dithiocarbamate pesticide and fungicide commonly used in horticulture to treat grains meant for seed protection and preservation. PURPOSE: According to prior studies, chlorogenic acid (CGA) is becoming essential for regulating apoptosis. But still, the specific role of CGA in chondrocyte cells remains unclear. The present study explored the molecular mechanism of CGA on chondrocytes' apoptosis with B-cell lymphoma 2 signaling under the effect of miR-460a. METHODS: An in vivo and in vitro study was performed according to our previously developed methodology. Flow cytometry, western blotting, reverse transcription-quantitative polymerase chain reaction, and immunofluorescence assay were used to investigate the involvement of apoptosis and inflammasome related pathways. RESULTS: The CGA decreased the apoptosis rate with the deactivation of miR-460a, accompanied by the activation of Bcl-2. The high expression of miR-460a reduced the cell viability of chondrocytes in vitro and in vivo, that led to the interleukin-1ß production. While the apoptotic executioners (caspase-3 and caspase-7) acted upstream in miR-460a overexpressing cells, and its depletion downgraded these executioners. The CGA administrated cells negatively regulated miR-460a expression and thus indicating the deactivation of the apoptotic and inflammasome related pathways. CONCLUSION: Chlorogenic acid had a negative effect on miR-460a, setting off specific feedback to regulate apoptotic and inflammasome pathways, which might be a key feature for chondrocytes' survival.


Subject(s)
MicroRNAs , Osteochondrodysplasias , Apoptosis , Caspase 3/metabolism , Caspase 7/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Chondrocytes , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteochondrodysplasias/chemically induced , Osteochondrodysplasias/drug therapy , Osteochondrodysplasias/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Thiram/adverse effects , Thiram/metabolism
16.
Vet Res Commun ; 46(4): 1023-1032, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35835972

ABSTRACT

Manganese (Mn) is an essential microelement for broiler breeding and its deficiency causes tibial dyschondroplasia (TD). Tibial growth plate (TGP) development and metaphyseal vascularization are crucial for tibia growth in fast-growing broiler chickens, but their roles in Mn deficiency-induced TD in chicks remain unclear. This study was designed to clarify this issue. A total of 36 one-day-old broilers were divided into the control group and Mn-deficiency (Mn-D) group, which were fed with a standard diet (60 mg Mn/kg) and Mn deficiency diet (22 mg Mn/kg) for 42 days, respectively. TGP and proximal tibial metaphysis were collected to perform the related assays. This study found that Mn deficiency decreased the tibia length and TGP thickness in the TD model. Also, Mn deficiency increased the irregular and white tibial dyschondroplasia lesions (TDL) region under the TGP, and reduced the expression levels of vascular endothelial growth factor (VEGF) and macrophage migration inhibitory factor (MIF). Combined with histological assessment, it was suggested that Manganese deficiency inhibited angiogenesis in the proximal tibial metaphysis. Meanwhile, Mn deficiency enhanced the expression levels of hypoxia-inducible factor-1 α (HIF-1α), autophagy-related protein 5 (ATG5), and microtubule-associated protein 1 light chain 3 ß (LC3-II) in TGP, but decreased the expression level of SQSTM1 (P62), which suggested that autophagy was activated during this process. Collectively, these data indicate that HIF-1α up-regulation and concurrent autophagy activation exert a protective effect against Mn deficiency-induced angiogenesis inhibition, which may provide useful guidance to prevent TD in broilers.


Subject(s)
Osteochondrodysplasias , Poultry Diseases , Animals , Chickens/metabolism , Osteochondrodysplasias/veterinary , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Poultry Diseases/prevention & control , Thiram/adverse effects , Thiram/metabolism , Tibia/metabolism , Tibia/pathology , Manganese/adverse effects , Manganese/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Up-Regulation
17.
Oxid Med Cell Longev ; 2022: 8956636, 2022.
Article in English | MEDLINE | ID: mdl-35832491

ABSTRACT

Mutations of filamin B (FLNB) gene can lead to a spectrum of autosomal skeletal malformations including spondylocarpotarsal syndrome (SCT), Larsen syndrome (LRS), type I atelosteogenesis (AO1), type III atelosteogenesis (AO3), and boomerang dysplasia (BD). Among them, LRS is milder while BD causes a more severe phenotype. However, the molecular mechanism underlying the differences in clinical phenotypes of different FLNB variants has not been fully determined. Here, we presented two patients suffering from autosomal dominant LRS and autosomal recessive vitamin D-dependent rickets type IA (VDDR-IA). Whole-exome sequencing revealed two novel missense variants in FLNB, c.4846A>G (p.T1616A) and c.7022T>G (p.I2341R), which are located in repeat 15 and 22 of filamin B, respectively. The expression of FLNBI2341R in the muscle tissue from our LRS patient was remarkably increased. And in vitro studies showed that both variants led to a lack of filopodia and accumulation of the mutants in the perinuclear region in HEK293 cells. We also found that c.4846A>G (p.T1616A) and c.7022T>G (p.I2341R) regulated endochondral osteogenesis in different ways. c.4846A>G (p.T1616A) activated AKT pathways through inhibiting SHIP2, suppressed the Smad3 pathway, and impaired the expression of Runx2 in both Saos-2 and ATDC5 cells. c.7022T>G (p.I2341R) activated both AKT and Smad3 pathways and increased the expression of Runx2 in Saos-2 cells, while in ATDC5 cells it activated AKT pathways through inhibiting SHIP2, suppressed the Smad3 pathway, and reduced the expression of Runx2. Our study demonstrated the pathogenic mechanisms of two novel FLNB variants in two different clinical settings and proved that FLNB variants could not only directly cause skeletal malformations but also worsen skeletal symptoms in the setting of other skeletal diseases. Besides, FLNB variants differentially affect skeletal development which contributes to clinical heterogeneity of FLNB-related disorders.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Filamins , Osteochondrodysplasias , Core Binding Factor Alpha 1 Subunit/metabolism , Dwarfism/metabolism , Facies , Filamins/genetics , Filamins/metabolism , HEK293 Cells , Humans , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Proto-Oncogene Proteins c-akt/metabolism
18.
BMC Genomics ; 23(1): 323, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35459093

ABSTRACT

BACKGROUND: Tibial dyschondroplasia (TD) is a bone disorder in which dead chondrocytes accumulate as a result of apoptosis and non-vascularization in the tibial bone of broiler chickens. The pathogenicity of TD is under extensive research but is yet not fully understood. Several studies have linked it to apoptosis and non-vascularization in the tibial growth plate (GP). We conceived the idea to find the differentially expressed genes (DEGs) in chicken erythrocytes which vary in expression over time using a likelihood-ratio test (LRT). Thiram was used to induce TD in chickens, and then injected Ex-FABP protein at 0, 20, and 50 µg.kg-1 to evaluate its therapeutic effect on 30 screened immunity and angiogenesis-related genes using quantitative PCR (qPCR). The histopathology was also performed in TD chickens to explore the shape, circularity, arrangements of chondrocytes and blood vessels. RESULTS: Clinical lameness was observed in TD chickens, which decreased with the injection of Ex-FABP. Histopathological findings support Ex-FABP as a therapeutic agent for the morphology and vascularization of affected chondrocytes in TD chickens. qPCR results of 10 immunity (TLR2, TLR3, TLR4, TLR5, TLR7, TLR15, IL-7, MyD88, MHCII, and TRAF6) and 20 angiogenesis-related genes (ITGAV, ITGA2, ITGB2, ITGB3, ITGA5, IL1R1, TBXA2R, RPL17, F13A1, CLU, RAC2, RAP1B, GIT1, FYN, IQGAP2, PTCH1, NCOR2, VAV-like, PTPN11, MAML3) regulated when Ex-FABP is injected to TD chickens. CONCLUSION: Immunity and angiogenesis-related genes can be responsible for apoptosis of chondrocytes and vascularization in tibial GP. Injection of Ex-FABP protein to thiram induced TD chickens decrease the chondrocytes damage and improves vascularization.


Subject(s)
Osteochondrodysplasias , Poultry Diseases , Animals , Biomarkers , Chickens/genetics , Chickens/metabolism , Erythrocytes/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/pharmacology , Growth Plate/metabolism , Neovascularization, Pathologic/pathology , Osteochondrodysplasias/pathology , Poultry Diseases/genetics , Poultry Diseases/pathology , Thiram , Tibia , Transcriptome
19.
Vet Immunol Immunopathol ; 247: 110415, 2022 May.
Article in English | MEDLINE | ID: mdl-35344810

ABSTRACT

Thiram, a well-known sulfur containing organic compound is frequently and extensively used in agriculture because of high biological activity to control different pests. In certain cases, due to long persistence in the environment pesticides and other environmental contaminants induce undesirable toxic impacts to public health and environment. To ascertain the potential mechanisms of toxicity of thiram on different immune organs of broilers, a total of 100 one-day-old chicks were obtained and randomly divided into two groups including thiram group (50 mg/kg) and untreated control group. Thymus and spleen tissues were collected at the age of 14 days from the experimental birds. At necropsy level, thymus was congested, enlarged and hyperemic while spleen had no obvious lesions. The results on mechanisms (apoptosis and autophagy) of immunotoxicity showed significantly increased expression of bax, caspase3, cytc, ATG5, beclin1 and p62 in spleen of treated mice. Results indicated significantly decreased expression of m-TOR and bcl2 to activate apoptosis and autophagy. The expressions of bax, p53 and m-TOR were up-regulated in the thymus while the expressions of ATG5 and Beclin1 were down-regulated to mediate cell apoptosis and inhibit autophagy. The results on different metabolome investigation showed that the sphingolipid metabolism in the thymus of chicks exposed to thiram was disrupted resulting in up-regulation of metabolites related to cell membrane components such as SM, galactosylceramide and lactosylceramide. The results of our experimental research suggest that thiram can interfere with the sphingolipid metabolism in thymus and angiogenesis, inhibit the proliferation of vascular endothelial cells to induce potential toxic effects in chicken.


Subject(s)
Osteochondrodysplasias , Rodent Diseases , Animals , Beclin-1 , Chickens , Endothelial Cells , Mice , Osteochondrodysplasias/pathology , Osteochondrodysplasias/veterinary , Rodent Diseases/pathology , Sphingolipids , Spleen/pathology , Thiram/toxicity , Tibia/pathology , bcl-2-Associated X Protein
20.
Genes (Basel) ; 13(1)2022 01 13.
Article in English | MEDLINE | ID: mdl-35052477

ABSTRACT

The significant variability in the clinical manifestations of COL2A1-associated skeletal dysplasias makes it necessary to conduct a clinical and genetic analysis of individual nosological variants, which will contribute to improving our understanding of the pathogenetic mechanisms and prognosis. We presented the clinical and genetic characteristics of 60 Russian pediatric patients with type II collagenopathies caused by previously described and newly identified variants in the COL2A1 gene. Diagnosis confirmation was carried out by new generation sequencing of the target panel with subsequent validation of the identified variants using automated Sanger sequencing. It has been shown that clinical forms of spondyloepiphyseal dysplasias predominate in childhood, both with more severe clinical manifestations (58%) and with unusual phenotypes of mild forms with normal growth (25%). However, Stickler syndrome, type I was less common (17%). In the COL2A1 gene, 28 novel variants were identified, and a total of 63% of the variants were found in the triple helix region resulted in glycine substitution in Gly-XY repeats, which were identified in patients with clinical manifestations of congenital spondyloepiphyseal dysplasia with varying severity, and were not found in Stickler syndrome, type I and Kniest dysplasia. In the C-propeptide region, five novel variants leading to the development of unusual phenotypes of spondyloepiphyseal dysplasia have been identified.


Subject(s)
Cleft Palate/pathology , Collagen Diseases/pathology , Collagen Type II/genetics , Dwarfism/pathology , Face/abnormalities , Hyaline Membrane Disease/pathology , Mutation , Osteochondrodysplasias/congenital , Osteochondrodysplasias/pathology , Adolescent , Child , Child, Preschool , Cleft Palate/epidemiology , Cleft Palate/genetics , Collagen Diseases/epidemiology , Collagen Diseases/genetics , Dwarfism/epidemiology , Dwarfism/genetics , Face/pathology , Female , Humans , Hyaline Membrane Disease/epidemiology , Hyaline Membrane Disease/genetics , Infant , Male , Osteochondrodysplasias/epidemiology , Osteochondrodysplasias/genetics , Phenotype , Russia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...